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Abstract

To solve the non-relativistic time dependent Schrödinger equation using the Lanczos method, Park and Light have provided an approximate
expression for the time step for a given accuracy. We provide an exact expression for the time step in terms of the eigenvalues and eigenvectors
of the resulting tridiagonal matrix. For two test problems, the values of the time step provided by Park and Light differ significantly from the
exact values provided by the present method. We also indicate upper and lower bounds for the time step in terms of the maximum and minimum
eigenvalues. These bounds indicate the possibility of using a new time step given by the geometric mean of the eigenvalues of the tridiagonal
matrix.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum time evolution is required for a variety of problems in chemistry and physics including reaction dynamics [1,2] and
photochemistry [3–5]. Time evolution in “imaginary time” provides a computational route to quantum statistical mechanics [6].
Key to the success of these calculations are reliable estimates of maximum time steps for stable time evolution. In this article, we
derive exact expressions for such time-step bounds based on the Lanczos method reported in 1986 by Park and Light [7]. This
method builds the solution to the time-dependent Schrödinger equation (tdse) in a Krylov space through iterative Gram–Schmidt
orthogonalization. Our new time-step bounds are rigorously tied to allowed error tolerances, require only data already obtained
during time evolution, and guarantee stable wavepacket evolution.

The remainder of this article is organized as follows: in Section 2 we review Park and Light’s Lanczos time evolution approach;
in Section 3 we derive the exact time-step bound; in Section 4 we derive a simplified time-step bound using Gershgorin’s theorem;
in Section 5 we test our bound on numerical wavepacket evolution in a harmonic potential; in Section 6 we further test the bound
on wavepacket scattering from an Eckart barrier; and in Section 7 we conclude.

2. Solution of tdse by the Lanczos method

Consider the time dependent Schrödinger equation (tdse) with a time independent Hamiltonian H0, in one dimension

(1)H0 = −h̄2

2μ

d2

dx2
+ V (x),
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(2)ih̄
∂

∂t
ψ(x, t) = H0ψ(x, t).

In the following, ‖ · ‖ denotes the standard L2 norm and column vectors are denoted by bold letters. To solve the above equation,
we write the wave function ψ(x, t) in terms of an appropriate set of orthonormal basis functions {φi(x)} as

(3)ψ(x, t) =
N∑

i=1

ai(t)φi(x); 〈φi |φj 〉 = δij .

We need to solve for the expansion coefficients {ai(t)} denoted by the vector a(t). Let H denote the n by n Hamiltonian matrix
with elements Hij given by

(4)Hij = 〈φi |H0φj 〉 =
∫

φ∗
i (x)H0φj (x)dx.

The Schrödinger equation gets recast as

(5)ih̄
∂a
∂t

= Ha(t)

with the initial condition

(6)a(0) = b(0),

(7)bi(0) = 〈
φi

∣∣ψ(x,0)
〉
.

The formal solution and a p term approximation to the formal solution are given by

(8)a(t) = e−(it/h̄)H a(0) =
∞∑

k=0

(−it/h̄)k

k! Hka(0) �
p−1∑
k=0

(−it/h̄)k

k! Hka(0).

In the above approximation, the p-dimensional subspace is spanned by the vectors {a(0),Ha(0),H 2a(0), . . . ,Hp−1a(0)}. In the
Lanczos method, the p-dimensional subspace is spanned by an alternate set of linearly independent vectors {a1,a2,a3, . . . ,ap}
generated by a recursive process defined below.

(9)a1 = a(0)/‖a(0)‖; β0 = 0; a0 = 0,

(10)for j = 1 to p,

(11)z = Haj ,

(12)αj = 〈aj |z〉,
(13)z1 = z − αj aj − βj−1aj−1,

(14)βj = ‖z1‖,
(15)if βj = 0, quit,

(16)aj+1 = z1/βj ,

(17)end for loop.

The p Lanczos vectors {a1,a2,a3, . . . ,ap} define a n by p matrix Ap , given by

(18)Ap = {a1,a2,a3, . . . ,ap}.
The p by p tridiagonal matrix Hp is defined in terms of {αi} and {βi} as follows.

(19)Hp =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 . . . 0
β1 α2 β2 . . . 0
0 β2 α3 β3 . . .
...

...
...

...
...

