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We present a method for analyzing the mechanical properties of solids, based on normal modes and their
coupling to lattice strains. This method was used to study elastic compression and thermal expansion of
zeolites, with parameters calculated from density functional theory. We find in general that the bulk modulus
can be divided into two contributions: a positive term arising from compression without internal relaxation, and
a negative term from coupling between compression and internal vibrational modes. For silica polymorphs, the
former term varies little among the phases studied, reflecting the intrinsic rigidity of SiO4 tetrahedra. In
contrast, the latter term varies strongly from one polymorph to the next, because each polymorph exhibits
different symmetry constraints on internal vibrations and their couplings to lattice strains. Typically only a few
normal modes contribute to the bulk modulus. To facilitate parametrization of this normal mode model, we
constructed a simplified classical spring-tetrahedron model for silica. After fitting to properties of silica so-
dalite, this model reproduces cell volumes and predicts bulk moduli ofa-cristobalite and silica zeolites CHA,
LTA, and MFI. We incorporated anharmonic effects into the theory, allowing the calculation of the thermal
expansion coefficient. The resulting expression provides a generalization of classical Grüneisen theory, taking
into account additional anharmonicities. This method was used to study thermal expansion of fcc aluminum
and an aluminosilica sodalite, yielding good agreement with experiment.

DOI: 10.1103/PhysRevB.71.014112 PACS numberssd: 62.20.Dc, 65.40.De, 71.15.Mb, 82.75.2z

I. INTRODUCTION

The discovery of new nanostructures with increasingly
complex architectures challenges our understanding of the
relationship between a material’s atomic structure and its
mechanical properties.1 An important example involves the
crystalline polymorphs of silica, SiO2. These include dense
phases such as quartz and cristobalite,2 as well as nanopo-
rous szeoliticd polymorphs such as sodalite and silicalite.3

The mechanical properties of zeolites are particularly impor-
tant because channel deformations can radically change a
zeolite’s capacity for adsorption, diffusion, and reaction.
These dense and nanoporous phases share common structural
features, including Si-O bond lengthss,1.6 Åd, O-Si-O
angless,109°d, and networks with low coordination and
strong association.4 These phases differ in Si-O-Si angles
s140°–180°d, densities and symmetries. The cohesive energy
appears to be relatively insensitive to these structural differ-
ences, varying by only 0.1 eV per SiO2.

5 However, the bulk
modulus varies significantly from one polymorph to the
next.5 Despite progress in understanding the mechanical
properties of networks,6 this variation in bulk modulus
among silica phases remains poorly understood. In this ar-
ticle, we investigate a theory of solid compression and ex-
pansion based on normal vibrations and their coupling to
lattice strains, which elucidates the relationship between a
crystal’s structure and its mechanical properties.

The elastic response of a solid to compression can be
decomposed into two parts:sid atomic vibrations at fixed
volume,7,8 and sii d unit cell volume fluctuations for a fixed
atomic configuration. In what follows, we denote the latter
motion as a “sudden” elastic response, because the vibrations
do not relax during compression. Our theory begins by writ-

ing a classical harmonic potential energy in terms of these
two kinds of distortions. Although our classical treatment
breaks down at sufficiently low temperatures, where the
quantum nature of vibrations becomes important, the bulk
modulus turns out to be most sensitive to low-frequency vi-
brations, which are adequately modeled under ambient con-
ditions by classical theory. Below we show that the bulk
modulus can be written as a positive term arising from sud-
den elastic response, and a negative term controlled by cou-
plings between vibrations and lattice strains. When param-
etrized for several silica polymorphs by density functional
theory sDFTd calculations, we find that the sudden elastic
response is remarkably uniform from one polymorph to the
next, like the cohesive energy discussed above. However,
normal vibrations and their couplings to lattice strain are
found to depend sensitively on the symmetry of a given
polymorph.

By augmenting the harmonic potential energy with anhar-
monicity, we have developed a theory for the thermal expan-
sion of crystalline solids. Our approach provides a generali-
zation to classical Grüneisen theory,9 which accounts for
anharmonicity by tracking the volume dependence of phonon
frequencies. Instead, we construct a potential with a com-
plete set of cubic anharmonicities, and derive analytically the
thermal expansion coefficient showing the importance of
each kind of anharmonicity. We apply this approach to the
thermal expansion of aluminum metal and aluminosilica so-
dalite zeolite. In the former case, we find that our theory
reproduces the success of classical Grüneisen theory. In the
latter case, we find that our approach gives good agreement
with experiment, while Grüneisen theory accounts for only
22% of the thermal expansion coefficient.

To facilitate the parametrization of this normal mode po-
tential function, we develop a classical spring-tetrahedron
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model for silica. This approach was inspired by rigid-unit
models developed by Dove and co-workers to study soft vi-
brational modes in silica.10 In our model, SiO4 units are
treated as semirigid tetrahedra, while Si-O-Si angles are
relatively flexible. Our spring-tetrahedron model is similar in
spirit to valence bond force fields developed for simulating
zeolite framework vibrations.11,12These force fields were de-
signed to accurately reproduce infrared spectra of zeolites. In
contrast, the spring-tetrahedron model was constructed to
provide a simple, qualitative picture of zeolite compression.
We show below that, despite its simplicity, the spring-
tetrahedron model reproduces cell volumes and predicts bulk
moduli of several silica phases. In the end we find that the
normal mode picture of compression and expansion, param-
etrized by DFT calculations and the spring-tetrahedron
model, provides a powerful new approach for understanding
the mechanical properties of nanostructured materials.

The remainder of this paper is organized as follows: in
Sec. II we present the normal mode theory of crystalline
compression and expansion, deriving equations for the bulk
modulus and thermal expansion coefficient. In Sec. III we
describe the DFT and spring-tetrahedron calculations re-
quired to parametrize the new theory. In Sec. IV we give the
results for a variety of materials including several silica poly-
morphs, aluminum metal, and an aluminosilica sodalite. In
Sec. V we discuss our results and offer concluding remarks.
Finally, we present an Appendix to clarify our derivation of
the bulk modulus for anisotropic crystals.

II. THEORY

Here we present an approach for studying mechanical
properties of solids based on classical normal mode analysis.
As discussed above, elastic responses are usually dominated
by lower frequency vibrations, which are adequately treated
with classical theory. The theory presented below is appli-
cable to the mechanical properties of general anisotropic lat-
tices. For pedagogical purposes, we begin by deriving an
expression for the bulk modulus in the simple case of a cubic
lattice. We then proceed to the more general case of aniso-
tropic lattices. We end this section by deriving an expression
for the thermal expansion coefficient for cubic lattices.

A. Harmonic approximation for cubic lattices

The harmonic potential energy of the lattice,E0, can be
expressed in terms of small displacements of the lattice pa-
rameter given byl =a−a0, whereV0=a0

3 is the equilibrium
unit cell volume atT=0 K. The energy also depends on an
n-dimensional vector of fractional Cartesian displacements
q=sr −r 0d /a from an equilibrium geometryr 0. We use frac-
tional coordinates to describe vibrations so that varying the
strain l, while keeping q fixed, produces isotropic
compression/expansion of the system. By performing an or-
thogonal transformation to normal modesx=UTq, we ex-
press the harmonic lattice energy according to

E0sx1, . . . ,xn,ld = o
i=1

n

sDixi
2 + Lixild + Kl2. s1d

HerehDij are the normal mode force constants, which can be
computed by mapping the potential energy, or the forces, for

small atomic displacements. This procedure gives a nondi-
agonal force constant matrix, which is then diagonalized to
obtain hDij andx. The parameterK controls the energy cost
of a sudden elastic response, i.e., isotropic expansion or con-
traction of the solid. The parametershLij describe the cou-
pling between normal mode displacements and lattice strain.
This kind of potential energy function is a starting point for
activated rate theories,13 and has also been used to study
displacive phase transitions in ferroelectric materials within
the effective Hamiltonian approach.14–16

We note that normal mode analysis applied to small mol-
ecules usually involves mass weighting the force constant
matrix, which upon diagonalization yields normal mode
force constants with units of square frequency.17 In contrast,
we use fractional coordinates and omit the mass weighting
for simplicity, so thatDi has units of energy.

