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Normal mode approach for predicting the mechanical properties of solids from first principles:
Application to compressibility and thermal expansion of zeolites
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We present a method for analyzing the mechanical properties of solids, based on normal modes and their
coupling to lattice strains. This method was used to study elastic compression and thermal expansion of
zeolites, with parameters calculated from density functional theory. We find in general that the bulk modulus
can be divided into two contributions: a positive term arising from compression without internal relaxation, and
a negative term from coupling between compression and internal vibrational modes. For silica polymorphs, the
former term varies little among the phases studied, reflecting the intrinsic rigidity of ®i@ahedra. In
contrast, the latter term varies strongly from one polymorph to the next, because each polymorph exhibits
different symmetry constraints on internal vibrations and their couplings to lattice strains. Typically only a few
normal modes contribute to the bulk modulus. To facilitate parametrization of this normal mode model, we
constructed a simplified classical spring-tetrahedron model for silica. After fitting to properties of silica so-
dalite, this model reproduces cell volumes and predicts bulk moduti@istobalite and silica zeolites CHA,

LTA, and MFI. We incorporated anharmonic effects into the theory, allowing the calculation of the thermal
expansion coefficient. The resulting expression provides a generalization of classical Griineisen theory, taking
into account additional anharmonicities. This method was used to study thermal expansion of fcc aluminum
and an aluminosilica sodalite, yielding good agreement with experiment.
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[. INTRODUCTION ing a classical harmonic potential energy in terms of these
_ o ~two kinds of distortions. Although our classical treatment
The discovery of new nanostructures with increasinglybreaks down at sufficiently low temperatures, where the
complex architectures challenges our understanding of thguantum nature of vibrations becomes important, the bulk
relationship between a material's atomic structure and it$nodulus turns out to be most sensitive to low-frequency vi-
mechanical properti€sAn important example involves the brations, which are adequately modeled under ambient con-
crystalline polymorphs of silica, SO These include dense ditions by classical theory. Below we show that the bulk
phases such as quartz and cristobdliges, well as nanopo- modulus can be written as a positive term arising from sud-
rous (zeolitic) polymorphs such as sodalite and silicafite. den elastic response, and a negative term controlled by cou-
The mechanical properties of zeolites are particularly imporplings between vibrations and lattice strains. When param-
tant because channel deformations can radically change &frized for several silica polymorphs by density functional
zeolite’s capacity for adsorption, diffusion, and reaction.theory (DFT) calculations, we find that the sudden elastic
These dense and nanoporous phases share common structi@Ponse is remarkably uniform from one polymorph to the
features, including Si-O bond lengtls-1.6 A), O-Si-O next, Ilke_ the_ cohesive energy dl_scussed ab_ove. However,
angles(~109°), and networks with low coordination and normal vibrations and their couplings to lattice strain are

strong associatioh.These phases differ in 8D-Si angles Looulgr?lotropr?epend sensitively on the symmetry of a given
(140°-1807, densm_es an_d symmetries. The cohesive energy By augmenting the harmonic potential energy with anhar-
appears to pe relatively insensitive to these structural d'ﬁerfnonicity, we have developed a theory for the thermal expan-
ences, varying by only 0.1 eV per Si@However, the bulk = gjqp of crystalline solids. Our approach provides a generali-
modulus varies s|gn|f|cantly from one.polymorph to the zation to classical Griineisen thedryyhich accounts for
next® Despite progress in understanding the mechanicahnharmonicity by tracking the volume dependence of phonon
properties of network$, this variation in bulk modulus frequencies. Instead, we construct a potential with a com-
among silica phases remains poorly understood. In this aplete set of cubic anharmonicities, and derive analytically the
ticle, we investigate a theory of solid compression and exthermal expansion coefficient showing the importance of
pansion based on normal vibrations and their coupling taeach kind of anharmonicity. We apply this approach to the
lattice strains, which elucidates the relationship between #ermal expansion of aluminum metal and aluminosilica so-
crystal’'s structure and its mechanical properties. dalite zeolite. In the former case, we find that our theory
The elastic response of a solid to compression can beeproduces the success of classical Griineisen theory. In the
decomposed into two partgi) atomic vibrations at fixed latter case, we find that our approach gives good agreement
volume/® and (i) unit cell volume fluctuations for a fixed with experiment, while Griineisen theory accounts for only
atomic configuration. In what follows, we denote the latter22% of the thermal expansion coefficient.
motion as a “sudden” elastic response, because the vibrations To facilitate the parametrization of this normal mode po-
do not relax during compression. Our theory begins by writtential function, we develop a classical spring-tetrahedron
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model for silica. This approach was inspired by rigid-unit small atomic displacements. This procedure gives a nondi-
models developed by Dove and co-workers to study soft viagonal force constant matrix, which is then diagonalized to
brational modes in silic# In our model, SiQ units are  obtain{D;} andx. The parameteK controls the energy cost
treated as semirigid tetrahedra, while-SiSi angles are  of a sudden elastic response, i.e., isotropic expansion or con-
relatively flexible. Our spring-tetrahedron model is similar in traction of the solid. The parametefis;} describe the cou-
spirit to valence bond force figlds developed for simulatingpjing hetween normal mode displacements and lattice strain.
zeolite framework vibration.**These force fields were de- s kind of potential energy function is a starting point for
signed to accurat_ely reproduce infrared spectra of zeolites. IDctivated rate theoriéé, and has also been used to study
;cr)g\t;g:té tgi(ran;IZ”g%;ﬁ:;?ir\]/eed;;?c%gogfelzevg)ﬁtse (é%rr]r?grlg;t;gntffisplacive phase transitions in ferroelectric materials within
We show below that, despite its simplicity, the spring-the effective Hamiltonian approacfr.’®

tetrahedron model reproduces cell volumes and predicts bulk We note that_normal mode anal_yS|s_ applied to small mol-
moduli of several silica phases. In the end we find that th&®cules usually involves mass weighting the force constant

normal mode picture of compression and expansion, paranj@trix, which upon diagonalization y|elds7 normal mode
etrized by DFT calculations and the spring-tetrahedrorlOfCe constants with units of square frequektin contrast, -
model, provides a powerful new approach for understandind/€ use fractional coordinates and omit the mass weighting
the mechanical properties of nanostructured materials. or simplicity, so thatD; has units of energy.
The remainder of this paper is organized as follows: in 1h€ bulk modulus is expressed as
Sec. Il we present the normal mode theory of crystalline ((?p) V( (9\/)—1 ((},AV)—:L
nT

compression and expansion, deriving equations for the bulk B=- v
modulus and thermal expansion coefficient. In Sec. Il we J P P
describe the DFT and spring-tetrahedron calculations rewhereAV=V-V, is the volume change relative to the equi-
quired to parametrize the new theory. In Sec. IV we give thdibrium volumeV, at T=0 K. Because the energy in EQ.)
results for a variety of materials including several silica poly-depends explicitly on volume through the strajrwe aver-
morphs, aluminum metal, and an aluminosilica sodalite. Inage over volume fluctuations in thgT ensemble to obtain

Sec. V we discuss our results and offer concluding remarkV) and hencgAV), according to
Finally, we present an Appendix to clarify our derivation of

(2)

- H
nT nT

. : 5 5 .
the bulk modulus for anisotropic crystals. (AV) = — — In Q(n,p,T) = - — Inf dx- - dx, I
Il. THEORY pap pap )
Here we present an approach for studying mechanical xexp - B(Eg+ pAV)]. 3

properties of solids based on classical normal mode analysi, the Jimit of small strains for cubic lattices, we can substi-