0 . . . βp−2 αp−1 βp−1
0 . . . 0 βp−1 αp

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that the recursive relation given by Eq. (13) can also be written as

(20)Haj = βj aj+1 + αj aj + βj−1aj−1.
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This implies the following matrix relation

(21)HAp = ApHp.

By defining a(t) = ApC(t), one solves for C as follows

(22)
∂C
∂t

= (−i/h̄)HpC,

(23)C(t) = e(−it/h̄)Hp C(0),

(24)C(0) = C0 =

⎡
⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎦ .

The accuracy of this method amounts to minimizing the norm of the pth term C(t)p of the series approximant to C(t) given by

(25)C(t) �
(p−1)∑
k=0

(−it/h̄)k

k! {Hp}kC0,

(26)C(t)p = (−it/h̄)(p−1)

(p − 1)! {Hp}(p−1)C0.

By stipulating the following criterion

(27)
∥∥C(t)p

∥∥2 � ε

the error at time t is kept around the permissible value of ε. For real times the evolution indicated here is unitary, since (‖ψ‖)2 is
preserved with an accuracy of the order of ε.

Essentially one needs a bound on the norm of the quantity {Hp}(p−1)C0. Park and Light [7] assert one bound on this quantity

given by
∏p−1

k βk . Here β ′s are the off-diagonal elements of the matrix Hp . With this assertion one obtains

(28)
∥∥C(t)p

∥∥2 �
∣∣∣∣∣
(−it/h̄)(p−1)

(p − 1)!
(p−1)∏

k

βk

∣∣∣∣∣
2

.

Then the maximum permissible time step tmax is thus given by

(29)tmax � h̄

(
ε

[
(p − 1)!∏

βk

]2) 1
2(p−1)

.

The mathematical steps leading to this bound given by

(30)
∥∥H

(p−1)
p C0

∥∥ �
(p−1)∏

k

βk

are not transparent. We provide an exact expression for the time step for the real and purely imaginary times below. The time step
expression involves the eigenvalues and the first component of each eigenvector of the tridiagonal matrix Hp . These eigenvalues
and eigenvectors are needed independently for the time evolution of the initial wave packet and hence no extra computation is
involved.

3. Derivation of the exact time step expression

Let U be the unitary matrix that diagonalizes the matrix Hp to the diagonal matrix Hpd where U,U† and Hpd are defined below.

(31)U =

⎡
⎢⎢⎣

u11 u12 . . . u1p

u21 u22 . . . u2p

...
...

...
...

up1 up2 . . . upp

⎤
⎥⎥⎦ , U† =

⎡
⎢⎢⎢⎣

u∗
11 u∗

21 . . . u∗
p1

u∗
12 u∗

22 . . . u∗
p2

...
...

...
...

u∗
1p u∗

2p . . . u∗
pp

⎤
⎥⎥⎥⎦ ,

(32)U†HpU = Hpd =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...

⎤
⎥⎥⎦ .
0 . . . . . . λp
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We also have the following relations.

(33)Hp = UHpdU†,

(34)(Hp)(p−1) = (
UHpdU†)(p−1) = UH

(p−1)
pd U†,

(35)eHp = UeHpd U†,

(36)U†C0 =

⎡
⎢⎢⎣

u∗
11

u∗
12
...

u∗
1p

⎤
⎥⎥⎦ ,

(37)H
(p−1)
p C0 = UH

(p−1)
pd U†C0 =

⎡
⎢⎢⎣

u11 u12 . . . u1p

u21 u22 . . . u2p

...
...

...
...

up1 up2 . . . upp

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

λ
(p−1)

1 u∗
11

λ
(p−1)

2 u∗
12

...

λ
(p−1)
p u∗

1p

⎤
⎥⎥⎥⎦ = UY,

where Y is given by

(38)Y =

⎡
⎢⎢⎢⎣

λ
(p−1)

1 u∗
11

λ
(p−1)

2 u∗
12

...

λ
(p−1)
p u∗

1p

⎤
⎥⎥⎥⎦ .

Since U is unitary

(39)
∥∥H

(p−1)
p C0

∥∥ = ‖UY‖ = ‖Y‖ =
√

λ1
2(p−1)|u11|2 + λ2

2(p−1)|u12|2 + · · · + λp
2(p−1)|u1p|2.

Thus the error criterion becomes

(40)ε =
[

t
(p−1)
max

h̄(p − 1)! ‖Y‖
]2

.