The bulk modulus is expressed as

B = − VS ]p

]V
D

n,T
= − VS ]V

]p
D

n,T

−1

= − VS ]DV

]p
D

n,T

−1

, s2d

whereDV=V−V0 is the volume change relative to the equi-
librium volumeV0 at T=0 K. Because the energy in Eq.s1d
depends explicitly on volume through the strainl, we aver-
age over volume fluctuations in thenpT ensemble to obtain
kVl and hencekDVl, according to

kDVl = −
]

b]p
ln Qsn,p,Td = −

]

b]p
ln E

−`

`

dx1 ¯ dxn dl

3expf− bsE0 + pDVdg. s3d

In the limit of small strains for cubic lattices, we can substi-
tuteDV>3a0

2l. This approximation, which is consistent with
the harmonic energy expression in Eq.s1d, leads to a product
of Gaussian integrals that can be evaluated successively over
normal modes. After one such integration, we obtain

kDVl = −
]

b]p
ln E

−`

`

dx1 ¯ dxn−1 dl

3expH− bFo
i=1

n−1

sDixi
2 + Lixild

+ SK −
Ln

2

4Dn
Dl2 + p DVGJ . s4d

As such, coupling to thenth normal mode effectively re-
duces the sudden elastic force constantK to K−Ln

2/4Dn. Af-
ter integrating over all degrees of freedom we obtain

kDVl = −
]

b]p
lnHexpF b

4K8
s3a0

2pd2GJ , s5d

where

K8 = K − o
i=1

n
Li

2

4Di
. s6d

By substituting this result into Eq.s2d and taking the zero
pressure limit, we obtain
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B =
2

9a0
K8 = S 2

9a0
KD − S 2

9a0
o
i=1

n
Li

2

4Di
D ; Bsud− Bvib.

s7d

Thus, the present theory shows that for cubic lattices, the
bulk modulus can be expressed as a sudden elastic response
Bsudwhich is softened by an amountBvib through coupling to
vibrations.Bsud is the bulk modulus in a fictitious situation in
which the fractional coordinates of atoms are fixed. Coupling
to vibrations softens this response by an amountBvib so that
if a normal mode is either floppy, i.e., smallDi, or strongly
coupled, i.e., largeLi, it decreases the bulk modulus to a
greater extent.

B. Harmonic approximation for anisotropic lattices

Silica polymorphs typically exhibit anisotropic lattices. If
there arem independent lattice parameters, e.g.,m=3 for an
orthorhombic cell, the energy expression generalizes to

E0sx1, . . . ,xn,l1, . . . ,lmd = o
i=1

n SDixi
2 + o

j=1

m

Lijxil jD
+ o

j ,j8=1

m

Kjj 8l jl j8. s8d

These normal modes are obtained from fractional Cartesian
displacements whosex, y, and z components are scaled by
their respective lattice parameters. In this subsection, the in-
dex i runs over vibrational modes, while the indicess j , j8d
run over lattice parameters. Using Eq.s8d to compute the
npT partition function again leads to a product of Gaussian
integrals. However, in this case the anisotropicpDV term is
slightly more complicated. We again focus on the limit of
small volume changes, and define anm-dimensional vectorc
so that the volume change takes the form

DV = o
j=1

m

cjl j . s9d

For example, the volume of an orthorhombic unit cell is
given by

V = sa1 + l1dsa2 + l2dsa3 + l3d, s10d

where sa1,a2,a3d are the T=0 K lattice parameters, and
sl1, l2, l3d are the anisotropic strains. To lowest order in these
strains, the volume change is given by

DV = V − V0 = V − a1a2a3 = a2a3l1 + a3a1l2 + a1a2l3.

s11d

Comparing Eq.s11d with Eq. s9d suggests that the vectorc is
given byc1=a2a3, c2=a1a3 andc3=a1a2. This approach can
also be used for systems with nonorthogonal lattice vectors,
as long as their angles remain fixed. In such a case, the
vectorc depends on the unit cell shape. The evaluation of the
multidimensional Gaussian integral is presented in the Ap-
pendix. We obtain the following equation for the bulk modu-
lus:

B = 2V0scTK 8−1cd−1, s12d

where the matrixK 8 is defined by

Kjj 8
8 = Kjj 8 − o

i=1

n LijLij 8

4Di
. s13d

The sudden elastic response for anisotropic systems can be
extracted by setting theLij couplings to zero in Eq.s13d,
giving Bsud=2V0scTK −1cd−1. If the system were cubic, i.e.,
with only one independent lattice parameter, thenK , K 8, and
c reduce to scalars, and we recover the previous results in
Eq. s7d.

C. Anharmonic treatment of cubic lattices: Simple case

Silica polymorphs often exhibit low frequency normal
modes due to flexible Si-O-Si angles, which give rise to
interesting behavior such as negative thermal expansion
coefficients.18,19 Soft mode behavior is encountered in other
systems such as ferroelectric materials.14 To treat such phe-
nomena we consider anharmonic perturbations expressed in
normal mode coordinates. In what follows, we consider the
thermal expansion of cubic lattices; the generalization to an-
isotropic systems will be reported in a forthcoming publica-
tion. We augment the harmonic energyE0 with a complete
set of third-order anharmonicities. To ensure the convergence
of partition functions, we also add fourth-order anharmonici-
ties; the corresponding fourth-order constants are set to zero
after integration. For pedagogical purposes, we begin by
treating the simple case of only a single uncoupled normal
mode. This will turn out to yield a result essentially identical
to classical Grüneisen theory.9 In the next section, we gener-
alize this to the multi-dimensional coupled case for cubic
lattices.

The harmonic energy of one normal mode uncoupled
from cubic lattice strain is given byE0sx, ld=Dx2+Kl2. In
this simple case, we augmentE0 with the anharmonicityex2l,
and also with fourth-order convergence factors. The energy
thus becomes

Esx,ld = E0sx,ld + ex2l + slsxdx4 + lsldl4d. s14d

To facilitate evaluating the partition function, we assume that
the anharmonic effects are relatively small and expand the
anharmonic contribution to the Boltzmann factor to first or-
der, yielding

kDVl = −
]

b]p
ln E

−`

`

dx dlexph− bfE0sx,ld + pDVgj

3s1 − bex2l + ¯ d. s15d

At this stage the fourth-order terms may be discarded. We
add auxiliary termsax andgl to E0+pDV, which allows us
to write the partition function using derivatives ofa andg by
applying the Leibniz integration rule according to
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kDVl = U −
]

b]p
lnHS1 + b−2e

]3

]a2]g
DE

−`

`

dx dl

3exph− bfE0sx,ld + p DV + ax + glgjJU
a,g→0

.

s16d

The Gaussian integral can be evaluated as was done for the
cubic harmonic case discussed above, leading to

kDVl = U −
]

b]p
lnHS1 + b−2e

]3

]a2]g
D

3expF b

4K
s3a0

2p + gd2 + b
a2

4D
GJU

a,g→0
. s17d

Differentiating with respect toa and g and settinga=0=g
yields the equation of state:

kDVl = S− 9a0
4

2K
Dp + S− 3a0

2e

4KD
Db−1. s18d

The first term on the right-hand side of Eq.s18d yields the
sudden elastic response found above for cubic lattices. The
second term gives the thermal expansion coefficient,C,
which is defined by

C ;
1

V
S ]V

]T
D

n,p
=

1

V
S ]DV

]T
D

n,p
. s19d

Evaluating the derivative and setting the normalizing volume
to its zero-point value ofa0

3 gives

C =
1

a0
3S− 3a0

2ekB

4KD
D = − S 3ekB

4a0KD
D , s20d

wherekB is Boltzmann’s constant. We note that the sign ofC
is controlled by and opposite to the sign of the anharmonicity
parameter,e.