As discussed above, elastic responses are usually dominatgge Avg3a(2)|_ This approximation, which is consistent with

by lower frequency vibrations, which are adequately treate_qhe harmonic energy expression in Et), leads to a product

with classical theory. The theory presented below is appliot Gaussian integrals that can be evaluated successively over

cable to the mechanical properties of general anisotropic lat;ormal modes. After one such integration, we obtain

tices. For pedagogical purposes, we begin by deriving an

expression for the bulk modulus in the simple case of a cubic d *

lattice. We then proceed to the more general case of aniso- (Av)=- Bp In f dxg -+ dxy-p dl

tropic lattices. We end this section by deriving an expression -

for the thermal expansion coefficient for cubic lattices. n-1

Xexp) - ,3{2 (D¢ + Lixgl)
i=1

A. Harmonic approximation for cubic lattices
The harmonic potential energy of the lattidg,, can be 2
+ (K - >I2 +pAV

expressed in terms of small displacements of the lattice pa- n
rameter given byt=a-a,, wherevozag is the equilibrium

unit cell volume atT=0 K. The energy also depends on an
n-dimensional vector of fractional Cartesian dlsplacement%uces the sudden elastic force constério K—L§/4Dn. Af-

q:(r —ro)/a_from an equnlb_rlum.geometryo. We use fr_ac— ter integrating over all degrees of freedom we obtain
tional coordinates to describe vibrations so that varying the

(4)

n

As such, coupling to theith normal mode effectively re-

strain |1, while keeping q fixed, produces isotropic d
compression/expansion of the system. By performing an or- (Av)=- BIp In{exp[%(Sagp)ZH, (5
thogonal transformation to normal modesU'q, we ex-
press the harmonic lattice energy according to where
n n L2
Eo(Xq, ... Xml) = 2 (D@ + Lixl) + KI2, (1) K'=K-> —. (6)
i=1 i=1 4D;

Here{D;} are the normal mode force constants, which can by substituting this result into E¢(2) and taking the zero
computed by mapping the potential energy, or the forces, fopressure limit, we obtain
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2 (2 2 & L2 B=2Vo(c'K o), (12
B=—K'= KJ|- E = Bsua~ Byib-

9 9%, 9ay5; 4D,
% % Boi=1 &2 where the matriXX’ is defined by

)
Thus, the present theory shows that for cubic lattices, the K' =K i LiLij/ 1
bulk modulus can be expressed as a sudden elastic response jir TN < 4D, - (13)

Bs,qWhich is softened by an amouBy;, through coupling to

vibrations.Bg4is the bulk modulus in a fictitious situation in Th dd lasti f iSOtroDi " b
which the fractional coordinates of atoms are fixed. Coupling € sudden elaslic response for anisolropic systems can be
to vibrations softens this response by an amdjjt so that extracted by setting they couplings to zero in Eq(13),

o - Tl e N
if a normal mode is either floppy, i.e., sm&ll, or strongly gving BS“d_z\./O(C K=o If the system were CUP'C’ L€
coupled, i.e., largd.;, it decreases the bulk modulus to a with only one independent lattice parameter, tKng ; and .
greater extent : ¢ reduce to scalars, and we recover the previous results in

Eq. (7).

B. Harmonic approximation for anisotropic lattices

Silica polymorphs typically exhibit anisotropic lattices. If C. Anharmonic treatment of cubic lattices: Simple case

there arem independent lattice parameters, ergs 3 for an Silica polymorphs often exhibit low frequency normal
orthorhombic cell, the energy expression generalizes to  modes due to flexible SD-Si angles, which give rise to
h m interesting behavior such as negative thermal expansion
EgXgs - Xyl oo d) =D (Dixi2‘+ D Linilj) coefficients:®*° Soft mode behavior is encountered in other
=1 j=1 systems such as ferroelectric materidl3o treat such phe-
nomena we consider anharmonic perturbations expressed in
normal mode coordinates. In what follows, we consider the
thermal expansion of cubic lattices; the generalization to an-
isotropic systems will be reported in a forthcoming publica-
These normal modes are obtained from fractional Cartesiation. We augment the harmonic enerBy with a complete
displacements whose y, andz components are scaled by set of third-order anharmonicities. To ensure the convergence
their respective lattice parameters. In this subsection, the iref partition functions, we also add fourth-order anharmonici-
dexi runs over vibrational modes, while the indicgsj’)  ties; the corresponding fourth-order constants are set to zero
run over lattice parameters. Using E@) to compute the after integration. For pedagogical purposes, we begin by
npT partition function again leads to a product of Gaussiarireating the simple case of only a single uncoupled normal
integrals. However, in this case the anisotropiV term is ~ mode. This will turn out to yield a result essentially identical
slightly more complicated. We again focus on the limit of to classical Griineisen theatyn the next section, we gener-
small volume changes, and definerardimensional vectoc  alize this to the multi-dimensional coupled case for cubic
so that the volume change takes the form lattices.
The harmonic energy of one normal mode uncoupled
Aav=Scl © from cubic lattice strain is given on(x,I):Dx2+_K_I2. In
et e this simple case, we augmeg with the anharmonicityx,
and also with fourth-order convergence factors. The energy
For example, the volume of an orthorhombic unit cell isthus becomes
given by

m
+ > Kl (8
Bi'=1

m

V=(ag+1)(ay+1y)(ag+1y), (10 EOol) =Eg(x,]) + el + (N + A0, (14)

where (a;,8;,a;) are the T=0K lattice parameters, and To facilitate evaluating the partition function, we assume that
(I3,12,15) are the anisotropic strains. To lowest order in thesehe anharmonic effects are relatively small and expand the
strains, the volume change is given by anharmonic contribution to the Boltzmann factor to first or-
AV=V- VO =V- a1a2a3 = a2a3|l + a3a1|2 + a1a2|3. der’ yleldlng
(11)

Comparing Eq(11) with Eq. (9) suggests that the vectoris
given byc,=ayas, c,=a;a; andcs=a;a,. This approach can
also be used for systems with nonorthogonal lattice vectors, X(1=Bex?l + ). (15

as long as their angles remain fixed. In such a case, the

vectorc depends on the unit cell shape. The evaluation of thét this stage the fourth-order terms may be discarded. We
multidimensional Gaussian integral is presented in the Apadd auxiliary termsyx and Y1 to Eq+pAV, which allows us
pendix. We obtain the following equation for the bulk modu- to write the partition function using derivatives efandy by

lus: applying the Leibniz integration rule according to

o

(AV) =— Biap In jm dx dlexp{— B[Ey(x,]) + pAV]}
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d > * age
AVy= ——1Iny|1+872 )J dx dl =-—. 24
av= - {( B ozay) ) & %67 %p 24
xexpi— BlEy(x,|) + pAV + ax+ ]} The equation for thermal expansion within Griineisen theory
gm0 is given by
(16)
o c= Y& (25)
The Gaussian integral can be evaluated as was done for the T VB’
cubic harmonic case discussed above, leading to
P whereC,, is the heat capacity at constant volume. Using the
(AV)= =——1In (1 + B % > ) classical Dulong—Petit valu€,=nkz with n=1, and substi-
Bap dady tuting Eq. (7) for the uncoupled bulk moduluB=2K/9a,,

we recover the result in E¢20). The fact that we recovered

B o
Xexp[R(Baép+ Y+ A1 (170 classical Griineisen theory without coupling between vibra-
@y=0 tion and strain, and with only one of many possible anhar-
Differentiating with respect tar and y and settinge=0=y  Monicities, suggests that a more complete theory of thermal
yields the equation of state: expansion is possible, which we develop below.
- 9a, - 3ade\ _ , o
(AV) = p+ B (18) D. Anharmonic treatment of cubic lattices: General case
2K 4KD

We now consider thermal expansion for a cubic system
The first term on the right-hand side of Ed.8) yields the  with n normal modes coupled to strain, and with the com-
sudden elastic response found above for cubic lattices. Thelete set of third-order anharmonicities. We find below that
second term gives the thermal expansion coeffici€)t, the presence of vibrations coupled to strain leads to qualita-

which is defined by tively different thermal expansion behavior. The energy now
takes the form
1( Vv 1(0AV
C=-\=7=]| =-l—7/] . (19
VAT np VN dT /oy n .
_ o _ o E(Xqy « .. Xnol) = Eg(Xq, « oo Xp, ) + E Gi(jk)XinXk
Evaluating the derivative and setting the normalizing volume ij k=1

to its zero-point value oag gives n

n
+ 2 ePxxl + 2 eVxi1? + 013

_ i( - 3a(2)€kB) - _ ( 36kB ) (20) i,j=1 ! i=1
a3\ 4KD 4a,KD )’ n
+ My 4 \O)4 ]
wherekg is Boltzmann’s constant. We note that the sigrCof <§1 NTX AT ) (26)

is controlled by and opposite to the sign of the anharmonicity
parametere.

