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We have investigated various silica zeolites using density functional theory with periodic supercells, plane
waves, and pseudopotentials. These zeolitic phases include silica sodalite, chabazite, mordenite, silica LTA,
and silicalite. Atom-level geometries, elastic properties, and cohesive energies are presented. Although the
zeolites exhibit a wide range of Si-O-Si angles and densities, the cohesive energies remain nearly constant.
The elastic properties vary significantly from one phase to another, and in some cases, large elastic anisotropies
are observed.

I. Introduction

Zeolites are nanoporous crystalline aluminosilicates frequently
used in important chemical industry applications.1 Their proper-
ties are determined by their nanoporous structures, which, in
turn, are determined by the details of crystal growth processes.
It is of great interest to understand the self-assembly and
crystallization of zeolites, with a focus on discovering new ways
to synthesize tailor-made pore structures. This issue is motivated
by recent reports of silicalite crystallization from subcolloidal
particles 3 nm in diameter.2,3 A statistical mechanical model of
these subcolloidal particles requires a general picture of silica
structure and energetics, which we pursue in the present article.
We perform density functional theory (DFT) calculations to
identify essential physical aspects that a reliable model should
include. In particular, we use DFT to compute quantities such
as the bulk cohesive energy and elastic tensor components,
which are useful in parametrizing classical force-field models.

Zeolites are built of a network of corner-sharing TO4

tetrahedra, where T) Si, Al, or other tetrahedrally coordinated
atoms. For computational simplicity, we have investigated
compositions consisting of only SiO2, which avoids uncertainties
regarding the locations of framework Al and charge-compensat-
ing species. In some cases, zeolites can be found with composi-
tions approaching that of pure silica, e.g., silicalite. A remarkable
property of silica is that it can form a number of different
polymorphs, in which the local atomic coordinations are similar
but the global networks formed are different. Zeolites, such as
mordenite and silicalite, have relatively open structures, whereas
naturally occurring polymorphs such as quartz and cristobalite
are more dense. Moreover, the atom-level structure varies greatly
from one polymorph to another. The Si-O-Si angles adopt
values ranging from 140° to 180°, while the densities exhibit a
similarly wide range of values. Therefore, it is interesting to
investigate whether the cohesive energies depend strongly on
the Si-O-Si angle distribution and whether the elastic proper-
ties can be correlated with density. Note that silica also exists
in high-pressure phases that have 6-fold Si coordination, e.g.,
stishovite. Such phases are not investigated here.

The Si-O bonds in zeolites have polar covalent character
(as discussed in ref 4). The atom-level properties of the material
are determined by the bonding interactions between the Si and
O atoms and by the long-ranged electrostatic field set up by
the polarization of the Si-O bond. The properties are sensitive
to the amount of charge transfer from Si to O. In ref 5, it is
shown that rigid ion force-fields do not consistently reproduce
the cohesive energies from one polymorph to the next. Density
functional theory (DFT), which allows for the calculation of
electron charge distributions in a self-consistent fashion, can
however produce the properties of zeolites with high accuracy,
as shown, e.g., in ref 6. The dense polymorphs of silica such as
quartz, cristobalite, and tridymite have been studied extensively
using first-principles methods.7-11 Such results allow us to
carefully benchmark the method, which we then apply to
zeolites. Some earlier first-principles studies have been per-
formed on zeolite polymorphs including sodalite, chabazite, and
mordenite.6,8,11-13 In the present work, we significantly extend
the scope of first-principles calculations on silica polymorphs
in two ways. Our calculations are made over a wider range of
zeolites than has been considered previously, and for each
structure considered, we make careful calculations of the
mechanical properties in addition to the cohesive energy. By
doing this, we establish essential physical ingredients required
in building a model of silica over a wide range of conditions.

The remainder of this paper is organized as follows: In
section II, we discuss the theoretical methods used in this work,
with special attention to the calculation of elastic properties. In
section III, the results for the zeolites are presented. First, a
benchmarking of the method is performed by investigating dense
phases such asR- and â-quartz, R- and â-cristobalite, and
â-tridymite. We then proceed to study the low-density zeolitic
polymorphs, which involve various kinds of nanoporosity. The
zeolitic polymorphs are the main focus of this work; it is of
interest to determine the cohesive energies and mechanical
properties of these synthetic low-density phases from first
principles. In section IV, the cohesive energies of the zeolites
are discussed. These are found to be nearly independent of
structure, despite large variations in local geometry. However,
the elastic properties depend strongly on symmetry and network
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constraints imposed by the crystal structure. In the final section,
we summarize and present closing remarks.

II. Methods

Crystal structures of various zeolites are modeled using the
periodic supercell approach. Total energies are optimized in two
steps. First, internal coordinates of atoms and lattice parameters
are relaxed to obtain an initial structure for more careful
optimizations. Second, to correct for Pulay stress errors (see
below) and to compute elastic tensor components, a series of
calculations is performed in which lattice parameters are varied
in a stepwise fashion while internal coordinates are relaxed for
each set of lattice parameters. The very large MFI structure is
optimized slightly differently. The first step is omitted, and the
stepwise lattice parameter variation begins from the experimental
structure. This is done to avoid an automated calculation of the
stress tensor, which becomes highly computer-intensive for large
structures. In all cases, crystal structures are constrained to the
experimental space group symmetry (see also section II.B).