The result in Eq.s20d is analogous to the classical Grü-
neisen theory of thermal expansion,9 which can be seen by
writing the energy as

Esx,ld = sD + eldx2 + Kl2 + slsxdx4 + lsldl4d. s21d

Equations21d clearly shows how anharmonicity can manifest
itself through normal mode frequencies that depend on vol-
ume. Indeed, the Grüneisen theory is cast in terms of the
parametergG given by

gG = −
V

v

dv

dV
. s22d

Assigning the normal mode an arbitrary massm leads to

v =Î2sD + eld
m

, s23d

which gives the following Grüneisen parameter:

gG = −
a0e

6D
. s24d

The equation for thermal expansion within Grüneisen theory
is given by9

C =
gGCV

VB
, s25d

whereCV is the heat capacity at constant volume. Using the
classical Dulong–Petit valueCV=nkB with n=1, and substi-
tuting Eq. s7d for the uncoupled bulk modulusB=2K /9a0,
we recover the result in Eq.s20d. The fact that we recovered
classical Grüneisen theory without coupling between vibra-
tion and strain, and with only one of many possible anhar-
monicities, suggests that a more complete theory of thermal
expansion is possible, which we develop below.

D. Anharmonic treatment of cubic lattices: General case

We now consider thermal expansion for a cubic system
with n normal modes coupled to strain, and with the com-
plete set of third-order anharmonicities. We find below that
the presence of vibrations coupled to strain leads to qualita-
tively different thermal expansion behavior. The energy now
takes the form

Esx1, . . . ,xn,ld = E0sx1, . . . ,xn,ld + o
i,j ,k=1

n

ei jk
s3dxixjxk

+ o
i,j=1

n

ei j
s2dxixjl + o

i=1

n

ei
s1dxil

2 + es0dl3

+ So
i=1

n

li
sxdxi

4 + lsldl4D . s26d

Here E0 is the harmonic potential energy in Eq.s1d with
vibrations coupled to strain. Once again, the anharmonic
contribution to the Boltzmann factor is expanded to first or-
der, yielding

kDVl = −
]

b]p
lnE

−`

`

dx1 . . .dxn dl exph− bfE0sx1, . . . ,xn,ld

+ pDVgjS1 − b o
i,j ,k=1

n

ei jk
s3dxixjxk − b o

i,j=1

n

ei j
s2dxixjl

− bo
i=1

n

ei
s1dxil

2 − bes0dl3 − ¯ D . s27d

The fourth-order terms are included merely as convergence
factors for the integral, and can be discarded once the expan-
sion is made. We now add auxiliary termsoi=1

n aixi andgl to
the exponential, which again allows us to write the partition
function using derivatives according to
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kDVl = −
]

b]p
lnS1 + b−2 o

i,j ,k=1

n

ei jk
s3d ]3

]ai ]a j ]ak

+ b−2 o
i,j=1

n

ei j
s2d ]3

]ai ]a j ]g
+ b−2o

i=1

n

ei
s1d ]3

]ai ]g2

+ b−2es0d ]3

]g3DE
−`

`

dx1 ¯ dxn dl

3expH− bFE0sx1, . . . ,xn,ld + p DV

+ o
i=1

n

aixi + glGJ . s28d

After evaluating the Gaussian integrals, we obtain

kDVl = U −
]

b]p
lnHS1 + b−2 o

i,j ,k=1

n

ei jk
s3d ]3

]ai ]a j ]ak

+ b−2 o
i,j=1

n

ei j
s2d ]3

]ai ]a j ]g
+ b−2o

i=1

n

ei
s1d ]3

]ai ]g2

+ b−2es0d ]3

]g3DexpF b

4K8
S3a0

2p + g − o
i=1

n
Li

2Di
aiD2

+ bo
i=1

n
ai

2

4Di
GJU

ai,g→0

, s29d

whereK8 is given by Eq.s6d. Differentiating with respect to
ai and g, setting ai =0=g, and assuming the limit of low
temperature and pressure yields an equation of state of the
form kDVl=V0s−p/B+TCd, whereB is the bulk modulus and
C is the thermal expansion coefficient. These manipulations
yield the following expression forkDVl:

kDVl = −
9a0

4

2K8
p − b−1 3a0

2

4K8
So

i=1

n
eii

s2d

Di
− o

i,j=1

n
3Lj

2Dj

eii j
s3d

Di
D

− b−1 9a0
2

4K82Ses0d − o
i=1

n

ei
s1d Li

2Di
+ o

i,j=1

n

ei j
s2d LiLj

4DiDj

− o
i,j ,k=1

n

ei jk
s3d LiLjLk

8DiDjDk
D . s30d

Equations30d shows that the bulk modulus is not influ-
enced by anharmonicity at this level of theory. The terms
proportional tob−1 describe thermal expansion, which van-
ishes in the limit of alle→0. This expression is similar to
that of the bulk modulus in Eq.s7d, in that it contains a
“sudden anharmonic” termes0d that is corrected by terms
arising from coupling between the lattice strain and normal
modes. Our numerical calculations below reveal that the
various terms in Eq.s30d exhibit different scaling behaviors
with system size. In particular, in the limit of large system
sizes, i.e. many normal modes, the thermal expansion coef-
ficient becomes dominated by the first two terms propor-

tional to b−1. These terms scale asa0
3, while the four other

terms on the right remain constant. The first term propor-
tional to b−1, controlled byeii

s2d, is responsible for shifting
vibrational frequencies with cell volume, and as such is
equivalent to classical Grüneisen theory for thermal expan-
sion. The remaining terms generalize classical Grüneisen
theory for complex nanostructures that involve coupling be-
tween vibrations and strain.

E. Analysis of the coupling

As we shall show below, it turns out that most of theLi
couplings vanish. The nonvanishing couplings still exert
strong effects on bulk moduli and thermal expansion coeffi-
cients. Nonetheless, the fact that most couplings vanish is
important for both computational efficiency and conceptual
understanding. With relatively few couplings to compute, our
theory can be parametrized from a tractably small number of
density functional theory calculations. Moreover, insights
into the compression and expansion of complex materials
may be gleaned by visualizing the small number of vibra-
tions that actually couple to strain. Before describing the
computational methods used to parametrize our theory, we
pause to reflect on why most of the couplings vanish.

This result follows from crystallographic symmetries and
the stability of a given phase with respect to small lattice
deformations. To elaborate on this, we start with a minimum
energysT=0 Kd structure. Next, we assume phase stability
so that the space group symmetry of a given phase is con-
served even if the lattice is deformed by a small straindl. We
further impose the constraint that the deformationdl con-
serves the unit cell shape. Using Eq.s1d, we calculate the
force per normal mode in the deformed configuration as

]E

]xi
= Li dl + Osxid. s31d

For the phase to be stable atT=0 K, this force must vanish
unless the normal modexi conserves the space group sym-
metry. Otherwise, the respectiveLi must also vanish! This
relatively strong condition causes most of theLi couplings to
vanish. For example, in fcc and bcc metals, all such cou-
plings vanish and the thermal expansion comes only from the
es0dl3 anharmonicity and the frequency shift with volume as
controlled byes2dx2l terms. For such systems, the classical
limit of Grüneisen theory is applicable. However, in zeolites
and other complex nanostructures, which exhibit anharmonic
modes coupled to lattice strain, these additional terms may
have nontrivial and rather interesting contributions.

III. COMPUTATIONAL METHODS

Here we describe the density functional theory calcula-
tions we have performed to both parametrize and test the
normal mode theory. We then discuss the spring-tetrahedron
model used to generate normal modes of silica polymorphs.

A. Density functional theory calculations

We have performed density functional theorysDFTd cal-
culations using plane wave basis sets, pseudopotentials, and
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periodic supercells20 as implemented in the Vienna Ab-Initio
Simulation PackagesVASPd.21–23 We used the local density
approximationsLDA d of electron exchange-correlation based
on Ceperley–Alder data.24 In previous work, we5,25 and
others26,27 have shown that LDA reproduces unit cell struc-
tures and volumes of silica polymorphs with surprising ac-
curacy. Ion cores were represented by Vanderbilt-type ultra-
soft pseudopotentials available within VASP.28,29

Convergence tests were performedsdata not shownd to en-
sure sufficient completeness of Brillouin zone sampling and
plane wave basis sets. Below we give the results of these
convergence tests for each system studied. To reduce the
computer time, each structure was constrained to its putative
space group symmetry during DFT calculations.

