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We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and
related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying
the sites of a body-centered-cubic lattice, with all atoms arranged in SiO4 tetrahedra. This is the
simplest model that allows for variation in the Si–O–Si angle, which is largely responsible for the
versatility in silica polymorphs. The model describes the assembly of polymerized silica structures
starting from a solution of silicic acid in water at a given concentration and pH. This model can
simulate related materials—chalcogenides and clays—by assigning energy penalties to particular
ring geometries in the polymerized structures. The simplicity of this approach makes it possible to
study the polymerization process to higher degrees of polymerization and larger system sizes than
has been possible with previous atomistic models. We have performed Monte Carlo simulations of
the model at two concentrations: a low density state similar to that used in the clear solution synthesis
of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high
concentration system where there are NMR data on the temporal evolution of the Qn distribution,
we find that the model gives good agreement with the experimental data. The model captures the
basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size
distributions in good agreement with x-ray and neutron diffraction data. © 2011 American Institute
of Physics. [doi:10.1063/1.3575188]

I. INTRODUCTION

Sol-gel processing of silica has been studied extensively
for over a century, reflecting its importance in materials sci-
ence and ceramic engineering.1–4 Such sol-gel processing
can yield nanoporous crystalline zeolites,5 mesoporous silica,
such as MCM-41,6 and amorphous silica in monoliths, films,
fibers, and monosized powders.7–9 Understanding structure
formation from atomic to materials length scales is crucial
for tailoring these materials for advanced applications in,
e.g., catalysis and separations.10 Despite progress in exper-
imental characterization,11–14 we still lack detailed informa-
tion about the spatial structure of silica during its polymer-
ization process. Molecular modeling has the potential to shed
light on this, but is hampered by the complicated interplay of
chemical and physical interactions at many length scales.15

To address this difficulty, we have developed a variety of
models to capture the evolution of structure during silica
polymerization.16–19 In this work we report on a new, atomic
lattice model that captures many structural aspects of silica
formation while allowing the study of very long lengths and
times.

In previous work we reported a coarse-grained lattice
model of nanoparticle growth in the clear solution synthe-
sis of silicalite-1 (MFI).18 The body-centered-cubic (bcc) lat-
tice was chosen because it is composed of two interpene-
trating tetrahedral sublattices, and as such can represent the
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tetrahedral structure of silica on one sublattice, while leav-
ing lattice sites left over on the other sublattice to represent
pore spaces. This model involves SiO4 tetrahedra represented
as particles on a body-centered-cubic lattice with second-
neighbor repulsions, to generate a four-coordinate network
that mimics the tetrahedral structure of silica. Although this
lattice model allows the study of penetration of organic tem-
plates into the cores of nanoparticles—a process thought to
be important for zeolite formation—the model leaves many
structural questions unanswered because of the constraints
imposed by coarse-graining. In particular, only one Si–O–Si
angle (180◦) is allowed in this model and only six-rings (rings
containing six Si and six O atoms in alternation) can arise. In
contrast, silica structures exhibit a wide range of Si–O–Si an-
gles (130◦–180◦),20 giving rise to primitive (irreducible) rings
ranging from 3-rings up to 14-rings.21, 22 While off-lattice
models provide such flexibility,19 they can treat only relatively
small system sizes.15 As such, the development of new lattice
models that provide structural flexibility is of paramount im-
portance. This can be achieved by adopting a more intricate
lattice, by treating more complex interactions,23, 24 or by re-
solving more detailed atomic structure. In the present work,
we pursue this last approach tailored specifically to silica for-
mation.