The result in Eq(20) is analogous to the classical Gri-
neisen theory of thermal expansidmvhich can be seen by
writing the energy as

Here E, is the harmonic potential energy in E€L) with
vibrations coupled to strain. Once again, the anharmonic
contribution to the Boltzmann factor is expanded to first or-
der, yielding

E(x,1) = (D + e )x2+ KIZ+ A®¥x* + A D14, (21)

(7 oo
Equation(21) clearly shows how anharmonicity can manifest (AV) =~ Bap '”f_m dxy ... dx, dl exp{= B[Eo(Xy, -- - Xn,1)
itself through normal mode frequencies that depend on vol-

ume. Indeed, the Griineisen theory is cast in terms of the " ® " @
parameteryg given by +PAVIH 1-8 2 =B €%
ijk=1 ij=1
— Yd_w 22 "
Y= wdV’ (22) ‘BE Gi(l)Xilz‘,Bf(O)'g— ) (27)
i=1

Assigning the normal mode an arbitrary masdeads to
The fourth-order terms are included merely as convergence

_ [2(D+€) 23) factors for the integral, and can be discarded once the expan-
- m sion is made. We now add auxiliary terB&.; a;x; and /I to

the exponential, which again allows us to write the partition
which gives the following Grlineisen parameter: function using derivatives according to
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n e tional to B~%. These terms scale @, while the four other
(AV}-—— In{1+822 ) ——— terms on the right remain constant. The first term propor-
Bap ke 0a dag da tional to 872, controlled bye , is responsible for shifting
A vibrational frequencies W|th cell volume, and as such is
+,3‘22 ” —+f 22 (1) equivalent to classical Gruneisen theory for thermal expan-
ij=1  0adaj dy =R sion. The remaining terms generalize classical Grineisen
P o theory for complex nanostructures that involve coupling be-
+ 32 0)_y3>f dx - -~ dx, dl tween vibrations and strain.

Xexp —B[Eo(xl, coe X)) P AV

(28)

n
+ afiXi+y|]

i=1

After evaluating the Gaussian integrals, we obtain

F P
-—Iny(1+p82 2
Bap ( S ”kﬁai Jay Aoy

P
-2
h .,21 da; 9y

+ %€ °>iy3)exp[ b (3aop +y- Ega)

]

1 4D;

(Av) =

[ — 2 (1
L dayj dy k ,zi

: (29)

ai,y~>0

whereK’ is given by Eq.(6). Differentiating with respect to
a; and vy, setting ¢;=0=v, and assuming the limit of low

temperature and pressure yields an equation of state of the

form (AV)=V,(-p/B+TC), whereB is the bulk modulus and

E. Analysis of the coupling

As we shall show below, it turns out that most of the
couplings vanish. The nonvanishing couplings still exert
strong effects on bulk moduli and thermal expansion coeffi-
cients. Nonetheless, the fact that most couplings vanish is
important for both computational efficiency and conceptual
understanding. With relatively few couplings to compute, our
theory can be parametrized from a tractably small number of
density functional theory calculations. Moreover, insights
into the compression and expansion of complex materials
may be gleaned by visualizing the small number of vibra-
tions that actually couple to strain. Before describing the
computational methods used to parametrize our theory, we
pause to reflect on why most of the couplings vanish.

This result follows from crystallographic symmetries and
the stability of a given phase with respect to small lattice
deformations. To elaborate on this, we start with a minimum
energy(T=0 K) structure. Next, we assume phase stability
so that the space group symmetry of a given phase is con-
served even if the lattice is deformed by a small st@inVe
further impose the constraint that the deformatidincon-
serves the unit cell shape. Using Ead), we calculate the
force per normal mode in the deformed configuration as

%E = Li S+ O(Xi). (31)

C is the thermal expansion coefficient. These manipulations i

yield the following expression fofAV):

For the phase to be stable B0 K, this force must vanish

n o n ye) unless the normal mode conserves the space group sym-
<AV>_—9;a°p 3— 330 > Si _ E 3L i metry. Otherwise, the respectite must also vanish! This
2K’ i1 Di ij=12D; D relatively strong condition causes most of thecouplings to
n N vanish. For example, in fcc and bcc metals, all such cou-
L LiL; lings vanish and the thermal expansion comes only from the
_ g 9a3 S C R I L pling ad p omes only
K2\ € < 20, 29 4D, €913 anharmonicity and the frequency shift with volume as
' controlled bye@x? terms. For such systems, the classical
LiLiLy limit of Grineisen theory is applicable. However, in zeolites
- Ek fuk 8D.D D, (30 and other complex nanostructures, which exhibit anharmonic
i,j,k=1 =]

Equation(30) shows that the bulk modulus is not influ-

modes coupled to lattice strain, these additional terms may
have nontrivial and rather interesting contributions.

enced by anharmonicity at this level of theory. The terms
proportional tog™* describe thermal expansion, which van-
ishes in the limit of alle— 0. This expression is similar to
that of the bulk modulus in Eq(7), in that it contains a
“sudden anharmonic” terne® that is corrected by terms
arising from coupling between the lattice strain and norma
modes. Our numerical calculations below reveal that th
various terms in Eq(30) exhibit different scaling behaviors
with system size. In particular, in the limit of large system
sizes, i.e. many normal modes, the thermal expansion coef- We have performed density functional thedBFT) cal-
ficient becomes dominated by the first two terms proporculations using plane wave basis sets, pseudopotentials, and

Ill. COMPUTATIONAL METHODS

Here we describe the density functional theory calcula-
tions we have performed to both parametrize and test the
pormal mode theory. We then discuss the spring-tetrahedron
emodel used to generate normal modes of silica polymorphs.

A. Density functional theory calculations
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periodic supercelf® as implemented in the Vienna Ab-Initio lattice distortions become large enough so that anharmonic-
Simulation Packagévasp).?1-23 We used the local density ity with respect to lattice parameters, or symmetry-breaking

approximation(LDA) of electron exchange-correlation based ynit cell deformations become important. Then 3 m and

on Ceperley—Alder dat¥. In previous work, we?> and - , .
otherg®2” have shown that LDA reproduces unit cell struc- ! ,4 3 m symmetries of Si-SOD allow one and two coupled

tures and volumes of silica polymorphs with surprising ac-ViPrations, respectively. The 4 3 n symmetry of Al-SOD
curacy. lon cores were represented by Vanderbilt-type ultradives four coupled vibrations, the two additional modes com-
soft  pseudopotentials  available ~ within vasp.2829 N9 from counterion motion and SIO—-Al bond asymmetry.
Convergence tests were perform@thta not shownto en- To test our normal mode theory for the bulk modulus, we
sure sufficient completeness of Brillouin zone sampling and@lculated the bulk moduli of-cristobalite, Si-SOD, and
plane wave basis sets. Below we give the results of thes@-SOD using the conventional technique of varying unit
convergence tests for each system studied. To reduce tf%§!l volume, relaxing atomic coordinates, and fitting ele-

computer time, each structure was constrained to its putati&€nts of the elastic tensor to the resulting energies as out-
space group symmetry during DFT calculations. lined in Ref. 5. In what follows, we denote these bulk moduli

We have used DFT to analyze the normal modes oﬁsBdir_because they arise directly from DFT—pased optimiza-
a-cristobalite, silica sodalite zeoliSi-SOD) and an alumi-  tions, in contrast with the bulk moduye, which are com-
nosilica sodalite(Al-SOD). The sudden elastic force con- Puted with our normal mode theory through E¢#) and
stants of silica zeolite structures CHA, LTA, and MR (12). We used DFT to calculate direct bulk moduli of
have also been computed with DFT. As a simple test of ouft-Cristobalite, Si-SOD, and Al-SOD. Below we discuss a
anharmonic theory, the thermal expansion of fcc Al metalSPring-tetrahedron model, from which direct and theoretical
was studied. And finally, we have used DFT to parametrizé)u”‘ moduli were also computed for various silica polymor-
our theory for the thermal expansion of Al-SOD. phs.