We have used DFT to analyze the normal modes of
a-cristobalite, silica sodalite zeolitesSi-SODd and an alumi-
nosilica sodalitesAl-SODd. The sudden elastic force con-
stants of silica zeolite structures CHA, LTA, and MOR30

have also been computed with DFT. As a simple test of our
anharmonic theory, the thermal expansion of fcc Al metal
was studied. And finally, we have used DFT to parametrize
our theory for the thermal expansion of Al-SOD.

1. a-Cristobalite, silica SOD, and aluminosilica SOD

We studieda-cristobalite because of ample experimental
data on its bulk modulus,31,32 and because its tetragonal lat-
tice provides a good test of our theory for anisotropic solids.
Our interest in Si-SOD was motivated by our recently re-
ported DFT calculations finding that Si-SOD’s bulk modulus
is extremely sensitive to symmetry constraints.5 Also, Al-
SOD provides a good test of our anharmonic theory because
of experimental thermal expansion data on the composition
Na8Al6Si6O24Cl2.

33,34

a-cristobalite has a tetragonal unit cell, while Si-SOD and

Al-SOD both exhibit cubic unit cells. We studiedI 4̄ 3 m

and I m 3̄ m symmetries of Si-SOD. The transition between
the two phases was the subject of an earlier periodic DFT
study.35 In our DFT calculations, the latter is a saddle point
on the potential energy surface, unstable atT=0 K. We
found in our previous study that the bulk moduli for these
phases are 18 and 93 GPa, respectively.5 Below, we elucidate
this remarkable sensitivity of the bulk modulus to symmetry
constraints with our normal mode theory. We studied the

P 4̄ 3 n symmetry of Al-SOD. The composition
Na8Al6Si6O24Cl2 of this Al-SOD features a highly symmetric
arrangement of Na and Cl counterions.33,34The symmetry of
a-cristobalite was constrained toP 41 21 2.

The Brillouin zone was sampled using 23232
Monkhorst–Pack grids for the sodalites, and by using a 3
3332 grid for a-cristobalite.36 For the sodalites, a plane
wave cutoff of 420 eV was used, while fora-cristobalite, a
cutoff of 460 eV was used to reduce noise in the total energy
due to small energy differences.

As discussed above, the constantsLi vanish for normal
mode displacements that break a given space group symme-
try. Symmetry constraints can thus be used to dramatically
reduce the number of coupled modes that need to be consid-
ered. We note that this reduction does not necessarily hold if

lattice distortions become large enough so that anharmonic-
ity with respect to lattice parameters, or symmetry-breaking

unit cell deformations become important. TheI m 3̄ m and

I 4̄ 3 m symmetries of Si-SOD allow one and two coupled

vibrations, respectively. TheP 4̄ 3 n symmetry of Al-SOD
gives four coupled vibrations, the two additional modes com-
ing from counterion motion and Si–O–Al bond asymmetry.

To test our normal mode theory for the bulk modulus, we
calculated the bulk moduli ofa-cristobalite, Si-SOD, and
Al-SOD using the conventional technique of varying unit
cell volume, relaxing atomic coordinates, and fitting ele-
ments of the elastic tensor to the resulting energies as out-
lined in Ref. 5. In what follows, we denote these bulk moduli
asBdir because they arise directly from DFT-based optimiza-
tions, in contrast with the bulk moduliBtheo, which are com-
puted with our normal mode theory through Eqs.s7d and
s12d. We used DFT to calculate direct bulk moduli of
a-cristobalite, Si-SOD, and Al-SOD. Below we discuss a
spring-tetrahedron model, from which direct and theoretical
bulk moduli were also computed for various silica polymor-
phs.

2. Silica zeolites CHA, LTA, and MOR

We used DFT to calculate the force constantsK sor Kjj 8d
for silica zeolite structures CHA, LTA, and MOR,30 to com-
pare their sudden elastic responses. We imposed the follow-

ing space group symmetries for CHA,R 3̄ 2 /m; for LTA,

P m 3̄ m; for MOR, Cmcm. These calculations were per-
formed using a plane wave cutoff of 420 eV. For CHA and
LTA, we used a 23232 Monkhorst–Pack grid, while for
MOR we used a 13132 grid. High-silica LTA, which has
recently been synthesized,37 has a cubic structure, and hence
has only one independent lattice parameter and force con-
stantK. With rhombohedral CHA, we assumed that the lat-
tice vector angleg does not change. This is a reasonable
assumption sinceg has an equilibrium value close to 90°
s94°d, which does not change significantly as the volume is
varied.5 With orthorhombic MOR, we made an isotropic as-
sumption, i.e., that the lattice parameters change uniformly
and that the sudden elastic response is described by a single
parameterK. This was necessary because of the computa-
tional expense of these DFT calculations.

3. Calibrating anharmonic theory with fcc Al metal

As a simple test of our anharmonic theory, we computed
the thermal expansion coefficient of fcc Al metal. For the
monatomic fcc lattice, none of the internal degrees of free-
dom is coupled to strain, and hence all theLi /2Di-type terms
in Eq. s30d vanish. As such, we are left with thees0d and
oieii

s2d /Di terms. These were calculated by varying the lattice
parameter and estimating the force constant matrix for dif-
ferent values ofl. Because all atoms in this structure are
equivalent, and the structure is isotropic, the force constant
matrix can be determined by displacing just a single atom in
one Cartesian direction and computing the Hellmann–
Feynman forces. System size effects were determined by
comparing results from supercells containing 4 and 32 at-
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oms, to check convergence with respect to the wavelength
cutoff for normal modes. With the smaller cell, a 63636
Monkhorst-Pack grid was used, while with the larger cell a
43434 grid was sufficient. We found essentially identical
results from these two system sizes, suggesting a minimal
influence from system size effects. Because the ultrasoft
pseudopotential for Al is significantly softer than that for
oxygen, the plane wave cutoff can be reduced to 140 eV.
The partial occupancies of Kohn-Sham eigenstates were
treated by using a Gaussian smearing of 0.05 eV.

4. Parametrizing normal modes

The sudden elastic force constantsK were computed by
performing a series of DFT calculations on isotropically ex-
panded and contracted solids. Polynomials were then fitted to
the energies obtained. We calculated the force constantsDi
by first computing elements of the nondiagonal force con-
stant matrix,Dij8 , in some convenient representation. This
was achieved by displacing atoms by small amounts, and
calculating the resulting Hellmann-Feynman forces. A prac-
tical way to generate displacements consistent with symme-
try is to vary the Wyckoff special positions of atoms.2 The
nondiagonal force constant matrix is then computed from the
relation

Fi = − 2o
j

Dij8qj , s32d

whereFi is the Hellmann-Feynman force, andhqjj are Car-
tesian atomic displacements. By diagonalizingD8, we obtain
the normal modesx and force constantshDij. The coupling
constantsLi were obtained by simultaneously varying the
lattice parameter and displacing atoms along normal mode
directions, and fitting a polynomial to the resulting DFT en-
ergies.

In the I 4̄ 3 m phase of Si-SOD, O atoms occupy
sx,x,yd-type Wyckoff special positions while Si atoms are
located ats0.25, 0.5, 0.0d-type positions. As such, there are
two internal degrees of freedom for this symmetry. The non-
diagonal force constant matrix is calculated by making small
displacements of O atoms of typesD ,D ,0d ands0,0,Dd. We
found that stable convergence is obtained for these force
constants usingD=10−2 Å. Diagonalizing the force constant
matrix leads to two normal modes: one associated with rela-
tive rotations of several SiO4 tetrahedra, and one with SiO4
unit deformation. We thus expect the force constants for
these normal modes to be significantly different. In the

I m 3̄ m phase of Si-SOD, O atoms occupysx,x,0.5d-type
positions, thus giving only one internal degree of freedom,
which turns out to be associated with SiO4 unit deformation.
The fact that relative rotations of SiO4 tetrahedra are sym-

metry forbidden in theI m 3̄ m phase of Si-SOD already
explains qualitatively why its bulk modulus is more than five

times higher than that ofI 4̄ 3 m Si-SOD.5 Below we show
that our normal mode theory accounts for this fact semiquan-
titatively as well.