Silica polymerization can be written in the generic form,

≡Si−OH + ≡Si−OH ⇀↽ ≡Si−O−Si≡ + HOH. (1)

It is widely believed that solution pH plays a significant
role in this polymerization by controlling surface charges on
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silica particles. A pH of around 2 ± 0.5 is the isoelectric point
of silica, where there is negligible net surface charge on sil-
ica particles.25 Under such conditions, silicic acid monomers
polymerize to form discrete particles before aggregation and
gelation, and condensation kinetics is slow enough for ex-
periments to follow and characterize. For example, Devreux
et al.12 studied the condensation kinetics by 29Si NMR of a
system containing tetra-ethoxysilane [Si(OC2H5)4 or TEOS]
using acidic conditions and excess water. (Low pH and high
water-to-alkoxide ratio yields rapid and nearly complete hy-
drolysis of TEOS.) The NMR permits the determination of the
Qn distribution, where Qn is the fraction of silicon atoms in
the system that are connected to n bridging oxygen atoms.13

These data (vide infra) indicate that at the isoelectric point,
room temperature silica condensation is very slow, requiring
thousands of hours to generate substantial Q4 silicons. Be-
cause of the availability of these data and the simplicity of
the isoelectric point, we study below the polymerization of
Si(OH)4 at its isoelectric point in aqueous solutions. This rep-
resents our base-case system for developing the new atomic
lattice model. We seek a model that agrees with the NMR data
on the evolution of the Qn distribution, while giving atomic-
level structural detail lacking in the NMR data. In future work,
we will generalize this model to higher pH values relevant for
zeolite formation.

Previous atomic-level models of silica provide important
information on structure from monomers to rings to clusters.
All these models agree on the relatively uniform Si–O bond
length of ∼1.6 Å and the O–Si–O bond angle of ∼ 109◦.
Pereira et al.26, 27 applied quantum chemistry to investigate the
structures and energetics of various silica chains and rings.
They found that four- and six-rings are more stable than
five-rings due to their asymmetric arrangement. Garofalini
and Martin28 applied molecular dynamics (MD) to study sil-
ica polymerization, finding that chains form at early stages
followed by ring formation. Rao and Gelb performed large-
scale MD simulations of silicic acid in aqueous solution,
finding that Ostwald ripening dominates for low silica con-
centrations at early times; while at longer times, cluster–
cluster aggregation is observed. Bhattacharya and Kieffer29, 30

modeled the sol-gel synthesis of aqueous silica gels, finding
three growth regimes: low silica density (0.2 g/cm3) yielded
compact nanoparticles, high silica densities (1.0 g/cm3),
and low water-to-silicon ratios (denoted as w , w = 0) yielded

percolated silica networks, while high densities (1.0 g/cm3)
and high water-to-silicon ratios (w = 5) led to branched clus-
ters. Despite this progress, none of these MD simulations
has reproduced the evolution of the measured Qn distribu-
tion at room temperature, because of the time scale limitations
of MD.

To simulate silicic acid polymerization under ambient
conditions, Monte Carlo (MC) simulations have been used to
overcome the time scale limitations of MD. Wu and Deem31

developed a set of cooperative MC moves to study the equi-
librium properties of single-cluster growth, finding that silica
clusters containing ∼50 Si atoms are critical nuclei for for-
mation of bulk silica particles. To extend MC simulations to
much bigger system sizes, Jorge et al.16, 17 developed a coarse-
grained, simple-cubic lattice model to simulate formation of
precursor silica-template nanoparticles during early stages of
silicalite-1 growth. This model represents each Si(OH)4 (and
its conjugate base) as single particles on the lattice, with
first-neighbor attractions accounting for the exothermicity of
silicic acid condensation [reaction (1)]. The simple-cubic lat-
tice model accounts for nanoparticle metastability and mea-
sured effects of pH and temperature on nanoparticle size.
However, the simple-cubic structure precludes pore forma-
tion, prompting us to generalize this model to a bcc lattice,18

which consists of two interpenetrating tetrahedral (diamond)
lattices (Fig. 1). By choosing appropriate first-neighbor at-
tractions and second-neighbor repulsions, we found that sil-
ica clusters locally populate one sublattice, leaving the empty
sublattice as pore space for template molecules. Although
this coarse-grained bcc model sheds light on the core-shell
structure of silica-template nanoparticles, the coarse-graining
makes it impossible to resolve atomic-level details such as
Si–O–Si angles and ring-size distributions (RSD).