2. Silica zeolites CHA, LTA, and MOR

We studieda-cristobalite because of ample experimental e used DFT to calculate the force constg%teor Kij»)
data on its bulk modulu¥;32and because its tetragonal lat- for silica zeolite structures CHA, LTA, and MOR to com-

tice provides a good test of our theory for anisotropic solidsPare their sudden elastic responses. We imposed the follow-

Our interest in Si-SOD was motivated by our recently re-ing space group symmetries for CHR 3 2/m; for LTA,

ported DFT calculations finding that Si-SOD’s bulk modulus P m 3 m; for MOR, Cmcm These calculations were per-

is extremely sensitive to symmetry constraitlso, Al-  formed using a plane wave cutoff of 420 eV. For CHA and

SOD provides a good test of our anharmonic theory becauserA, we used a X 2x 2 Monkhorst—-Pack grid, while for

of experimental thermal expansion data on the compositioMOR we used a X 1x 2 grid. High-silica LTA, which has

NagAl6SigO24Clp. 3334 recently been synthesizéfhas a cubic structure, and hence
a-cristobalite has a tetragonal unit cell, while Si-SOD andhas only one independent lattice parameter and force con-

Al-SOD both exhibit cubic unit cells. We studidd4 3 m  stantK. With rhombohedral CHA, we assumed that the lat-

andl m 3 m symmetries of Si-SOD. The transition between fic€ vector angley does not change. This is a reasonable

the two phases was the subject of an earlier periodic DF'F‘SS:Jmpti,O” sincey has an equilibrium value close to 90°
study3® In our DFT calculations, the latter is a saddle point(94°), Which does not change significantly as the volume is
on the potential energy surface, unstableTat0 K. We varied® With orthorhombic MOR, we made an isotropic as-

found in our previous study that the bulk moduli for theseSUMPtion, i.e., that the lattice parameters change uniformly
phases are 18 and 93 GPa, respecti¥&glow, we elucidate and that the sudden elastic response is described by a single
this remarkable sensitivity of the bulk modulus to symmetryParameterk. This was necessary because of the computa-
constraints with our normal mode theory. We studied theional éxpense of these DFT calculations.

P43n symmetry of AI-SOD. The composition
NagAl Sig0,4Cl, of this Al-SOD features a highly symmetric
arrangement of Na and Cl counterioli$* The symmetry of As a simple test of our anharmonic theory, we computed
a-cristobalite was constrained ®4; 2, 2. the thermal expansion coefficient of fcc Al metal. For the
The Brillouin zone was sampled using X2x2  monatomic fcc lattice, none of the internal degrees of free-
Monkhorst—Pack grids for the sodalites, and by using a 3lom is coupled to strain, and hence all thé2D;-type terms
X 3X 2 grid for a-cristobalite3® For the sodalites, a plane in Eg. (30) vanish. As such, we are left with the® and
wave cutoff of 420 eV was used, while farcristobalite, a Eiei(iz’/Di terms. These were calculated by varying the lattice
cutoff of 460 eV was used to reduce noise in the total energparameter and estimating the force constant matrix for dif-
due to small energy differences. ferent values ofl. Because all atoms in this structure are
As discussed above, the constahfsvanish for normal equivalent, and the structure is isotropic, the force constant
mode displacements that break a given space group symmeratrix can be determined by displacing just a single atom in
try. Symmetry constraints can thus be used to dramaticallpne Cartesian direction and computing the Hellmann—
reduce the number of coupled modes that need to be consifeynman forces. System size effects were determined by
ered. We note that this reduction does not necessarily hold domparing results from supercells containing 4 and 32 at-

1. a-Cristobalite, silica SOD, and aluminosilica SOD

3. Calibrating anharmonic theory with fcc Al metal
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oms, to check convergence with respect to the wavelengttx,y,z). As such, this symmetry allows four coupled internal
cutoff for normal modes. With the smaller cell, ax&® X6  degrees of freedom. The anharmonic terms were calculated
Monkhorst-Pack grid was used, while with the larger cell aas follows. Anharmonic constants for coupled modes were
4x4x4 grid was sufficient. We found essentially identical obtained by simultaneously displacing the lattice parameter
results from these two system sizes, suggesting a minimand normal modes, and fitting the energies to a multivariable
influence from system size effects. Because the ultrasoftolynomial using least squares. The anharmonicities in
pseudopotential for Al is significantly softer than that for Eiei(iZ)/Di and Lj/ZDjziEi(i?)/Di are less convenient to evalu-
oxygen, the plane wave cutoff can be reduced to 140 eVate, because they require repeated calculations of the force
The partial occupancies of Kohn-Sham eigenstates wergonstant matrix: for different values of the lattice parameter,

treated by using a Gaussian smearing of 0.05 eV. and for displacements along the maxje respectively. For-
tunately, AI-SOD possesses enough symmetry to make sev-
4. Parametrizing normal modes eral force constants interdependent. The full force constant

, matrix was evaluated with these symmetry properties as fol-
The sudden elastic force constaftswere computed by |o\s. We maddA,0,0) displacements for a single Na and a
performing a series of DFT calculations on isotropically ex'single Cl atom:; we madéA,0,0), (0,A,0), and (0,0,A)
panded and contracted solids. Polynomials were then fitted t8isplacements ;‘or a single A'\I ,Si ’ ané O a,tom Thésé calcu-
the energies obtained. We calculated the force cons@nts |;i0ns suffice to construct the full force constant matrix,

by first COT“F’“F'”Q elements of th? nondiagonal f?’rce CONYecause all atoms in a given sublattice are symmetry equiva-
stant matrix,D{;, in some convenient representation. Th'sgant and the structure is isotropic

was achieved by displacing atoms by small amounts, an In a-cristobalite, Si atoms are &,u,0) positions while

c_alculatmg the resultmg HeIImann-Feynmgn forcgs. A Pracy atoms are atx,y,z). As such, there are four internal de-
tical way to generate displacements consistent with symme-

try is to vary the Wyckoff special positions of atofhe grees of_ freedom. The tetragonal unit cell has two indepen-
. o dent lattice parameters. The coupling terms were calculated
nondiagonal force constant matrix is then computed from th

. %y making small displacements of thth normal mode, and
relation , f ; o
varying either thea lattice parameter, yieldind.;-type
F=-25Dla 32 terms, or thec parameter, yieldind;,-type terms. The terms
I |qu1 :
i K11, Kip andK,, were calculated by varying thee and/orc

. lattice parameters while keeping atomic fractional coordi-
whereF; is the Hellmann-Feynman force, afgj} are Car-  pates fixed.