In Al-SOD, Cl atoms are ats0,0,0d-type positions, Na at
su,u,ud, Al at s0.25, 0.5, 0d, Si at s0.25, 0, 0.5d, and O at

sx,y,zd. As such, this symmetry allows four coupled internal
degrees of freedom. The anharmonic terms were calculated
as follows. Anharmonic constants for coupled modes were
obtained by simultaneously displacing the lattice parameter
and normal modes, and fitting the energies to a multivariable
polynomial using least squares. The anharmonicities in
Sieii

s2d /Di and Lj /2DjSieii j
s3d /Di are less convenient to evalu-

ate, because they require repeated calculations of the force
constant matrix: for different values of the lattice parameter,
and for displacements along the modexj, respectively. For-
tunately, Al-SOD possesses enough symmetry to make sev-
eral force constants interdependent. The full force constant
matrix was evaluated with these symmetry properties as fol-
lows. We madesD ,0 ,0d displacements for a single Na and a
single Cl atom; we madesD ,0 ,0d, s0,D ,0d, and s0,0,Dd
displacements for a single Al, Si, and O atom. These calcu-
lations suffice to construct the full force constant matrix,
because all atoms in a given sublattice are symmetry equiva-
lent and the structure is isotropic.

In a-cristobalite, Si atoms are atsu,u,0d positions while
O atoms are atsx,y,zd. As such, there are four internal de-
grees of freedom. The tetragonal unit cell has two indepen-
dent lattice parameters. The coupling terms were calculated
by making small displacements of theith normal mode, and
varying either thea lattice parameter, yieldingLi1-type
terms, or thec parameter, yieldingLi2-type terms. The terms
K11, K12, andK22 were calculated by varying thea and/orc
lattice parameters while keeping atomic fractional coordi-
nates fixed.

B. Spring-tetrahedron model

One difficulty with computing the normal modes of silica
polymorphs with DFT is its high computational cost. This is
especially true when one wishes to relax symmetry con-
straints. It is therefore worthwhile to pursue a simpler
method that still captures the essential physics of elastic re-
sponse in silica materials. Here we present such a model,
based on semirigid SiO4 tetrahedra connected with flexible
springs. We show that this “spring-tetrahedron” model can
indeed reproduce the elastic properties of a variety of silica
polymorphs. We used this method to study the normal modes
and bulk moduli of silica zeolites SOD, CHA, and LTA.30

The bulk modulus and orthorhombic-to-low symmetry phase
transition of silica MFI was also studied.

As discussed in the Introduction, our approach was in-
spired by rigid-unit models developed by Dove and co-
workers to study soft vibrational modes in silica.10 From a
topological perspective, silica polymorphs can be viewed as
networks of corner-sharing SiO4 tetrahedra. The rigid-unit
model assumes rigid tetrahedra connected with two-body
springs.10 Using this rigid-unit approach, we have found that
some silica polymorphs became unstable at nonzero pres-
sures because of barrierless deformation pathways. Further-
more, the bulk moduli of some zeolites are significantly
overestimated with this approach, and calculating full normal
mode spectra becomes impossible because deforming tetra-
hedra is forbidden.

A simple remedy is to allow tetrahedra to become some-
what flexible using two-body springs, and to add a three-
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body term that penalizes the bending of Si-O-Si anglessFig.
1d, which we found restores mechanical stability. Although
such an energy function with two-body and three-body
springs begins to resemble valence bond force fields,11,12our
approach is substantially different. Indeed, our spring-
tetrahedron model only explicitly accounts for the positions
of oxygen atoms in a given silica structure. For a unit cell
with no oxygens, the spring-tetrahedron energy is given by

Vsr 1, . . . ,r no
d =

1

2o
i=1

no

o
kPnnj

kS

2
sur j − r ku − r0d2

+ o
i=1

no kA

2
scosui − cosu0d2, s33d

wherer j is the three-dimensional location of thej th oxygen,
and “nnj” are its six nearest neighbor oxygens. The factor of
1
2 in the first term corrects for double counting. The param-
eter r0 is the typical distance between oxygens in a given
SiO4 tetrahedron. The second term in Eq.s33d applies a
spring to each Si-Oi -Si angleui, i.e., to each shared vertex
of adjacent tetrahedrasFig. 1d. Without explicit Si locations,
we computeui as the angle formed by theith oxygen and the
centers of mass of the two tetrahedra it joins. The spring-
tetrahedron model thus replaces rigid tetrahedra with semi-
rigid ones connected to each other by flexible springs, as
controlled by the parametersskS,kA,r0,u0d.

The spring-tetrahedron parameters were fitted to DFT-

LDA data for Si-SODsI 4̄ 3 md, which serves as a bridge
between dense and zeolitic silica polymorphs. The parameter
r0 contains much of the chemistry in Si-O bonding. Using a
Si-O bond length of 1.6 Å and an O-Si-O bond angle of
109.47° givesr0=Î8/331.6 Å=2.61 Å. The reference Si
-O-Si angleu0 was set to 155°, a value close to that found in

Si-SOD sI 4̄ 3 md, a-cristobalite, and in relaxed silica chain
polymers.25 The force constantkS uniquely determines the
sudden elastic responseK, thereby allowingkS to be fitted to
the energy dependence of isotropic volume changes. The an-
gular force constantkA was fitted to the direct bulk modulus

of Si-SOD sI 4̄ 3 md calculated from DFT-LDA data.5 This
was achieved by calculating the direct bulk modulus of Si-
SOD using spring-tetrahedron potential energies, and vary-
ing kA until this bulk modulus matched the DFT value.

We benchmarked the spring-tetrahedron model by calcu-
lating equilibrium volumes and bulk moduli ofa-cristobalite
and silica zeolite structures SOD, CHA, and LTA. In addi-

tion, we used the spring-tetrahedron model to generate the
normal modes of SOD, CHA, and LTA, for use in decom-
posing their bulk moduli into sudden and vibrational contri-
butions. These constitute predictions of properties that have
not yet been measured. Unit cell shapes were held fixed dur-
ing these calculations: tetragonal fora-cristobalite, cubic for
SOD and LTA, and rhombohedral for CHA. No additional
symmetry was imposed on atomic coordinates. To avoid a
divergence when calculating terms of the formLi

2/4Di, we
removed the three normal modes corresponding to the
center-of-mass translation, whose normal force constants
vanish.

To further test the spring-tetrahedron model, we computed
the bulk modulus of silica MFI zeolite. With MFI, an addi-
tional complexity stems from a structural phase transition
between monoclinic and orthorhombic phases.38 Because our
normal mode theory assumes that unit cell shapes remain
preserved despite strains and vibrations, this theory cannot
be applied to study the transition of MFI between different
unit cell shapes. Instead, we performed direct optimizations
to determine the bulk modulus. However, local optimization
algorithms yielded unsatisfactory results because of a rugged
energy landscape. As such, we annealed the structure using
Metropolis Monte Carlo simulations.39 The bulk modulus
was extracted by adding apV term to the energy, and map-
ping the equilibrium volume as a function of pressure. All
internal coordinates and lattice vectors were allowed to vary.
We show below that the spring-tetrahedron model exhibits a
phase transition for MFI from orthorhombic to lower sym-
metry at smallnegativepressures.

IV. RESULTS

Here we present the numerical results of our study on the
mechanical properties of nanostructured silica. We begin by
comparing sudden elastic responses from various silica poly-
morphs calculated from DFT. We then present the best-fit
parameters and predictions of the spring-tetrahedron model
for a comparison with DFT data. Next we discuss the normal
modes of Si-SOD generated by DFT and spring-tetrahedron
energies, as well as the normal modes of Al-SOD and
a-cristobalite obtained from DFT. We then apply the spring-
tetrahedron model to explore the bulk moduli of CHA, LTA,
and MFI zeolites. We close this section with the thermal
expansion coefficients of fcc Al metal and Al-SOD zeolite
computed from DFT.