In the present work, we represent Si and O atoms as dis-
tinct particles on the bcc lattice, keeping all Si and O atoms as
part of intact SiO4 tetrahedra. This atomic bcc model of silica
represents the simplest possible model that allows for varia-
tion in the Si–O–Si angle. We find below that this model gives
a rich variety of structures, agrees well with NMR data on the
basic kinetics of silica polymerization, and provides quantita-
tive predictions on ring-size distributions in good agreement
with analyses of x-ray and neutron diffraction data.

This work is organized as follows. Section II A describes
the model and its parameterization and Sec. II B presents the
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FIG. 1. BCC lattice with black and white spheres denoting sites on two interpenetrating diamond sublattices. The blue sphere in the middle of the cube
represents silicon and its four bonding oxygens sit on either (a) black spheres in sublattice 1 or (b) white spheres in sublattice 2.
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simulation techniques used in this work. Our main results are
presented in Sec. III, and a summary of our results and con-
clusions is given in Sec. IV.

II. MODEL AND SIMULATION METHODOLOGY

A. Model

The base case of our new model begins by representing
Si(OH)4 molecules as rigid tetrahedra on the bcc lattice. This
is accomplished by coarse-graining OH groups into single
particles. As such, in our present model each Si(OH)4 tetra-
hedron occupies five bcc sites, whereas in our previous bcc
model each tetrahedron would occupy only a single site be-
cause of the heavier coarse-graining in the previous model.18

Each Si(OH)4 unit moves on the lattice via translation and
rotation. Because the bcc lattice is equivalent to two interpen-
etrating diamond sublattices,32 the reorientation move corre-
sponds to switching tetrahedral vertices from one diamond
sublattice to the other, as shown in Fig. 1. Water in the sys-
tem is represented as vacant sites following our previous
work.16–18 This gives a more plausible coarse-graining than in
our previous models, which assumed that Si(OH)4 and H2O
molecules exclude the same volume. In contrast, our present
atomic lattice model assumes that Si atoms, OH groups, and
H2O molecules occupy the same effective volume.

We represent silica condensation—the formation of
bridging oxygens as shown in reaction (1)—in our present
model by allowing double occupancy of lattice sites by OH
groups. This is the only form of double occupancy allowed;
i.e., we do not allow a Si atom and an OH group, or two Si
atoms, to occupy the same site. The water molecule produced
by reaction (1) is represented by the vacancy left behind by
the OH group that moved in space, transitioning from sin-
gle to double occupancy. This double occupancy approach al-
lows the sampling of silica condensation/hydrolysis equilibria
while maintaining intact tetrahedra throughout. The energy of
double OH occupancy is the exothermicity of silica conden-
sation, represented by ε < 0. The Hamiltonian for this base
case model can be written as

H = Nε

2

4∑

n=0

nQn, (2)

where N is the number of Si(OH)4 tetrahedra, Qn is the frac-
tion of Si atoms with n bridging oxygens, and the factor of
1/2 removes double counting. The parameter ε is determined
by fitting model predictions to experimental data on silica
solubility.1 Reduced temperature and all other energy scales
are expressed in the units of |ε|. This completes the descrip-
tion of the present base case model.

The atomic bcc model described above allows for
Si–O–Si angles of 70◦, 109◦, and 180◦, as shown in Fig. 2.
Such angular variation is the key microscopic flexibility al-
lowed by our new lattice model. We note that the 70◦ angle
corresponds to two-rings [Fig. 2(a)], which are generally not
observed in silica materials except at very high temperatures33

because of substantial ring strain. Because we focus on lower
temperature sol-gel processing, we discard such two-rings
when they arise in random sampling, leaving 109◦ and 180◦

(a)

(b)

(c)

FIG. 2. Possible values of Si–O–Si angle in the base case model: (a) 70◦,
(b) 109◦, and (c) 180◦.

as possible Si–O–Si angles. Although these angles are quan-
titatively different from the range 130◦–180◦ observed in
silica materials,20 our model offers the simplest qualitative
treatment of angular variation in network solids. We show be-
low that this model can produce a rich variety of structures of
interest in materials science.