tesian atomic displacements. By diagonalizing we obtain
the normal modex and force constantfD;}. The coupling B. Spring-tetrahedron model
constantsL; were obtained by simultaneously varying the  One difficulty with computing the normal modes of silica
lattice parameter and displacing atoms along normal modgolymorphs with DFT is its high computational cost. This is
direptions, and fitting a polynomial to the resulting DFT en-especially true when one wishes to relax symmetry con-
ergies. o straints. It is therefore worthwhile to pursue a simpler
In the 1 43 m phase of Si-SOD, O atoms occupy method that still captures the essential physics of elastic re-
(x,X,y)-type Wyckoff special positions while Si atoms are sponse in silica materials. Here we present such a model,
located at(0.25, 0.5, 0.ptype positions. As such, there are based on semirigid SiOtetrahedra connected with flexible
two internal degrees of freedom for this symmetry. The nonsprings. We show that this “spring-tetrahedron” model can
diagonal force constant matrix is calculated by making smalindeed reproduce the elastic properties of a variety of silica
displacements of O atoms of typa,A,0) and(0,0,A). We  polymorphs. We used this method to study the normal modes
found that stable convergence is obtained for these forc@nd bulk moduli of silica zeolites SOD, CHA, and LTA.
constants using =102 A. Diagonalizing the force constant The bulk modulus and orthorhombic-to-low symmetry phase
matrix leads to two normal modes: one associated with relatransition of silica MFI was also studied.
tive rotations of several SiQtetrahedra, and one with SjO  As discussed in the Introduction, our approach was in-
unit deformation. We thus expect the force constants fospired by rigid-unit models developed by Dove and co-
these normal modes to be significantly different. In the\tNorklers_ t0| study S‘iﬂ vibr_?tionallmodesh in sili%lFrqm ad
| m 3 m phase of Si-SOD, O atoms occupy,x, 0.5-type opological perspective, silica polymorphs can be viewed as
positions, thus giving only one internal degree of freedom{ft\é"olrkS of corne_r—;dhar|nghSJaCIetrahedra. ghe.rr']g'd'unt')t d
which turns out to be associated with Sitnit deformation. odel assumes rigid tetrahedra connected with two-body

100 IR
The fact that relative rotations of SjQetrahedra are sym- Springs: .Usmg this rigid-unit approach, we have found that
— some silica polymorphs became unstable at nonzero pres-

metry forbidden in thel m 3 m phase of Si-SOD already gres because of barrierless deformation pathways. Further-
explains qualitatively why its bulk modulus is more than five more, the bulk moduli of some zeolites are significantly
times higher than that df4 3 m Si-SOD? Below we show  overestimated with this approach, and calculating full normal
that our normal mode theory accounts for this fact semiquanmode spectra becomes impossible because deforming tetra-
titatively as well. hedra is forbidden.

In AI-SOD, CI atoms are at0,0,0-type positions, Na at A simple remedy is to allow tetrahedra to become some-
(u,u,u), Al at (0.25, 0.5, 0, Si at(0.25, 0, 0.5, and O at what flexible using two-body springs, and to add a three-
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Distortion tion, we used the spring-tetrahedron model to generate the
normal modes of SOD, CHA, and LTA, for use in decom-
posing their bulk moduli into sudden and vibrational contri-
butions. These constitute predictions of properties that have
not yet been measured. Unit cell shapes were held fixed dur-
ing these calculations: tetragonal fefcristobalite, cubic for
SOD and LTA, and rhombohedral for CHA. No additional
symmetry was imposed on atomic coordinates. To avoid a
Slivergence when calculating terms of the fotrf'MDi, we
removed the three normal modes corresponding to the
center-of-mass translation, whose normal force constants
. . . . vanish.

body term that penalizes the bending 9*8"8' a_n_gles(F|g, To further test the spring-tetrahedron model, we computed
1), which we found res.tores _mechamcal stability. Althoughthe bulk modulus of silica MFI zeolite. With MFI, an addi-
such an energy function with two-body and three-body;jona) complexity stems from a structural phase transition
Springs begms to resemble vglence bond force f|’é+é|%our. between monoclinic and orthorhombic pha¥&Because our
approach is substantially different. Indeed, our Spring+,,mal mode theory assumes that unit cell shapes remain
tetrahedron model only explicitly accounts for the positions, oqered despite strains and vibrations, this theory cannot
Of. oxygen atoms in a given silica structure. FOF a unit Ce"be applied to study the transition of MFI between different
with n, oxygens, the spring-tetrahedron energy is given by it cel| shapes. Instead, we performed direct optimizations

to determine the bulk modulus. However, local optimization

FIG. 1. A schematic showing the spring-tetrahedron system an
its response to strain.

n
v(r r)= }20 D k_S(|r_ — 1 —1o)? algorithms yielded unsatisfactory results because of a rugged
Lo 25 52! Koo energy landscape. As such, we annealed the structure using

: Metropolis Monte Carlo simulation®. The bulk modulus

was extracted by adding @V term to the energy, and map-
ping the equilibrium volume as a function of pressure. All
internal coordinates and lattice vectors were allowed to vary.
wherer | is the three-dimensional location of tfia oxygen, We show below that the spring-tetrahedron model exhibits a
and “nn” are its six nearest neighbor oxygens. The factor ofphase transition for_ MFI from orthorhombic to lower sym-
1 in the first term corrects for double counting. The param-Metry at smalinegativepressures.

eterrg is the typical distance between oxygens in a given

n
Sk
+ EA(cosHi - c0Shp)?, (33
i=1

SiO, tetrahedron. The second term in E@3) applies a IV. RESULTS
spring to each Si-@Si angled, i.e., to each shared vertex .
of adjacent tetrahedr@ig. 1). Without explicit Si locations, Here we present the numerical results of our study on the

we computed; as the angle formed by thith oxygen and the mechanical properties of nanostructured silica. We begin by
centers of mass of the two tetrahedra it joins. The springcomparing sudden elastic responses from various silica poly-
tetrahedron model thus replaces rigid tetrahedra with semimorphs calculated from DFT. We then present the best-fit
rigid ones connected to each other by flexible springs, aparameters and predictions of the spring-tetrahedron model
controlled by the parametetkg, ka,rg, 6p). for a comparison with DFT data. Next we discuss the normal

The spring-tetrahedron parameters were fitted to DFTmModes of Si-SOD generated by DFT and spring-tetrahedron

LDA data for Si-SOD(l 4 3 m), which serves as a bridge Energies, as weII. as the normal modes of Al-SOD 'and
between dense and zeolitic silica polymorphs. The paramet{f’c”StOballte obtained from DFT. We then apply the spring-
ro contains much of the chemistry in Si-O bonding. Using a €
Si-O bond length of 1.6 A and an O-Si-O bond angle of
109.47° givesro=18/3x1.6 A=2.61 A. The reference Si

-O-Siangled, was set to 155°, a value close to that found in

Si-SOD (I 4 3 m), a-cristobalite, and in relaxed silica chain _
polymers?® The force constanks uniquely determines the A. Sudden elastic responses from DFT

sudden elastic responie thereby allowingks to be fitted to Sudden elastic response constants computed from DFT

the energy dependence of isotropic volume changes. The afyr various silica polymorphs are shown in Table I. For cubic

gular force constark, was fitted to the direct bulk modulus |attices, these are converted to units of GPa according to

of Si-SOD (I 4 3 m) calculated from DFT-LDA datd.This  Bg=(2/9)K. For noncubic latticesB,4is computed from

was achieved by calculating the direct bulk modulus of Si-Eq. (12) by setting the couplingk;; to zero. The correspond-

SOD using spring-tetrahedron potential energies, and varying direct bulk moduli are also shown in Table I. While the

ing ka until this bulk modulus matched the DFT value. bulk moduli in Table | show a significant variation from one
We benchmarked the spring-tetrahedron model by calcupolymorph to another, the sudden elastic response constants

lating equilibrium volumes and bulk moduli @f-cristobalite  exhibit remarkable uniformity. Indeed, the spreadijp val-

and silica zeolite structures SOD, CHA, and LTA. In addi- ues amounts to 60% of its average, whereas thaBfgyis

trahedron model to explore the bulk moduli of CHA, LTA,
and MFI zeolites. We close this section with the thermal
expansion coefficients of fcc Al metal and AI-SOD zeolite
computed from DFT.
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TABLE I. Sudden elastic responses and direct bulk moduli TABLE IIl. Direct bulk moduli (GPa and equilibrium unit cell
(GPg of various silica polymorphs computed with DFT. Sudden volumes (A3) computed using DFT and the spring-tetrahedron
elastic responses given &g,,~(2/9)K for cubic systems SOD model (STM).
and LTA. For anisotropic latticea-cristobalite and CHABq is

computed from Eq(12) setting couplingd.; to zero. For MOR, Bgiry DFT  Bgi, STM  Vp, DFT  V,, STM
Bsuqis approximated by changing the lattice parameters uniformly —
and assuming a scal#. SODI 43 m 18 18 57 57
CHA 68 67 65 66