A. Sudden elastic responses from DFT

Sudden elastic response constants computed from DFT
for various silica polymorphs are shown in Table I. For cubic
lattices, these are converted to units of GPa according to
Bsud=s2/9a0dK. For noncubic lattices,Bsud is computed from
Eq. s12d by setting the couplingsLij to zero. The correspond-
ing direct bulk moduli are also shown in Table I. While the
bulk moduli in Table I show a significant variation from one
polymorph to another, the sudden elastic response constants
exhibit remarkable uniformity. Indeed, the spread inBdir val-
ues amounts to 60% of its average, whereas that forBsud is

FIG. 1. A schematic showing the spring-tetrahedron system and
its response to strain.
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only 15%. This uniformity among sudden elastic responses
reflects the intrinsic rigidity of SiO4 tetrahedra shared by all
silica polymorphs. The unformity of sudden elastic response
constants is well reproduced by the spring-tetrahedron
model.

B. Spring-tetrahedron model parameters

The spring-tetrahedron force constantskS and kA in Eq.
s33d were fitted to the sudden elastic force constant and bulk

modulus of Si-SODsI 4̄ 3 md. As shown in Table I, these
take the values 118 and 18 GPa, respectively. The resulting
best-fit parameters are given in Table II. To test the spring-
tetrahedron model, we computed the bulk moduli and unit

cell volumes of Si-SOD sI 4̄ 3 md, CHA, LTA, and
a-cristobalite. Table III shows the spring-tetrahedron results
alongside the corresponding DFT data. The agreement is ex-
cellent, considering the simplicity of the spring-tetrahedron
potential function. For the dense polymorpha-cristobalite,
the unit cell volume agrees well while the bulk modulus is
somewhat overestimated. Spring-tetrahedron energy differ-
ences between different silica polymorphs are smallsdata not
shownd, which is in qualitative agreement with experimental
data40 and DFT calculations.5

C. Normal modes of Si-SOD from DFT and the spring-
tetrahedron model

The normal mode analyses of Si-SOD from DFT with

lower symmetrysI 4̄ 3 md and higher symmetrysI m 3̄ md
are presented in Table IV. Also shown in Table IV is the
normal mode analysis of Si-SOD based on the spring-

tetrahedron model with no imposed symmetry, which yields
a pattern of couplings essentially identical to the DFT results

for Si-SODsI 4̄ 3 md. An inspection of Table IV shows that
the spring-tetrahedron model performs well in reproducing
the results of DFT calculations. High symmetry Si-SOD ex-
hibits a normal vibration corresponding to the deformation of
individual SiO4 tetrahedra, denoted mode 1. Low symmetry
Si-SOD allows this mode as well as another, denoted mode
2, corresponding to rotations of adjacent SiO4 tetrahedra
relative to each other. These two vibrations are shown sche-
matically in Fig. 2.

The sudden elastic response constants of the two symme-
tries of Si-SOD are quite similar, as discussed above. The
extent to which the bulk modulus is decreased from mode 1
is also quite similar between the forms of Si-SOD, as dem-
onstrated by the values ofL1

2/4D1 in Table IV. However,
because mode 2 involves relative rotations of SiO4 tetrahe-
dra, the force constantD2 is much smaller thanD1, leading
to a much greater diminution of the bulk modulus from mode

2 in Si-SOD sI 4̄ 3 md. This explains why the bulk moduli
are so different, even though these two forms of Si-SOD
have nearly identical atomic configurations.

TABLE I. Sudden elastic responses and direct bulk moduli
sGPad of various silica polymorphs computed with DFT. Sudden
elastic responses given asBsud=s2/9a0dK for cubic systems SOD
and LTA. For anisotropic latticesa-cristobalite and CHA,Bsud is
computed from Eq.s12d setting couplingsLij to zero. For MOR,
Bsud is approximated by changing the lattice parameters uniformly
and assuming a scalarK.

Bsud Bdir

SOD I 4̄ 3 m 118 18

SOD I m 3̄ m 112 93

LTA 92 46

CHA 103 68

a-cristobalite 76 8

MOR 117 57

TABLE II. Parameters for the spring-tetrahedron model.

kS 8.82 eV/Å2

kA 2.35 eV

r0 2.61 Å

u0 155°

TABLE III. Direct bulk moduli sGPad and equilibrium unit cell
volumes sÅ3d computed using DFT and the spring-tetrahedron
model sSTMd.

Bdir, DFT Bdir, STM V0, DFT V0, STM

SOD I 4̄ 3 m 18 18 57 57

CHA 68 67 65 66

LTA 46 54 69 70

a-cristobalite 8 13 46 44

TABLE IV. Sudden elastic responses and vibrational coupling
terms sGPad for two symmetries of Si-SOD, from DFT and the

spring-tetrahedron modelsSTMd. High symmetrysI m 3̄ md STM
calculations were not performed. Results are multiplied by 2/9a0 to
obtain GPa units. Direct and theoretical bulk moduli,Bdir andBtheo,
are also shown for comparison.

Si-SOD I 4̄ 3 m DFT STM

K 118 112

L1
2/4D1 16 14

L2
2/4D2 79 80

Btheo 23 18

Bdir 18 18

Si-SOD I m 3̄ m DFT

K 112

L1
2/4D1 14

Btheo 98

Bdir 93
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Also shown in Table IV are bulk moduli computed from
direct optimizations and normal mode theory. These are in
excellent agreement, signaling the first numerical success of
our normal mode theory of elastic response.

D. Normal modes of Al-SOD anda-cristobalite from DFT

The normal mode analysis of Al-SODsNa8Al6Si6O24Cl2d
from DFT is presented in Table V. Due to the presence of Al

and counterions in the structure, the couplings in Al-SOD are
split into four vibrations coupled to strain. As with the other
solids discussed above, the sudden elastic response constant
for Al-SOD is near 100 GPa. Normal vibrations 1 and 3
decrease the bulk modulus by about 40%, with another 10%
decrease coming from vibrations 2 and 4.

In contrast to Si-SOD, Al-SOD exhibits stronger mixing
between deformations and relative rotations of tetrahedra. In
the softest modesmode 1d, the motion of framework O atoms
and Na counterions is in phase, while in the next more rigid
modesmode 2d they are in antiphase. The third softest mode
smode 3d consists of a mixture of rotations and deformations,
while the fourth and most rigid modesmode 4d has a strong
component of O atom displacement along the Si–Al internu-
clear axis. These modes couple to strain in such a way that
modes 1 and 3 exert the greatest diminution on the bulk
modulus. In contrast to Si-SOD, none of these modes is very
soft, leading to a bulk modulus of 55 GPa. This likely arises
from counterions in Al-SOD stiffening of the relative rota-
tions of SiO4 tetrahedra.

Studyinga-cristobalite allows us to test our normal mode
theory on an anisotropic structure. However, the effects of
individual modes on the bulk modulus is blurred because the
matrix inverse in Eq.s12d mixes the termsLijLij 8 /4Di among
the coupled modesi =1, . . . ,4. Due to the tetragonal unit cell
of a-cristobalite, varying the lattice parametera requires
changingb by the same amount. The total effect on the unit
cell volume is greater compared to that from varyingc alone,
making the force constants associated with the lattice param-
etera larger. As shown in Table VI, theLijLij 8 /4Di terms for
the softest modesmode 1d are again the largest. This mode

FIG. 2. Schematic representation of the softsupd and hard
sdownd normal modes in Si-SOD, in which tetrahedra represent
SiO4 units. In the upper picture the six ring is viewed along the
f111g axis, while in the lower picture the four ring is viewed down
the f100g axis. Normal mode displacement vectors are projected
onto corresponding planes.

TABLE V. Sudden elastic response and vibrational coupling
termssGPad for Al-SOD from DFT. Results are multiplied by 2/9a0

to obtain GPa units. The theoretical bulk modulus is also shown.

K 107

L1
2/4D1 20

L2
2/4D2 5

L3
2/4D3 23

L4
2/4D4 4

Btheo 55

TABLE VI. Sudden elastic force constantsKjj 8 and coupling
termsLijLij 8 /4Di seV/Å2d for a-cristobalite from DFT. Direct and
theoretical bulk moduli,Bdir and Btheo in GPa, are also shown for
comparison with experimental valuesBexp.