Random sampling of the base case model without two-
rings produces chalcogenide-like clusters34 dominated by
three-rings. Although three-rings have been observed in sil-
ica materials by Raman spectroscopy,35 four-rings and larger
are more common.14 Biasing our simulations by penalizing
three-ring formation with an energy penalty of 0.6|ε| per
three-ring produces exclusively layered clusters dominated by
four-rings. Each of the chalcogenide and layered structures is
interesting in its own right and will be studied in future work.
However, the focus of the present study is on silica materials.
We find we can bias the simulation to silica-like structures
by penalizing both three- and four-rings with penalties of ε3

= 0.6|ε| and ε4 = 0.3|ε|, respectively. The model studied
below is thus the base case model without two-rings, and
with three- and four-rings penalized according to the follow-
ing Hamiltonian:

H = N3ε3 + N4ε4 + Nε

2

4∑

n=0

nQn, (3)

where N3 and N4 are the numbers of three- and four-rings,
respectively.

For clarity, we now compare our model with the Bell–
Salt lattice model,36, 37 which has been widely used to inves-
tigate anomalies of water.36–41 The basic idea in the Bell–Salt
model is to restrict the coordination number of each molecule
to four, and the bonds are tetrahedrally oriented.36, 37 Like
real hydrogen bonds, the bonds are asymmetrical with two
“positive” and two “negative” ends. In their model, each
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FIG. 3. Solubility of silica at the isoelectric point as a function of tempera-
ture. The solid squares represent experimental data from Iler (Ref. 1), and the
open triangles show the results of NVT simulations. The best fit yields an ε

value of −4.0 kcal/mol.

molecule is represented by one single site with four bonding
directions pointing to the vertices of a tetrahedron. Therefore,
each Bell–Salt lattice site is either occupied by a molecule
or is vacant. In contrast, our lattice model represents silicon
and oxygen atoms of each SiO4 explicitly, and each Si(OH)4

unit occupies five sites. As such, each lattice site in our model
can be occupied by either one silicon atom, one oxygen atom,
or two oxygen atoms. This explicit representation of oxygen
atoms enables us to obtain structural information about silica
particles such as the evolution of Qn distributions, morpholo-
gies of nanoparticles, and ring-size distributions during silica
polymerization.

B. Simulation details

We define the fractional occupancy, x , as the number of
tetrahedra divided by the number of bcc sites. For this model,
the maximum fractional occupancy is 1/3, consistent with
the formula unit SiO2. For reference, the β-cristobalite phase
can be represented on our atomic bcc lattice. The density of

FIG. 4. Simulation snapshots of silica polymerization with a mole fraction of x = 0.002 and room temperature (reduced temperature T ∗ = 0.15). Snapshots
are taken at (a) 104, (b) 105, (c) 5 × 105, and (d) 5 × 106 MC steps. Snapshots are generated using Visual Molecular Dynamics (Ref. 50).

Downloaded 09 Sep 2011 to 128.119.52.168. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134703-5 Lattice model of silica polymerization J. Chem. Phys. 134, 134703 (2011)

β-cristobalite is 2.3 g/cm3,1 corresponding to a fractional
occupancy of x = 0.0625 on our lattice. We simulated poly-
merization at two silica concentrations: a fractional occu-
pancy of x = 0.002 corresponding to a silica concentration of
0.074 g/cm3 and an occupancy of x = 0.02732 corresponding
to a concentration of 1.0 g/cm3. The lower concentration cor-
responds to that encountered in the clear-solution synthesis
of silicalite-1 at room temperature,42, 43 although in our case
we have no structure-directing agent. The higher concentra-
tion corresponds to the system studied by Devreux et al.,12

who performed NMR measurements of the evolution of silica
Qn distributions. The number of bcc sites is 2L3, where L is
the simulation cell edge length in units of the bcc lattice pa-
rameter, and the factor of 2 counts the two sites per bcc unit
cell. We used L = 100 and 60 for the low and high concentra-
tions, respectively, corresponding to 4000 and 11 802 tetrahe-
dra. We have found that simulation cells with L = 60, 80, and
100 give essentially identical Qn distributions and ring-size
distributions, indicating negligible system size effects.