Hence we get the final expression for the maximum time step as

(41)tmax = h̄

(
ε

[
(p − 1)!

‖Y‖
]2) 1

2(p−1)

.

The above expression for tmax is exact within the tridiagonal approximation. Before we proceed further, we need certain clarifica-
tions. We first note that the approximant for C(t) defined below is a p term series.

(42)C(t) �
(p−1)∑
k=0

(−it/h̄)k

k! {Hp}kC0.

The pth term of the above series is the term

(43)C(t)p = (−it/h̄)(p−1)

(p − 1)! {Hp}(p−1)C0.

Let us denote the approximant for C(t) minus the last term C(t)p by A

(44)A =
(p−2)∑
k=0

(−it/h̄)k

k! {Hp}kC0.

For a convergent series approximation, the norm of the last term of the series must be made small when compared to the norm
of the sum of the previous (p − 1) terms of the approximant for C(t). Hence the criterion

(45)
∥∥C(t)p

∥∥2 � ε

must be replaced by the correct criterion

(46)

(‖C(t)p‖
‖A‖

)2

� ε.
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However for real time evolution since Hp is Hermitian, e
− itHp

h̄ is unitary. Hence we get

‖A‖ =
∥∥∥∥∥

(p−2)∑
k=0

(−it)k

k! {Hp}kC0

∥∥∥∥∥
(47)�

∥∥∥∥∥
∞∑

k=0

(−it)k

k! {Hp}kC0

∥∥∥∥∥ = ∥∥e
− itHp

h̄ C0
∥∥ = 1.

Thus for real time propagation, the error criterion does not need any modification. But if the propagation time is purely imaginary,

say t = −iτ , where τ is real then e
− itHp

h̄ is no longer unitary. In this case Hp = UHpdU† implies the following relation

(48)e
− itHp

h̄ = e
− τHp

h̄ = Ue
− τHpd

h̄ U† = U

⎡
⎢⎢⎣

e−τλ1/h̄ 0 . . . 0
0 e−τλ1/h̄ . . . 0
...

...
...

...

0 . . . . . . e−τλ1/h̄

⎤
⎥⎥⎦U†.

Hence we have

‖A‖ � ∥∥e
− itHp

h̄ C0
∥∥ = ∥∥Ue

− τHpd
h̄ U†C0

∥∥ = ∥∥e
− τHpd

h̄ U†C0
∥∥

(49)�
√

e−2τλ1/h̄|u11|2 + e−2τλ2/h̄|u12|2 + · · · + e−2τλp/h̄|u1p|2.
Hence instead of the error criterion for the real time step,

(50)tmax = h̄

(
ε

[
(p − 1)!

‖Y‖
]2) 1

2(p−1)

we have the following modified criterion for the imaginary time step

(51)τ = h̄

(
ε

[
(p − 1)!‖A‖

‖Y‖
]2) 1

2(p−1)

.

The time step for real time is an explicit expression. On the other hand, for the purely imaginary time, the quantity ‖A‖ too has a
dependence on τ . Hence in this case, the maximum time step, τ , has to be found by an iterative method like the Newton–Raphson
scheme. The iterations however converge very rapidly. Finally let all the eigenvalues and the time step satisfy the following property.

(52)0 < |λi |τ/h̄ 	 1; i = 1,2, . . . , p.

Then we have

(53)e−2τ |λi |/h̄ � 1; i = 1,2, . . . , p.

As a result

‖A‖ �
√

e−2τλ1 |u11|2 + e−2τλ2 |u12|2 + · · · + e−2τλp |u1p|2

(54)�
√

|u11|2 + |u12|2 + · · · + |u1p|2 = 1.

Thus in this case, the criteria for the real and imaginary time steps are the same.

4. Bounds on the time step

The time steps that we have derived are exact within the tridiagonal approximation. They involve the eigenvalues and first
component of each eigenvector of the tridiagonal matrix Hp . This is unlike the one given by Park and Light which involves just
the off diagonal elements β1, β2, . . . , βp . Before we compare these two time steps we examine the applicability of the classical
Gershgorin theorem [8,9] for further simplification of the estimates we have derived.