K11 14.936

K12 3.699

K22 3.360

L11
2 /4D1 11.271

L11L12/4D1 3.822

L12
2 /4D1 1.292

L21
2 /4D2 0.210

L21L22/4D2 0.125

L22
2 /4D2 0.074

L31
2 /4D3 0.595

L31L32/4D3 0.514

L32
2 /4D3 0.382

L41
2 /4D4 0.784

L41L42/4D4 −0.708

L42
2 /4D4 0.640

Btheo 11

Bdir 8

Bexp sRef. 31d 16.0

Bexp sRef. 32d 11.5
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consists mostly of rigid-body rotations and translations of
SiO4 tetrahedra. The remaining three modes consist of SiO4
tetrahedral deformations of increasing magnitude from
modes 2 to 4.

Also shown in Table VI are the direct and normal mode
bulk moduli of a-cristobalite from DFT. These are 8 and
11 GPa, respectively, diminished from a sudden elastic re-
sponse of 76 GPa. Experimental values ofa-cristobalite’s
bulk modulus are 16.0 GPa31 and 11.5 GPa,32 which are in
reasonable agreement with our direct and theoretical results,
considering the spread in experimental values. This level of
agreement bodes well for our normal mode theory of aniso-
tropic lattices.

E. Normal modes of CHA and LTA from the spring-
tetrahedron model

The normal modes of silica zeolite structures SOD, CHA,
and LTA were analyzed with the spring-tetrahedron model by
keeping the respective unit cell shapes fixed, but without
additional symmetry constraints. Despite this relaxation of
symmetry, most of theLi couplings were still found to van-
ish. This is expected to occur for crystal structures whose
symmetry is nearly preserved by the spring-tetrahedron
model, because the symmetric structure is close to a local
minimum of the spring-tetrahedron potential. Such a result

was found above for Si-SODsI 4̄ 3 md, but would not be

expected for the higher symmetryI m 3̄ m structure, because
this is a saddle point of the spring-tetrahedron potential.5

The spring-tetrahedron model applied to CHA predicts
that six vibrations are coupled to lattice strain, as shown in
Table VII. Starting with a sudden elastic response constant of
97 GPa, only two modes significantly influence the elastic
response. When applied to LTA, the spring-tetrahedron
model identifies four modes coupled to strain. Each of these
modes diminishes the bulk modulus significantly from its
sudden elastic value of 92 GPa, as shown in Table VIII. It is
remarkable that, even though SOD and LTA are both built
from SOD cages, the elastic response of LTA is not softened

by vibrations as much as was found for Si-SODsI 4̄ 3 md
ssee Table IVd. The direct and normal mode bulk moduli of
CHA and LTA are in perfect agreement, which might be
expected when applying a harmonic theory to a spring po-
tential.

F. Mechanical properties of MFI from the spring-tetrahedron
model

We investigated the applicability of the spring-tetrahedron
model to study the elastic properties and phase behavior of
silica MFI ssilicalited. We annealed the structure at various
pressures to obtain theT=0 K equilibrium volume as a func-
tion of pressure. The behavior of the unit cell volume versus
pressure is shown in Fig. 3. Under compression at positive
pressures, the bulk modulus takes the value 12–13 GPa. A
unit cell slightly distorted from an orthorhombic shape is
obtained. Due to very small distortions in the lattice vector
angles, the exact symmetry of this phase is difficult to iden-
tify. We also considered the hypothetical possibility of nega-
tive pressures, i.e., when the structure is under tension. Such
a situation may effectively occur when the lattice is loaded
with guest molecules, which pull inward into the pores
through host–guest attractions. In this case the bulk modulus
takes the value 65±5 GPa. At the transition point the unit
cell deforms from orthorhombic to a lower symmetry phase.

TABLE VII. Sudden elastic force constants and coupling terms
sGPad for silica CHA from the spring-tetrahedron modelsSTMd.
Each term is converted to GPa units using Eq.s12d, setting either
K8=K or K8=Li

2/4Di, and setting all other terms to zero. Direct and
theoretical bulk moduli from STM potential energies are also shown
for a comparison.

K 97

L1
2/4D1 2

L2
2/4D2 2

L3
2/4D3 1

L4
2/4D4 8

L5
2/4D5 1

L6
2/4D6 16

Btheo 67

Bdir 67

TABLE VIII. Sudden elastic force constants and coupling terms
sGPad for silica LTA from the spring-tetrahedron modelsSTMd.
Results are multiplied by 2/9a0 to obtain GPa units. Direct and
theoretical bulk moduli from STM potential energies,Bdir andBtheo,
are also shown for comparison.

K 92

L1
2/4D1 14

L2
2/4D2 8

L3
2/4D3 5

L4
2/4D4 11

Btheo 54

Bdir 54

FIG. 3. Behavior of the unit cell volume of Si-MFI as the struc-
ture is annealed at different pressures. The two lines highlight the
transition from low symmetry to an orthorhombic structure.
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Our previous DFT study on orthorhombic MFI gave a bulk
modulus of 41 GPa.5 Although the predictions of the spring-
tetrahedron model are not too far from this value, a much
more careful analysis is required before the elastic properties
and phase behavior of MFI are well understood.

G. Thermal expansion of fcc Al metal from DFT

We now turn our attention to the thermal expansion coef-
ficient, beginning with a test of our theory on fcc Al metal
with parameters computed by DFT. We first calibrate the
accuracy of DFT-LDA with ultrasoft pseudopotentials for fcc
Al, by discussing its lattice parameter and bulk modulus. Our
calculated lattice parameter is 3.98 Å, which is in good
agreement with the experimental room temperature value of
4.05 Å, and in excellent agreement with a previous DFT-
LDA result of 3.97 Å obtained with norm-conserving
pseudopotentials.41,42Our calculated bulk modulus for fcc Al
with a 4-atom unit cell is 84 GPa; with a 32-atom unit cell
we obtain 81 GPa. This agrees well with the experimental
value of 75.9 GPa, and with the previous DFT-LDA value of
79.4 GPa.41,42

We obtain a thermal expansion coefficientC=62
310−6 K−1 for fcc Al using a 4-atom supercell. This agrees
well with the experimental room-temperature value of 65
310−6 K−1, and with earlier DFT results based on Debye-
Grüneisen theory.9,42 Effects from quantized vibrations are
negligible at room temperature for fcc Al, because the ther-
mal expansion coefficient and specific heat have already
reached plateaus at this temperature. Using the 32-atom su-
percell, we obtain a value of 67310−6 K−1, indicating that
convergence with respect to normal mode wavelength cutoff
has been reached. With the smaller supercell, more than 90%
of the thermal expansion coefficient stems from the
Si

neii
s2d /Di term. In the case of the larger supercell, this term

contributes more than 99%, confirming the scaling behavior
discussed above for Eq.s30d.

H. Thermal Expansion of Al-SOD from DFT

To explore how coupling between vibrations and strain
influences thermal expansion, we now consider Al-SOD
sNa8Al6Si6O24Cl2d with anharmonicities computed from
DFT. Though in principle the thermal expansion of Al-SOD
depends on several anharmonic terms, in practice the greatest
contributions come from terms of the formSi

neii
s2d /Di and

Si j
nsLj /2Djdeii j

s3d /Di in Eq. s30d. In the temperature range
250–750 K, very good agreement with experimental volume
data is seen in Fig. 4. Our calculated value of the thermal
expansion coefficient is 37310−6 K−1, which compares well
with the experimental values at 500 K of 39.5310−6 K−1,33

and 33.9310−6 K−1.34 The systematic underestimation of
equilibrium volume by 3–4% evident in Fig. 4 is character-
istic of the LDA functional.

We have not systematically tested the convergence with
respect to system size for Al-SOD, and therefore should put
fairly large error bars on these thermal expansion results.
Additional calculations with larger Al-SOD systems would
be nearly computationally impossible at present, because the

next bigger cubic cell for Al-SOD contains over 300 atoms.
However, a reasonably converged result for Al metal was
obtained using a supercell that is much smaller than the one
for Al-SOD, suggesting that our results for Al-SOD are
likely valid. In addition, the fact that our thermal expansion
results for Al-SOD agree well with experiments further sug-
gests that the accuracy of our computations has not been
compromised by finite size effects.