We performed MC simulations in the canonical ensem-
ble, initiated with silica monomers randomly distributed on a

bcc lattice with periodic boundary conditions. Two kinds of
moves were attempted in the simulations: rotations and trans-
lations of silica tetrahedra. For a given tetrahedron, a rotation
was carried out by switching its vertices (oxygen atoms) from
one diamond sublattice to the other, as shown in Fig. 1. Trans-
lations were attempted by moving a given tetrahedron to any
location in the simulation cell, a form of Glauber dynamics.
Moves were automatically rejected, if they produce multiple
site occupancy, with the notable exception of allowed double
OH occupancies. Moves that produced allowed occupancies
were then accepted or rejected with the usual Metropolis cri-
terion, using the Hamiltonian in Eq. (3) to compute energy
differences. One MC “step” consists of N attempted trans-
lations and N attempted rotations, where N is the number
of silica tetrahedra in the simulation. We note that, although
the total number of bcc sites occupied by silicon and oxygen
atoms varies as two vertices from adjacent tetrahedra may oc-
cupy the same site, the number of tetrahedra remained con-
stant during our simulations. We kept track of clusters formed
during simulations via the Hoshen–Kopelman cluster count-
ing algorithm.44

FIG. 5. Energy and cluster evolution for x = 0.002 and T ∗ = 0.15. (a) Reduced energy of system per lattice site, (b) average cluster size, (c) maximum cluster
size, and (d) total number of clusters.
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III. RESULTS AND DISCUSSION

We begin by calibrating the silica condensation energy,
ε, given in Eqs. (2) and (3). The procedure is described in
detail in previous works.16, 18 In brief, we performed canoni-
cal MC simulations initialized with a slab of β-cristobalite,
in contact with pure solvent (i.e., vacancies) with periodic
boundaries in the directions perpendicular to the slab sur-
face, as shown in Fig. 3. We then simulated silica solubility
for comparison with experimental values.1 The best fit is ob-
tained with a ε value of −4.0 kcal/mol, in good agreement
with the calculated condensation energy (−3.2 kcal/mol) for
dimer formation from two Si(OH)4 molecules, obtained from
density functional theory coupled with a continuum dielec-
tric model.45, 46 The difference between the experimental and
simulated solubilities comes from various approximations in
the lattice model, which remains rather simple compared to
forcefield-based approaches. In particular, there is only one
tunable parameter—the silica condensation energy—which
limits the flexibility of the model for describing the tem-
perature dependence of the solubility. We chose the conden-
sation energy value that produces good agreement for the
solubility at 25 ◦C. Reduced temperatures are thus defined
as T ∗ = kT/|ε|, with room temperature corresponding to
T ∗ = 0.15.

A. Lower concentration system

A series of snapshots from the lower concentration sys-
tem at T ∗ = 0.15 is shown in Fig. 4. After about 104 MC
steps, the system evolved from a configuration with many
smaller clusters to one with fewer larger ones. The evolu-
tion of energy and cluster size during MC is shown in Fig. 5.
The simulated behavior is qualitatively similar to that seen in
our more coarse-grained models of silica polymerization.16–18

In particular, the energy is seen to decrease dramatically un-
til about 5 × 105 MC steps, and then to continue decreas-
ing more slowly thereafter. The average cluster size increases
rapidly until about 106 MC steps, with small step-wise jumps
in cluster size thereafter. The maximum cluster size shows a
rapid increase to 500 tetrahedra by 2 × 105 MC steps, fol-
lowed by fluctuations around 600 tetrahedra thereafter. The
evolution of the number of clusters mirrors that in the average
cluster size because of the fixed number of tetrahedra in the
simulation.