Gershgorin’s theorem. Every eigenvalue λ of the n by n matrix B with elements bij lies in at least one of the circles

(55)|z − bii | �
n∑

j 
=i

|bij | (i = 1,2, . . . , n).
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Let us denote by Xk the sum of the magnitudes of all the elements of the kth row of the tridiagonal matrix Hp . Let X be the
maximum of the numbers X1,X2, . . . ,Xp .

(56)Xk = |αk| + |βk| + |βk−1|,
(57)X = Max(X1,X2, . . . ,Xp).

Then Gershgorin’s theorem implies that

(58)|λ|max � X.

For the real time case, the expression for the maximum time step is given by

(59)tmax = h̄

(
ε

[
(p − 1)!

‖Y‖
]2) 1

2(p−1)

,

where ‖Y‖ is given by

(60)‖Y‖ =
√

λ1
2(p−1)|u11|2 + λ2

2(p−1)|u12|2 + · · · + λp
2(p−1)|u1p|2.

In order to get a practical bound for the real time case, we need approximations for the quantity ‖Y‖. We notice that the following
inequality is true

(61)λ
2(p−1)

1 |u11|2 + λ
2(p−1)

2 |u12|2 + · · · + λ
2(p−1)
p |u1p|2 � λ

2(p−1)
max

[|u11|2 + |u12|2 + · · · + |u1p|2] = λ
2(p−1)
max � X2(p−1).

Also,

(62)λ
2(p−1)

1 |u11|2 + λ
2(p−1)

2 |u12|2 + · · · + λ
2(p−1)
p |u1p|2 � λ

2(p−1)

min

[|u11|2 + |u12|2 + · · · + |u1p|2] = λ
2(p−1)

min .

Thus we see that

(63)h̄

(
ε

[
(p − 1)!
λ

(p−1)

min

]2) 1
2(p−1)

� tmax � h̄

(
ε

[
(p − 1)!
λ

(p−1)
max

]2) 1
2(p−1)

� h̄

(
ε

[
(p − 1)!
X(p−1)

]2) 1
2(p−1)

.

Thus Gershgorin’s theorem enables us to get a lower bound for the maximum time step for the real time case, purely in terms of the
row sums of the tridiagonal matrix. This is not useful from a practical point of view since we need as large a time step as possible,
compatible with the error criterion. However, Eq. (63) indicates that the maximum allowed real time step is sandwiched between
two bounds involving the minimum and maximum eigenvalues of the tridiagonal matrix.

5. Wave packet in harmonic oscillator potential

We present two examples below. In the first example, we handle a very simple test problem, a Gaussian wave packet oscillating
in a simple harmonic potential kx2/2. With x0 as the initial displacement, the initial wave packet and the exact probability density
are given by [10]

(64)ψ(x,0) = α1/2

π1/4
e−α2(x−x0)

2/2,

(65)
∥∥ψ(x, t)

∥∥2 = α√
π

e−α2[x−x0 cos(ωct)]2
,

(66)α = [mk/h̄2]1/4; ωc = (k/m)1/2.

The Hamiltonian was constructed by a discrete variable representation (DVR) scheme [11]. The basis functions are given by

(67)φj (x) = [
2/(b − a)

]1/2 sin
[
jπ(x − a)/(b − x)

]; j = 1,2, . . . , (N − 1); x ∈ [a, b].
For a symmetric choice of width a on either side, the basis functions and the grid points are given by

(68)φj (x) = (1/a)1/2 sin
[
jπ(x + a)/(2a)

]
,

(69)xi = −a + (2a/N)i.

With N set to 120, a 119 by 119 DVR Hamiltonian matrix was chosen. The subspace dimension, p, was chosen as 22. Other values
were tested and good results were obtained. The error tolerance parameter ε was taken as 10−14 as an extreme application of the
error bound. The wave packet was evolved for 50 fs and Table 1 gives the comparison of the probability densities at various positions
calculated by the Lanczos method using the Park and Light time step and the time step indicated by the present method. In order
to evolve the wave packet for 50 fs = 2067 au, Park and Light time step method needs 6 iterations with time steps 392.86, 392.85,
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Table 1
Results of harmonic oscillator test problem with a 119 by 119 DVR Hamiltonian

x Prob. density (Exact) Prob. density (Park) Prob. density I Prob. density II

12 0.931823044974D−02 0.93182512853665D−02 0.93182241817208D−02 0.93182091762780D−02
23 0.890725084140D−02 0.89072658257629D−02 0.89072403438205D−02 0.89072288859009D−02
45 0.667370901062D−02 0.66737593537479D−02 0.66737029563028D−02 0.66737104609287D−02
65 0.407997717359D−02 0.40799511575690D−02 0.40799868240726D−02 0.40799918957181D−02

Parameter values are given in atomic units. Wave number = (1/λ) = 60; semi system width (a) = 520; x0 = 10; p = 22; ε = 10−14; time = 50 fs.