Bsud Bair LTA 46 54 69 70
SOD143m 118 18 a-cristobalite 8 13 46 44
SODIm3m 112 93
LTA 92 46 tetrahedron model with no imposed symmetry, which yields
CHA 103 68  a pattern of couplings essentially identical to the DFT results
a-cristobalite 76 8  for Si-SOD(I 4 3 m). An inspection of Table IV shows that
MOR 117 57 the spring-tetrahedron model performs well in reproducing

the results of DFT calculations. High symmetry Si-SOD ex-
hibits a normal vibration corresponding to the deformation of
only 15%. This uniformity among sudden elastic responsesydividual SiO, tetrahedra, denoted mode 1. Low symmetry
reflects the intrinsic rigidity of SiQtetrahedra shared by all sj.SOD allows this mode as well as another, denoted mode
silica polymorphs. The unformity of sudden elastic respons& corresponding to rotations of adjacent Si@trahedra
constants is well reproduced by the spring-tetrahedroe|ative to each other. These two vibrations are shown sche-
model. matically in Fig. 2.
The sudden elastic response constants of the two symme-
B. Spring-tetrahedron model parameters tries of Si-SOD are quite similar, as discussed above. The
extent to which the bulk modulus is decreased from mode 1
is also quite similar betwciszn the forms of Si-SOD, as dem-
. — . onstrated by the values df;/4D, in Table IV. However,
modulus of SIi-SOD(I 43 m). As shown in Table I, these o qice mode 2 involves relative rotations of Si@rahe-
take the values 118 and 18 GPa, respectively. The resultmgra’ the force constar, is much smaller thai,, leading

best-fit parameters are given in Table II. To test the springs, 5 mych greater diminution of the bulk modulus from mode
tetrahedron model, we computed the bulk moduli and uni in Si-SOD (1 4 3 m). This explains why the bulk moduli

cell . VO'U”.‘eS of Si-SOD (143 m), ) CHA, LTA, and are so different, even though these two forms of Si-SOD
a-cristobalite. Table Ill shows the spring-tetrahedron resultg, ;e nearly identical atomic configurations.

alongside the corresponding DFT data. The agreement is ex-

cellent, considering the simplicity of the spring-tetrahedron

potentia| function. For the dense po|ym0rphcristoba|ite, TABLE IV. Sudden elastic responses and vibrational coupling
the unit cell volume agrees well while the bulk modulus isterms (GPa for two symmetries of Si-SOD, from DFT and the
somewhat overestimated. Spring-tetrahedron energy diffespring-tetrahedron modé¢S5TM). High symmetry(I m 3 m) STM
ences between different silica polymorphs are sifuiita not ~ calculations were not performed. Results are multiplied byeg t&
shown), which is in qualitative agreement with experimental obtain GPa units. Direct and theoretical bulk modBlj; andBineo

The spring-tetrahedron force constaktsand k, in Eq.
(33) were fitted to the sudden elastic force constant and bul

datd® and DFT calculations. are also shown for comparison.
C. Normal modes of Si-SOD from DFT and the spring- Si-SODI 43 m DFT ST™
tetrahedron model K 118 112
The normal mode analyses of Si-SOD from DFT with L2/4D, 16 14
lower symmetry(l 4 3 m) and higher symmetryl m 3 m) L3/4D, 79 80
are presented in Table IV. Also shown in Table IV is the B 3 18
normal mode analysis of Si-SOD based on the spring- theo
Bir 18 18
TABLE Il. Parameters for the spring-tetrahedron model. Si-SODIm3m DET
K 112
ks 8.82 eV/R L2140 14
N 2.35eV v
ro 2.61A Biheo 98
bo 155° Buir 93
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termsL;L;,/4D; (eV/A?) for a-cristobalite from DFT. Direct and
theoretical bulk moduliBg;, and By, in GPa, are also shown for
comparison with experimental valuég,,

1 TABLE VI. Sudden elastic force constankg;. and coupling

Kip 14.936
K1z 3.699
Koz 3.360
L2,/4D, 11.271
Lyil1p/4Dg 3.822
/ L2,/4D, 1.292
L3,/4D, 0.210
Lol oo/ 4D, 0.125
L3,/4D, 0.074
L3,/4D; 0.595
Lailap/4Dg 0.514
L3,/4D; 0.382
L3,/4D, 0.784
Laslso/4Dy -0.708
L3,/4D, 0.640
Btheo 1
Buir 8
Bexp (Ref. 31 16.0
Bexp (Ref. 32 11.5

and counterions in the structure, the couplings in AI-SOD are
FIG. 2. Schematic representation of the s@fp) and hard  split into four vibrations coupled to strain. As with the other
(down) normal modes in Si-SOD, in which tetrahedra representsolids discussed above, the sudden elastic response constant
SiO, units. In the upper picture the six ring is viewed along the for Al-SOD is near 100 GPa. Normal vibrations 1 and 3
[111] axis, while in the lower picture the four ring is viewed down decrease the bulk modulus by about 40%, with another 10%
the [100] axis. Normal mode displacement vectors are projecteddecrease coming from vibrations 2 and 4.
onto corresponding planes. In contrast to Si-SOD, AlI-SOD exhibits stronger mixing
between deformations and relative rotations of tetrahedra. In

Also shown in Table IV are bulk moduli computed from the softest modémode 1, the motion of framework O atoms

direct optimizations and normal mode theory. These are iRd Na counterions is in phase, while in the next more rigid
excellent agreement, signaling the first numerical success ¢pode(mode 2 they are in antiphase. The third softest mode
our normal mode theory of elastic response. (mgde 3 consists of a mlxtu_rg of rotations and deformations,
while the fourth and most rigid modenode 4 has a strong
component of O atom displacement along the Si—Al internu-
D. Normal modes of Al-SOD anda-cristobalite from DFT clear axis. These modes couple to strain in such a way that

The normal mode analysis of Al-SOMagAl SigO,.Cl,) modes 1 and 3 exert the greatest diminution on the bulk

. : modulus. In contrast to Si-SOD, none of these modes is very
from DFT is presented in Table V. Due to the presence of AIsoft, leading to a bulk modulus of 55 GPa. This likely arises

_ o _ from counterions in AI-SOD stiffening of the relative rota-
TABLE V. Sudden elastic response and vibrational COUp“”gtions of SiQ, tetrahedra.

terms(GP3 for AI-SOD from DFT. Results are multiplied by 249

) ; i _ Studyinga-cristobalite allows us to test our normal mode
to obtain GPa units. The theoretical bulk modulus is also shown.

theory on an anisotropic structure. However, the effects of
individual modes on the bulk modulus is blurred because the

K 107 matrix inverse in Eq(12) mixes the termg;;L;;,/4D; among
L2/4D, 20 the cou_pled m_odeisl,_. ..,4. Due _to the tetragonal un_it cell
L2/4D, 5 of a-cristobalite, varying the lattice parametarrequires
L§/4D 23 changingb by the same amount. The total effect on the unit

3 3

L2/4D 4 cell volume is greater compared to that from varyglone,
4T making the force constants associated with the lattice param-
Bineo 55 etera larger. As shown in Table VI, the;;L;;./4D; terms for

the softest modémode 1 are again the largest. This mode
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TABLE VII. Sudden elastic force constants and coupling terms  TABLE VIII. Sudden elastic force constants and coupling terms
(GPa for silica CHA from the spring-tetrahedron mode@TM). (GPa for silica LTA from the spring-tetrahedron modéSTM).
Each term is converted to GPa units using Ekp), setting either  Results are multiplied by 29 to obtain GPa units. Direct and
K’=K orK’ :Li2/4Di, and setting all other terms to zero. Direct and theoretical bulk moduli from STM potential energi&y;, andByeo
theoretical bulk moduli from STM potential energies are also showrare also shown for comparison.
for a comparison.