The simulated evolution of the Qn distribution is shown
in Fig. 6 versus the number of MC steps and also versus the
degree of condensation defined by c = ∑4

n=0 nQn/4. We
note that the degree of condensation, which is the fraction
of terminal oxygens converted to bridging oxygens, is
proportional to our model energy according to E = 2Nεc.
As expected, Q0 silica is rapidly consumed as monomers
form dimers, oligomers, and silica particles. The evolution
of Q1 shows a peak at around 102 MC steps, followed by a
peak in Q2 at around 103 MC steps. The peak in Q3 appears
much later, at ∼ 5 × 104 steps. The degree of condensation,
c, reaches a value around 0.86 after 5 × 106 MC steps.
This is a high degree of polymerization compared with

(a)

(b)

FIG. 6. Qn distributions for x = 0.002 and T ∗ = 0.15, as a function of
(a) logarithm of MC simulation steps, (b) degree of condensation defined as
c = ∑4

n=0 nQn/4.

other simulation studies, and is comparable to that seen
experimentally for higher silica concentrations.47

The evolution of the Qn distribution provides important
information about the polymerization mechanism. We note
that Q0 counts only monomers, Q1 reflects dimers and ter-
minal ≡Si–OH groups, Q2 represents both linear and cyclic
chains, and Q3 and Q4 indicate the formation of three-
dimensional network structures. The connection between the
Qn distribution and molecular structure can be seen in Fig. 7
which shows magnified (6.5×) simulation snapshots at sim-
ulation times associated with the maxima in Q1, Q2, and
Q3, respectively. Figure 7(a) shows a solution of dimers,
Fig. 7(b) displays longer noncyclic chains, and Fig. 7(c)
shows the formation of compact nanoparticles with high de-
grees of condensation.

It is thought that during the early stages of silica
polymerization, Ostwald ripening plays an important role
in the process.1 This is driven by the enhanced solubility of
silica in smaller particles because of the larger surface-to-
volume ratios in such clusters. Ostwald ripening is indeed
the mechanism that controls cluster growth in the present
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FIG. 7. Magnified (6.5×) snapshots taken from x = 0.002 and T ∗ = 0.15 at (a) 102 MC steps, (b) 103 MC steps, and (c) 5 ×104 MC steps, corresponding to
peaks of Q1, Q2, and Q3 in Fig. 6, respectively.

simulations, precisely because we do not include overall
cluster moves in the MC that would promote the competing
mechanism of cluster–cluster aggregation. Nonetheless,
when two clusters are sufficiently close, they have exhibited
coalescence phenomena as exemplified in Fig. 8. In this

case only 5 × 103 MC steps were required to bridge the two
particles, but another 4 × 105 steps were required to thicken
the neck, essentially completing the coalescence.

We now discuss the evolution of the ring-size distribu-
tion at T ∗ = 0.15 and x = 0.002, shown in Fig. 9. The ring
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FIG. 8. Coalescence between two silica particles during an N V T MC simu-
lation at T ∗ = 0.15 and x = 0.002. (a) At 3.8 × 105 MC steps, the silica par-
ticles on the left and right contain 463 and 200 Si(OH)4 tetrahedra, respec-
tively, (b) at 3.85 × 105 MC steps the silica particle contains 675 Si(OH)4
units, and (c) at 7.5 × 105 MC steps the silica particle contains 790 Si(OH)4
units.