We note that only about 8310−6 K−1 of the thermal ex-
pansion coefficient stems from the termSieii

s2d /Di, while
Si j

nsLj /2Djdeii j
s3d /Di accounts for the remaining 29

310−6 K−1. This suggests that Grüneisen theory would only
account for 22% of the thermal expansion coefficient of
Al-SOD, because it ignores the coupling between strain and
anharmonic vibrations.

V. DISCUSSION AND CONCLUDING REMARKS

We have presented a method for analyzing the mechanical
properties of solids, based on normal modes and their cou-
pling to lattice strains. This method was used to study elastic
compression and thermal expansion of silica zeolites and re-
lated materials, with parameters calculated from density
functional theorysDFTd calculations. We have found in gen-
eral that the bulk modulus can be divided into two contribu-
tions: a positive term arising from compression without in-
ternal relaxation, which we call the sudden elastic response,
and a negative term from coupling between compression and
internal vibrational modes. For silica polymorphs, the sudden
elastic response term varies little among the phases studied,
taking values near 100 GPa because of the intrinsic rigidity
of SiO4 tetrahedra. In contrast, the latter term varies strongly
from one polymorph to the next, because each polymorph
exhibits different symmetry constraints on internal vibrations
and their couplings to lattice strains. Numerical results of
this approach agree well with experiment for the dense silica
polymorpha-cristobalite. The normal mode theory gives re-
sults that agree well with previous DFT calculations for
silica zeolite structures SOD, CHA, and LTA. We hope that
these developments will spawn new experiments to test our
predictions on the mechanical properties of nanostructured
silica.

FIG. 4. Comparing experimental and theoretical data on the
temperature dependence of Al-SOD unit cell volume. Experimental
points are circlessRef. 33d and squaressRef. 34d. Theoretical points
are computed from Eq.s30d parametrized by DFT.
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We have found that, for a given structure, only a few
normal modes influence the bulk modulus. This follows from
crystallographic symmetries and the stability of a given
phase with respect to small lattice deformations. The modes
that do couple exert strong effects on bulk moduli and ther-
mal expansion coefficients. Nonetheless, the fact that most
couplings vanish is important for both computational effi-
ciency and conceptual understanding. With relatively few
couplings to compute, our theory can be parametrized from a
tractably small number of DFT calculations. In addition, in-
sights into the compression and expansion of complex mate-
rials may be gleaned by visualizing the small number of
vibrations that actually couple to strain.

When comparing the properties of normal modes in Si-
SOD and Al-SOD, we found that the more complex chemical
composition, i.e., going from Si-O to Si-O-Al-Na-Cl,
tends to mix the vibrations. The presence of ionized species
Na and Cl appears to stiffen the vibrations. For a given com-
position, structures with lower symmetry generally permit a
larger number of coupled modes, but in such structures the
mixing between soft Si-O-Si bending modes and hard O
-Si-O bend and Si-O stretch modes may reduce the effect of
such couplings.

We augmented our harmonic theory with a perturbative
treatment of anharmonic terms, allowing the calculation of
the thermal expansion coefficient. The resulting expression
provides a generalization of classical Grüneisen theory,
wherein phonon frequencies are calculated at different vol-
umes to obtain the free energy as a function of volume. We
found that Grüneisen theory ignores bilinear couplings be-
tween lattice strain and anharmonic vibrations. We have ap-
plied our approach to the thermal expansion of fcc aluminum
metal and an aluminosilica sodalite zeolite. In the former
case, we found that our theory reproduces the success of
classical Grüneisen theory. In the latter case, our approach
gives excellent agreement with experiment, while Grüneisen
theory accounts for only 22% of the thermal expansion co-
efficient. This result shows that in general, including cou-
plings between vibrations and strain will be important for
predictive models of thermal expansion.

To facilitate the parametrization of this normal mode
model, we constructed a simplified classical spring-
tetrahedron model for silica. This is especially useful when
one wishes to relax symmetry constraints. Our spring-
tetrahedron model is based on semirigid SiO4 tetrahedra con-
nected with flexible springs. After fitting to properties of
silica sodalite determined from DFT, this model reproduces
experimental cell volumes and predicts bulk moduli of
a-cristobalite and silica zeolites CHA, LTA, and MFI. The
spring-tetrahedron model also captures the fact that the sud-
den elastic response varies little from one silica polymorph
to the next.

The spring-tetrahedron model was used to analyze the
normal modes of silica zeolite structures SOD, CHA, and
LTA. When comparing with DFT calculations on SOD, we
found that the spring-tetrahedron model generates the correct
normal modes, and perhaps more remarkably, the model
quantitatively reproduces the couplings of these modes to
lattice strain. We have found that silica polymorphs can be
divided in two categories: structures that allow low-

frequency vibrations to soften the elastic responsese.g.,
a-cristobalite and SODd, and materials with network and
symmetry constraints that preclude such softeningse.g.,
CHA and LTAd. When applying the spring-tetrahedron model
to silica MFI zeolite, we observed a transition between these
two regimes involving a transformation from low-symmetry
to an orthorhombic phase.

In the end we find that the normal mode picture of com-
pression and expansion, parametrized by DFT calculations
and the spring-tetrahedron model, provides a powerful new
approach for understanding the mechanical properties of
nanostructured materials. Despite this progress, much future
work is suggested by the present study. We plan to develop
the theory of thermal expansion for anisotropic solids. We
will also pursue a quantum version of our normal mode
theory. Treating strain as a slow mode within the adiabatic
approximation should yield a simple theory for the bulk
modulus. However, developing a quantum theory for thermal
expansion remains quite challenging. Finally, we plan to
study the phase transition observed in MFI in more detail to
determine the connection between our calculations and ex-
perimental data.

Note added in proof. Equation s7d also shows that our
theory predicts a bulk modulus that does not depend on tem-
perature. Even when accounting for anisotropy and anharmo-
nicity, the resulting formulas for the bulk modulus do not
depend on temperature either. Experimental data for bulk
moduli often exhibit very weak temperature dependencies.
Indeed, over the temperature range 300–1800 K, bulk moduli
of a -Al2O3 and SiC only change by 12.5% and 9.4%,
respectively.43
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APPENDIX: DERIVATION OF THE ANISOTROPIC BULK
MODULUS, EQ. (12)

Beginning with Eq.s8d, we write the equilibrium volume
change singling out thenth normal mode according to

kDVl = −
]

b]p
lnE

−`

`

dx1 ¯ dxn dl1 ¯ dlm

3expH− bFo
i=1

n−1SDixi
2 + o

j=1

m

Lijxil jD
+ o

j ,j8=1

m

Kjj 8l jl j8 + po
j=1

m

cjl jGJ
3expH− bFSDnxn

2 + o
j=1

m

Lnjxnl jDGJ . sA1d

After integrating out thenth normal mode we obtain
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kDVl = −
]

b]p
lnE

−`

`

dx1 ¯ dxn−1 dl1 ¯ dlm

3expH− bFo
i=1

n−1SDixi
2 + o

j=1

m

Lijxil jD + o
j ,j8=1

m

Kjj 8l jl j8

+ po
j=1

m

cjl jGJexpFsb/4DndSo
j=1

m

Lnjl jD2G . sA2d

In a fashion analogous to the cubic case, coupling to
mode n effectively reduces the sudden elastice force
constants from Kjj 8 to Kjj 8−LnjLnj8 /4Dn. However, in
the anisotropic case theLnj couplings become mixed.
After integrating over the remaining normal modes, we
obtain

kDVl = −
]

b]p
lnE

−`

`

dl1 ¯ dlm

3expF− bS o
j ,j8=1

m

Kjj 8
8 l jl j8 + po

j=1

m

cjl jDG , sA3d

where

Kjj 8
8 = Kjj 8 − o

i=1

n LijLij 8

4Di
. sA4d

This can be evaluated using standard techniques of multidi-
mensional Gaussian integration, yielding

kDVl = −
]

b]p
ln expFbp2

4
scTK 8−1cdG . sA5d

By taking the derivatives and inserting the result into Eq.s2d,
we obtain Eq.s12d.
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