K 92
K 97 L2/4D, 14
L{/4D; 2 L2/4D, 8
L5/4D, 2 L2/4D, 5
L5/4D3 1 L2/4D, 1
L3/4D, 8
L2/4Ds 1 Biheo 54
L2/4D, 16 Bair >4
Btheo 67 .
Bair 67 by vibrations as much as was found for Si-SQD4 3 m)

(see Table IV. The direct and normal mode bulk moduli of
CHA and LTA are in perfect agreement, which might be
consists mostly of rigid-body rotations and translations ofexpected when applying a harmonic theory to a spring po-
SiO, tetrahedra. The remaining three modes consist of, SiOtential.

tetrahedral deformations of increasing magnitude from
modes 2 to 4.

Also shown in Table VI are the direct and normal mode
bulk moduli of a-cristobalite from DFT. These are 8 and
11 GPa, respectively, diminished from a sudden elastic re- We investigated the applicability of the spring-tetrahedron
sponse of 76 GPa. Experimental values etristobalite’s model to study the elastic properties and phase behavior of
bulk modulus are 16.0 GPhand 11.5 GP&?2 which are in  silica MFI (silicalite). We annealed the structure at various
reasonable agreement with our direct and theoretical resultpressures to obtain thie=0 K equilibrium volume as a func-
considering the spread in experimental values. This level ofion of pressure. The behavior of the unit cell volume versus
agreement bodes well for our normal mode theory of anisopressure is shown in Fig. 3. Under compression at positive
tropic lattices. pressures, the bulk modulus takes the value 12—-13 GPa. A
unit cell slightly distorted from an orthorhombic shape is
obtained. Due to very small distortions in the lattice vector
angles, the exact symmetry of this phase is difficult to iden-
tify. We also considered the hypothetical possibility of nega-

The normal modes of silica zeolite structures SOD, CHA tive pressures, i.e., when the structure is under tension. Such
and LTA were analyzed with the spring-tetrahedron model bya situation may effectively occur when the lattice is loaded
keeping the respective unit cell shapes fixed, but withoutith guest molecules, which pull inward into the pores
additional symmetry constraints. Despite this relaxation othrough host—guest attractions. In this case the bulk modulus
symmetry, most of thé; couplings were still found to van- takes the value 65+5 GPa. At the transition point the unit
ish. This is expected to occur for crystal structures whoseell deforms from orthorhombic to a lower symmetry phase.
symmetry is nearly preserved by the spring-tetrahedron
model, because the symmetric structure is close to a local 6000
minimum of the spring-tetrahedron potential. Such a result

was found above for Si-SOM 4 3@, but would not be

expected for the higher symmetryn 3 m structure, because
this is a saddle point of the spring-tetrahedron poteftial.

The spring-tetrahedron model applied to CHA predicts
that six vibrations are coupled to lattice strain, as shown in
Table VII. Starting with a sudden elastic response constant of
97 GPa, only two modes significantly influence the elastic
response. When applied to LTA, the spring-tetrahedron 4250 e . ‘
model identifies four modes coupled to strain. Each of these S 2 3 -4

L L . ressure (GPa)

modes diminishes the bulk modulus significantly from its
sudden elastic value of 92 GPa, as shown in Table VIII. Itis  FIG. 3. Behavior of the unit cell volume of Si-MFI as the struc-
remarkable that, even though SOD and LTA are both builture is annealed at different pressures. The two lines highlight the
from SOD cages, the elastic response of LTA is not softenedtansition from low symmetry to an orthorhombic structure.

F. Mechanical properties of MFI from the spring-tetrahedron
model

E. Normal modes of CHA and LTA from the spring-
tetrahedron model

5750 |

5500 [

5260

5000 +

4750 |

Unit cell volume (cubic angstrom)

4500 |
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Our previous DFT study on orthorhombic MFI gave a bulk ' ' ) o
modulus of 41 GP&Although the predictions of the spring-
tetrahedron model are not too far from this value, a much
more careful analysis is required before the elastic properties
and phase behavior of MFI are well understood.

700 | ©
G. Thermal expansion of fcc Al metal from DFT

Volume (Cubic Angstrom)
8
g

We now turn our attention to the thermal expansion coef- Theoty
ficient, beginning with a test of our theory on fcc Al metal
with parameters computed by DFT. We first calibrate the 5750 500 750 1000 260
accuracy of DFT-LDA with ultrasoft pseudopotentials for fcc Temperature (Kelvin)

Al, by discussing its lattice parameter and bulk modulus. Our ) , ,
calculated lattice parameter is 3.98 A, which is in good FIG. 4. Comparing experimental a_nd theoretical data on the
agreement with the experimental room temperature value dpmperature dependence of Al-SOD unit cell vqume._Expen_mentaI
4.05 A, and in excellent agreement with a previous DFT_pomts are circlegRef. 33 and square_éRef. 34. Theoretical points
LDA result of 3.97 A obtained with norm-conserving are computed from E¢30) parametrized by DFT.
pseudopotential&:*?Our calculated bulk modulus for fcc Al _ _ _

with a 4-atom unit cell is 84 GPa: with a 32-atom unit cell Ne€xt bigger cubic cell for AI-SOD contains over 300 atoms.
we obtain 81 GPa. This agrees well with the experimentafiowever, a reasonably converged result for Al metal was

value of 75.9 GPa, and with the previous DFT-LDA value of Obtained using a supercell that is much smaller than the one
79.4 GP&142 for Al-SOD, suggesting that our results for AI-SOD are
We obtain a thermal expansion coefficier@=62 likely valid. In addition, the fact that our thermal expansion
X 1076 K1 for fcc Al using a 4-atom supercell. This agrees results for Al-SOD agree well with experiments further sug-
well with the experimental room-temperature value of 659€sts that the accuracy of our computations has not been
X108 K1, and with earlier DFT results based on Debye-compromised by finite size effects.
Griineisen theor§#2 Effects from quantized vibrations are ~ We note that only about 8 107° K™ of thezthermal ex-
negligible at room temperature for fcc Al, because the therpansion coefficient stems from the terlye,”/D;, while
mal expansion coefficient and specific heat have aIreadEﬂ(Lj/ZDj)Ei(i?)/Di accounts for the remaining 29
reached plateaus at this temperature. Using the 32-atom si-10° K™L. This suggests that Griineisen theory would only
percell, we obtain a value of 6710°° K™%, indicating that account for 22% of the thermal expansion coefficient of
convergence with respect to normal mode wavelength cutoffl-SOD, because it ignores the coupling between strain and
has been reached. With the smaller supercell, more than 90&hharmonic vibrations.
of the thermal expansion coefficient stems from the
Ei”ei(iz)/Di term. In the case of the larger supercell, this term
cpntributes more than 99%, confirming the scaling behavior \ye have presented a method for analyzing the mechanical
discussed above for E(30). properties of solids, based on normal modes and their cou-
pling to lattice strains. This method was used to study elastic
H. Thermal Expansion of Al-SOD from DFT compression and thermal expansion of silica zeolites and re-
) ] ) . lated materials, with parameters calculated from density
To explore how coupling between vibrations and straingnctional theory(DFT) calculations. We have found in gen-

influences thermal expansion, we now consider Al-SODgrg) that the bulk modulus can be divided into two contribu-
(NagAl6SigO2,Cly)  with anharmonicities computed from igns: g positive term arising from compression without in-