counting algorithm48 we have used detects fundamental rings,
defined as rings that cannot be divided into two smaller rings.
We performed three statistically independent MC simulations
to obtain the RSD, shown in Fig. 9 with standard deviations
shown as error bars. As the simulation proceeds, both average
ring size and the number of rings increase. At around 103 MC
steps three-rings start to form, coinciding with Q2 reaching
its maximum value and an overall degree of condensation of
0.5. After about 104 steps, four-rings become the most com-
mon with the number of three-rings decreasing slightly, and
rings as large as ten-rings beginning to emerge. After about
105 steps, six- and eight-rings become the most common fol-
lowed by five- and seven-rings. As silica polymerization pro-
ceeds, larger rings (up to 15-rings) are observed with increas-
ing frequency. Compared with RSDs of known zeolites and

FIG. 9. Ring-size distributions for T ∗ = 0.15 and x = 0.002 at the following
stages of MC: 103, 104, 105, 106, and 5 × 106 MC steps.

results from previous simulations of amorphous silica,31, 49 the
final RSD in Fig. 9 is in reasonable agreement, with signifi-
cant population of 3- to 12-rings, and dominance of 6- and 8-
rings. Our results are also in qualitative agreement with quan-
tum calculations26, 27 which find that six-rings are more stable
than five-rings, but larger rings were not considered.

B. Higher concentration system

The simulations on the higher concentration system al-
low closer contact with experiment. First we compare ex-
periment and simulation of the Qn distribution as a func-
tion of the degree of condensation, c, as shown in Fig. 10. In
general, the agreement is quite good, especially given the sim-
plicity of the model. The locations of the simulated Q1, Q2,
and Q3 peaks are in excellent agreement with experiment, at c
values of 0.25, 0.5, and 0.8, respectively. On the other hand,
the heights of these simulated peaks are lower than experi-
mental values, especially for Q2. This is mostly because of
the early onset of Q4 silica in our simulations, a likely conse-
quence of using the lattice model.

Although the MC simulation lacks a system clock, we
can still compare the temporal evolution of experimental Qn

distributions with simulation “stage” measured by the number
of MC steps. This is shown in Fig. 11, where the two graphs
are aligned by the Q0/Q1 crossing point. We see in Fig. 11
that the peaks in Q1, Q2, and Q3 are in good agreement be-
tween experimental time and simulation steps. This indicates
a roughly linear relationship between MC step and physical
time that persists for over three orders of magnitude for both.
Using the Q2 peak (2 h or 30 MC steps) to determine the pro-
portionality constant indicates that each MC step corresponds
to 4 min of physical time. We can also use the Qn cross-
ing points in Fig. 11 to assess agreement between experiment
and simulation. Although the Q1/Q2 crossing point occurs to
the right (i.e., “later”) than that in experiment, the simulated
Q3/Q4 crossing point occurs well before experiment; indeed,
this crossing point is not observed in the 6000 h experimental
time window. As such, the simulated polymerization process
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FIG. 10. Qn distribution for T ∗ = 0.15 and x = 0.02732 as a function of
the degree of condensation c. Symbols are experimental results from NMR
studies (Ref. 12), �, ◦, �, � and ♦ represent measured Q0, Q1, Q2, Q3, and
Q4 data. Solid line, dashed line, dotted line, dashed–dotted line, and dashed–
dotted–dotted line give simulated Qn results.

is clearly accelerated compared to experiment, likely from the
use of Glauber MC dynamics which ignore diffusion limita-
tions. In addition, the lattice model itself likely facilitates Q4

formation through the existence of ready-made coordination
geometries. Nonetheless, this lattice model has allowed much
larger system sizes compared to previous atomistic models.
In addition, our model has produced much greater degrees of
condensation at room temperature, shedding light on struc-
tural properties, such as RSDs, which we now discuss for the
high concentration system.

FIG. 11. (a) Qn distributions extracted from experimental results (Ref. 12).
(b) Simulated Qn distributions at x = 0.02732 and T ∗ = 0.15.

FIG. 12. Comparison of simulated RSD at x = 0.02732 and T ∗ = 0.15 with
reverse Monte Carlo analysis of neutron and x-ray diffraction from vitreous
silica in Ref. 14. Both simulation and reverse Monte Carlo agree on the dom-
inance of six-rings in amorphous silica.