392.85, 393.12, 393.29 and 392.84 au. The present method employing the time steps given by Eqs. (59), (60), needs 4 iterations
with time steps 545.34, 559.68, 564.25 and 588.64 au. The time step of the present method is about 1.4 times the time step of the
Park and Light method, thus giving more efficient time evolution. These results are presented in the third column of Table 1. It must
be noted that the DVR Hamiltonian we employ has an inherent error essentially stemming from the various approximations while
constructing the matrix elements of the Hamiltonian operator [11]. The quantities obtained by time evolution by employing this
approximant to the exact Hamiltonian operator will also have a corresponding error component. Hence it is appropriate to solve the
evolution equation given by Eq. (5) by direct diagonalization and the probability density obtained via this process is presented as
“Exact” in the first column of Table 1 instead of the analytical solution provided by Eq. (65). A comparison of the second and third
columns of Table 1 also reveals the values obtained by using the present time step expression is slightly superior.

We have examined the possibility of using the time steps employing the largest and smallest eigenvalues. Obviously the use
of the largest eigenvalue will yield a smaller time step. The use of the smallest eigenvalue may yield an unduly large time step.
Hence, we take the geometric mean λgeo of all the eigenvalues λ which satisfy the criterion |λ/λmax| � 2 × 10−16. The number
2 × 10−16 corresponds to the machine precision in double precision accuracy. This λgeo is used to calculate the maximum time step
instead of either λmax or λmin in Eq. (63). The geometric mean of eigenvalues bears resemblance to Park and Light’s parameter
(
∏p−1

k βk)
1/(p−1). However, our use of the geometric mean is based on the rigorous analysis presented above. This results in a

time step that is mostly larger than the previous time steps. For a 50 ps time evolution, only two 2 iterations are needed with time
steps 2014.52 and 167.72 au. These results are presented in the last column of Table 1. These results show that the choice of the
geometric mean of the eigenvalues for calculating a good approximation of ‖Y‖ holds promise.

6. Reactive scattering in Eckart barrier

In the next example, we see that the situation is reversed. That is, the present method indicates a shorter time step compared to
the one given by Park and Light. The problem considered is the wave packet evolution for an Eckart potential barrier. The potential
is given by

(70)V (x) = V0 sech2(x); V0 = 0.0114 au.

Using the theory of Miller, Schwartz and Tromp [12], the exact quantal reaction rate constant k is given by the time integral of the
flux auto correlation function c(τ ) as [13]

(71)kQ = lim
t→∞ Re

t∫
0

c(τ )dτ,

(72)c(τ ) = (−h̄2)

2m2
Tr

{[
(∂/∂s)δ(s) + δ(s)∂/∂s

]
U(−t∗c )

}{[
(∂/∂s)δ(s) + δ(s)∂/∂s

]
U(tc)

}
,

(73)U(tc) = e−iH tc/h̄; tc = τ − ih̄β/2; β = 1/(kBT ).

Here Q is the translational partition function per unit length for reactants. U(tc) is the propagator for the complex time and T

is the temperature. Here T r denotes the quantum mechanical trace and s represents the reaction coordinate, with s = 0 defining
the transition surface separating the reactants and products. In a discrete real-valued, zero-order orthonormal basis, the correlation
function c(τ ) and the matrix element Umn are given by

(74)c(τ ) = (−1/2)(h̄/m)2
N∑

i,j,k=1

φi(0)φ′
j (0)Ujk(−t∗c )

[
φk(0)φ′

l (0) − φl(0)φ′
k(0)

]
Uli(tc),

(75)Umn = 〈φm|e−iH tc/h̄|φn〉.
We use the DVR Hamiltonian and the basis functions φj (x) defined earlier. With N = 40 (39 basis functions), each basis function is
first evolved through a purely imaginary time (−ih̄β/2) and then evolved over a real time of 40 fs in steps of 1 fs. Thus e−iH tc/h̄|φn〉
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Table 2
Comparison of maximum and minimum time steps for the Park and Light and present schemes