DFT. Though in principle the thermal expansion of Al-SOD terng| relaxation, which we call the sudden elastic response,
depends on several anharmonic terms, in practice the greatgg{q 5 negative term from coupling between compression and
contributions come from terms of the forl'e,”/D; and  internal vibrational modes. For silica polymorphs, the sudden
Eir}(Lj/ZDj)Ei(i?)/Di in Eq. (30). In the temperature range elastic response term varies little among the phases studied,
250-750 K, very good agreement with experimental volumeaking values near 100 GPa because of the intrinsic rigidity
data is seen in Fig. 4. Our calculated value of the thermabf SiO, tetrahedra. In contrast, the latter term varies strongly
expansion coefficient is 3710°° K1, which compares well  from one polymorph to the next, because each polymorph
with the experimental values at 500 K of 3k30° K13  exhibits different symmetry constraints on internal vibrations
and 33.9< 10 K134 The systematic underestimation of and their couplings to lattice strains. Numerical results of
equilibrium volume by 3—-4% evident in Fig. 4 is character-this approach agree well with experiment for the dense silica
istic of the LDA functional. polymorpha-cristobalite. The normal mode theory gives re-

We have not systematically tested the convergence witlgults that agree well with previous DFT calculations for
respect to system size for Al-SOD, and therefore should pusilica zeolite structures SOD, CHA, and LTA. We hope that
fairly large error bars on these thermal expansion resultgshese developments will spawn new experiments to test our
Additional calculations with larger Al-SOD systems would predictions on the mechanical properties of nanostructured
be nearly computationally impossible at present, because thailica.

V. DISCUSSION AND CONCLUDING REMARKS
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We have found that, for a given structure, only a fewfrequency vibrations to soften the elastic respoirissy.,
normal modes influence the bulk modulus. This follows froma-cristobalite and SO and materials with network and
crystallographic symmetries ar)d the stabi'lity of a givensymmetry constraints that preclude such softeniegy.,
phase with respect to small lattice deformations. The modegHA and LTA). When applying the spring-tetrahedron model
that do couple exert strong effects on bulk moduli and thertg sjlica MFI zeolite, we observed a transition between these
mal expansion coefficients. Nonetheless, the fact that mogjyo regimes involving a transformation from low-symmetry
couplings vanish is important for both computational effi-i5 an orthorhombic phase.
ciency and conceptual understanding. With rela_tlvely few | the end we find that the normal mode picture of com-
couplings to compute, our theory can be parametrized from ression and expansion, parametrized by DFT calculations
tractably small number of DFT calculations. In addition, in- 54 e spring-tetrahedron model, provides a powerful new
f’i'gl:tsm'gto tt)hee Clzr;r?ergsz'o%gﬁgliﬁﬁantﬂgnsﬂé??ﬁﬁgga;%{pproach for understanding the mechanical properties of

. may 9 y 9 nanostructured materials. Despite this progress, much future
vibrations that actually couple to strain. .
‘work is suggested by the present study. We plan to develop

When comparing the properties of normal modes in Si - : ) .
SOD and Al-SOD, we found that the more complex chemicalth_e theory of thermal expansion f_or anisotropic solids. We
will also pursue a quantum version of our normal mode

composition, i.e., going from Si-O to SD-Al-Na-Cl, _ ; " _ ;
tends to mix the vibrations. The presence of ionized specig§1€0ry. Treating strain as a slow mode within the adiabatic
Na and Cl appears to stiffen the vibrations. For a given com@pPproximation should yield a simple theory for the bulk
position, structures with lower symmetry generally permit amodulus. However, developing a quantum theory for thermal
larger number of coupled modes, but in such structures th@XPansion remains quite challenging. Finally, we plan to
mixing between soft SiO-Si bending modes and hard O study the phase transition observed in MFI in more detail to
-Si-0 bend and Si- O stretch modes may reduce the effect c;fet_ermine the connection between our calculations and ex-
such couplings. perimental data._ _

We augmented our harmonic theory with a perturbative Note added in proofEquation(7) also shows that our
treatment of anharmonic terms, allowing the calculation oftheory predicts a bulk modulus that does not depend on tem-
the thermal expansion coefficient. The resulting expressioR€rature. Even when accounting for anisotropy and anharmo-
provides a generalization of classical Griineisen theonyicity, the resulting formulas for the bulk modulus do not
wherein phonon frequencies are calculated at different voldepend on temperature either. Experimental data for bulk
umes to obtain the free energy as a function of volume. wenoduli often exhibit very weak temperature dependenmes._
found that Gruneisen theory ignores bilinear couplings belndeed, over the temperature range 300-1800 K, bulk moduli
tween lattice strain and anharmonic vibrations. We have ap?f @-Al;O; and SiC only change by 12.5% and 9.4%,
plied our approach to the thermal expansion of fcc aluminunfespectively?
metal and an aluminosilica sodalite zeolite. In the former
case, we fo_l_md' that our theory reproduces the success of ACKNOWLEDGMENTS
classical Grineisen theory. In the latter case, our approach
gives excellent agreement with experiment, while Griineisen The authors thank the National Science Foundation for
theory accounts for only 22% of the thermal expansion cotheir generous support through a Nanoscale Interdisciplinary
efficient. This result shows that in general, including cou-Research TeartNIRT) grant(CTS-0103010
plings between vibrations and strain will be important for
predictive models of thermal expansion.

To facilitate the parametrization of this normal mode APPENDIX: DERIVATION OF THE ANISOTROPIC BULK
model, we constructed a simplified classical spring- MODULUS, EQ. (12)
tetrahedron model for silica. This is especially useful when I . . I
one wishes to relax symmetry constraints. Our spring- Beglnn_mg.wnh Eq.(8), we write the equnlbnqm volume
tetrahedron model is based on semirigid Si€rahedra con- change singling out thath normal mode according to
nected with flexible springs. After fitting to properties of o
silica sodalite determined from DFT, this model reproduces (AV) = _9 |nj dxg -+~ dx, dly -~ dl,,
experimental cell volumes and predicts bulk moduli of Bip J_.
a-cristobalite and silica zeolites CHA, LTA, and MFI. The ne1 m
spring-tetrahedron model also captures the fact that the sud- xexp - 8| Do+ S Lixil,
den elastic response varies little from one silica polymorph g
to the next.

The spring-tetrahedron model was used to analyze the m m
normal modes of silica zeolite structures SOD, CHA, and + 2 Kij il +P2 lej]

LTA. When comparing with DFT calculations on SOD, we hi'=1 1=t

found that the spring-tetrahedron model generates the correct m

normal modes, and perhaps more remarkably, the model X ex _B[<anﬁ+2|_njxn|j>] (A1)
quantitatively reproduces the couplings of these modes to j=1

lattice strain. We have found that silica polymorphs can be

divided in two categories: structures that allow low- After integrating out thenth normal mode we obtain

i=1
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o0 (9 o0
AV———l dxq - dx,_, dly---dl AV)=———I dly---dl
(AV) Bap nf_x Xy Xr-10lp m (AV) B nf_m 1 m
n-1
xexpy - B (Dx +E L”X,J)+ > Kl xexp| - (E K ity +pEc]]) , (A3)
i=1 = ji'= ji'=
m m 2 where
+pX ¢l; | rexpl (8/4D,) ELnJ i (A2) n
=1 ' ij Lij’
Ko =K =2 ——. (A4)
S ]

This can be evaluated using standard techniques of multidi-
In a fashion analogous to the cubic case, coupling tgnensional Gaussian integration, yielding
mode n effectively reduces the sudden elastice force Bp?
constants fromKj;, to Kj;:=LyjLyj/4D,. However, in <AV>———In exp[ =—(c'K'™ lc)} (A5)
the anisotropic case thé,; couplings become mixed.
After integrating over the remaining normal modes, weBy taking the derivatives and inserting the result into &,

obtain we obtain Eq.(12).
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