Kohara and Suzuya14 obtained RSDs for vitreous silica
and germania by interpreting high energy x-ray and neutron
diffraction measurements via reverse Monte Carlo. Their re-
sults for the RSD of vitreous silica are essentially the only
experimental data available to test our predictions on dense,
amorphous silica. In Fig. 12 we compare our simulated high

FIG. 13. (a) Snapshot from MC simulation at x = 0.02732 and T ∗ =
0.15, the same conditions as in Fig. 10. (b) Magnified (2×) snapshot
showing enhanced branching and cross-linking predicted in silica at higher
concentration.
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concentration RSD with that of Kohara and Suzuya, focus-
ing on the range of three- to ten-rings in their work. The
overall agreement is very good. Our simulations are domi-
nated by six- and eight-rings (as they are at lower concentra-
tion), with seven- and ten-rings also prominent. The results of
Kohara and Suzuya are dominated by six-rings, with five-,
seven- and eight-rings playing major roles as well. Simulation
and experiment agree in the predominance of six-rings, con-
sistent with quantum calculations on ring stability.26, 27 On the
other hand, experiment suggests that five- and seven-rings are
important, while simulation predicts that three- and ten-rings
are frequent. This discrepancy is likely caused by the use of a
lattice model.

Figure 13 shows snapshots from the simulation at higher
concentration. The higher concentration makes it difficult to
see structural details clearly at this length scale. A magnified
view of one corner of the system is shown in Fig. 13(b). The
silica structures formed under these conditions exhibit much
more branching and cross-linking, as noted by Bhattacharya
and Kieffer based on MD simulations.29, 30

IV. SUMMARY AND CONCLUSIONS

We have presented a new atomic lattice model for sil-
ica polymerization building on earlier work.16–18 The present
model involves Si and O atoms occupying the sites of a bcc
lattice, with all atoms arranged in rigid SiO4 tetrahedra. This
model allows for variation in the Si–O–Si angle, giving possi-
ble values of 109◦ and 180◦. We have enforced restrictions
on the formation of two-rings by discarding them, and on
three- and four-rings through energy penalties. This model
allows for a more detailed structural study of silica polymer-
ization than was possible with previous lattice models,16–18

while allowing the study of larger system sizes than in earlier
atomistic models.28, 31, 49 Through suitable choices of energy
penalties on rings, this model can also shed light on structure
formation in related materials—chalcogenides and layered
materials.

We have studied two conditions for silica assembly, both
at room temperature and the isoelectric pH of silica: a lower
silica concentration relevant to the clear solution synthesis of
zeolite silicalite-1, and a higher concentration corresponding
to NMR measurements of the Qn distribution. Our simula-
tions suggest that silica polymerization proceeds as follows:
(a) dimer and small oligomer formation, (b) growth of non-
cyclic chains, (c) ring formation and growth of spherical parti-
cles, (d) Ostwald ripening of larger particles at the expense of
smaller ones, and (e) cross-linking between particles for sys-
tems with high silica concentrations. The simulated Qn evo-
lution is in very good agreement with the NMR data for the
high concentration system. In particular, three-dimensional
network formation is found to be very slow, requiring an order
of magnitude in time and Monte Carlo steps to proceed from
Q1 to Q2 structures, and another order of magnitude in time
and Monte Carlo steps to go from Q2 to Q3. Our lattice model
simulations do exhibit a tendency to accelerate formation of
more compact, Q3 and Q4 silica. Our simulations show the
evolution of rings, from 3- and 4-rings formed at early times,
to rings as large as 15-rings at later times. The dominance of

six-rings in our simulations is consistent with quantum cal-
culations of ring stability, and also with reverse Monte Carlo
analyses of x-ray and neutron diffraction from vitreous silica.

The simplicity of the present model together with its
computational efficiency could make it a valuable tool in un-
derstanding the self-assembly of silica materials and other
closely related systems. In the future, we will apply this model
to silica at higher pH values relevant to zeolite formation.
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