Real time step Imag. time step

Park and Light Present Park and Light Present

Maximum 3972 450.64 3614 227.08
Minimum 2087 124.08 2177 121.92
NR 1560 1560
NI 39 116

NR is the total number of iterations to evolve all 39 the basis functions through a period of 40 fs. NI is the number of iterations to
evolve all the 39 basis functions through an imaginary time, (−ih̄β/2) where T = 1/kBβ = 500 K.

and hence Umn are calculated at intervals of 1 fs. Then by using Eq. (75), we evaluate c(τ ) and the final required quantity kQ. The
area under the curve of the plot of c(τ ) against time gives the value kQ.

For T = 500 K, the correct reported values of c(0) and kQ are 1.51 ps−2 and 9.8 × 10−3 ps−1, respectively [13]. The calculated
c(0) and kQ values are 1.501275 ps−2 and the 9.832 × 10−3 ps−1, respectively, employing either the Park and Light or the present
time step criteria. The time steps are however different. For the real times of 1 fs time interval, the maximum and minimum time
steps by the Park and Light scheme are 3972 and 2087 au. The corresponding maximum and minimum time steps are 450.64 and
124.08 au for the present method. Thus the time steps for the present method are much smaller. However since each 1 fs time
interval correspond to 41.34 au, the minimum time intervals of both the time step methods (2087 and 124.08 au) exceed this.
Hence the total number of iterations for real time evolution is the same for both the methods. On the other hand, the magnitude
of the imaginary time is 315.77 au. The maximum and minimum time steps by the Park and Light method are 3614 and 2177 au,
respectively. The corresponding quantities for the present method are 227.08 and 121.92 au, respectively. The Park and Light time
step criterion needs 39 iterations to evolve all the basis functions while the present method requires 116 iterations to perform the
same evolution. Thus for both the real and imaginary time propagation, the Park and Light time step criterion yields time steps that
are much larger than the exact time step admissible under the tridiagonal approximation. Table 2 summarizes the above results.

Some final comments regarding the maximum time steps via the Park and Light method and the present method are needed. The
starting point for both the methods is the norm of the last vector H

p−1
p c(0) in the finite sequence of linearly independent vectors

{c(0),Hpc(0),H 2
pc(0), . . . ,H

p−1
p c(0)}. Thus, the strict validity of both the time step bounds is guaranteed in the space spanned by

the vectors {c(0),Hpc(0),H 2
pc(0), . . . ,H

p−1
p c(0)}. On the other hand, the solution of the time evolution equation

∂C
∂t

= (−i/h̄)HpC

is obtained by resorting to the diagonalization of Hp . That is, the solution vector C(t) is sought in the basis consist-
ing of the eigenvectors of Hp . This basis, namely, the eigenvectors of Hp and the second basis, made up of the vectors

{c(0),Hpc(0),H 2
pc(0), . . . ,H

p−1
p c(0)} are not the same. Hence we recognize that the time step bounds of both Park and Light

and the present methods are in some sense guide line values rather than strict bounds when the solution procedure adopted is diago-
nalization. This helps to understand why one does not observe serious errors due to numerical instability during the imaginary time
propagation when the exact time step bounds indicated by us are exceeded by the use of Park and Light prescription. The maximum
and minimum time steps through the Park and Light scheme are 3614 and 2177 au, respectively. These values are much higher
than the corresponding values, 227.08 and 121.92 au, which are the exact bounds within the basis set consisting of the vectors
{c(0),Hpc(0),H 2

pc(0), . . . ,H
p−1
p c(0)}.

7. Conclusions

We have presented a comprehensive derivation of the upper and lower bounds for the time steps, for the unitary quantum time
evolution using the Lanczos method. The time step expressions we have derived are exact within the basis set consisting of the
vectors {c(0),Hpc(0),H 2

pc(0), . . . ,H
p−1
p c(0)}. The values of the time steps obtained via these expressions differ significantly

from the ones obtained by using the corresponding expression of Park and Light. The judicious use of the geometric mean of the
eigenvalues yields a new time step which may turn out to be very economical. This point warrants further numerical experimentation
for a variety of problems, and it will be addressed in a future work.
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