A. Density Functional Methods.Zeolites are modeled with
density functional theory (DFT) using plane waves and
pseudopotentials.14-16 Calculations are performed using the
VASP (Vienna ab initio simulation package) software developed
at Institüt für Materialphysik, Universita¨t Vienna, Vienna,
Austria.17-19 The electron exchange-correlation potential is
treated within the local density approximation (LDA) based on
Ceperley-Alder data.20 This functional has been found to
accurately reproduce the structural properties of various dense
4-fold-coordinated silica polymorphs when compared to ex-
perimental data, as well as to calculations7 performed using the
generalized gradient GGA-PW-91 functional.21 Below, we
present comparisons between LDA and GGA-PW-91 results for
R- andâ-quartz andR- andâ-cristobalite, as well as for silica
SOD and CHA. The GGA-PW-91 functional has been found
to reproduce the energy difference between stishovite (6-fold
Si) andR-quartz (4-fold Si) more accurately than does LDA.22

Somewhat surprisingly, however, we show below that the GGA-
PW-91 functional overestimates lattice parameters and under-
estimates cohesive energy differences of polymorphs with 4-fold
Si coordination only. This superior performance of LDA for
4-fold Si is in agreement with results reported in ref 7. We report
below that LDA also outperforms GGA-PW-91 for silica SOD
and CHA. Therefore, the LDA functional is used throughout
this work except when otherwise indicated.

Ion cores are modeled using the Vanderbilt-type ultrasoft
pseudopotential included with the VASP software package.23,24

In these potentials, the (2s, 2p) O and (3s, 3p) Si orbitals are
included in the set of explicitly treated valence states. The
normal ultrasoft versions of the pseudopotentials in the VASP
database are used. The Brillouin zone is sampled using
Monkhorst-Pack grids.25 A 3 × 3 × 3 grid is used with quartz
and cristobalite phases; a 3× 3 × 2 grid with tridymite; a 2×
2 × 2 grid with sodalite, chabazite, and LTA; and a 2× 2 ×
1 grid with mordenite; with MFI,Γ-point sampling is used. In
most of the calculations, the plane-wave kinetic energy cutoff
is set to 420 eV. However, with the large MFI structure, the
420 eV cutoff could not be used because of computer memory
constraints. Instead, a cutoff of 380 eV is used. To obtain a
proper reference value for the cohesive energy differences for
both MFI and the other structures, theR-quartz structure was
optimized using both the 380 and 420 eV cutoff. The cohesive
energies were found to be well converged at 380 eV; the error
compared to 420 eV is less than 0.01 eV per SiO2 unit. The
post-convergence 420 eV cutoff is used to reduce spurious Pulay

stresses that stem from the dependence of the plane-wave basis
set on the lattice parameters.26 Use of a larger cutoff value thus
facilitates optimization of lattice parameters. Also, because the
final geometries are obtained by performing a stepwise search
for optimal lattice parameters, the effects of Pulay stresses on
equilibrium structures are eliminated. For electron structure
optimization, the convergence criterion is an energy change of
0.1 meV in total or less; for the internal coordinate optimization,
the criterion is 0.02 meV per atom or less. Typically, this leads
to maximum residual Hellmann-Feynman forces on atoms of
significantly less than 0.1 eV per Å. In the stepwise lattice
parameter optimization, the lattice parameters are varied in steps
of 0.33% of the initial value.

The calculations are performed using PIII workstations and
an Athlon PC cluster. A single-electron structure optimization
cycle for a nine-atomR-quartz unit cell takes approximately
2-3 CPU min on a PIII workstation. The same cycle for a 288-
atom silicalite structure can take 10-20 CPU h using eight
Athlon processors in parallel, and about 10 such cycles are
required to optimize the internal coordinates of the atoms.
However, because these computer resources are shared, these
timings are only approximate.

B. Mechanical Properties.The mechanical properties of the
polymorphs can be described by the elastic tensorC.27 Here,
we use the standard convention where the elastic tensor is
written as a 6× 6 matrix. The strain tensor can then be written
as six-component vectorseb, where the componentse1-3 describe
pure strains ande4-6 describe pure shears. In the limit of small
displacements, the internal energy change∆E per unit volume
V0 at mechanical equilibrium can be written according to
Hooke’s law as

The stress tensorT is also written as a six-component vector
TB, where the componentsT1-3 describe normal stresses andT4-6

describe shear stresses. The stress tensor componentsTj obey
the relation

Because of crystallographic symmetries, elastic tensors typi-
cally have only a few independent components. If the equilib-
rium structure has space group symmetries, the energy, ap-
proximated as eq 1, must remain invariant under those symmetry
transformations. In the case of cubic crystals, the number of
independent componentsCij is reduced to four.

Our goal is to use the elastic tensor data in an auxiliary
fashion to extract the zero-pressure and zero-temperature bulk
modulus. Because we are interested in the bulk modulus at zero
temperature, the thermal fluctuations can be ignored, and the
symmetry of the structure can be constrained to the experimen-
tally observed space group. Imposing the symmetry on the
structure reduces the number of degrees of freedom of the
system and therefore makes the calculation less computer
intensive. This is especially important for zeolites with large
unit cells, such as mordenite and silicalite. Thus, we are
interested only in unit cell deformations that preserve the space
group symmetry of a given polymorph. For consistency, space
group symmetries are imposed for all structures.

The imposed space group symmetry constraints render some
of the elastic tensor components redundant, because in most

∆E/V0 ) 1/2∑
i,j)1

6

Cijeiej (1)

Tj ) ∑
i)1

6

Cijei (2)
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cases the shears can be excluded and some lattice parameters
are constrained to be equal. In the case of quartz and cristobalite,
the a andb lattice parameters are constrained to be equal, so
thate1 ) e2, and therefore, a sum of components (C11 + C12 +
C21 + C22)/2 ) C11

/ is obtained. Such composite values are
denoted by an asterisk (*). In structures with cubic symmetry,
such as sodalite and LTA, there is only one independent lattice
parameter, and in these cases, only the bulk modulus (eq 3) is
extracted.

The elastic tensor components are extracted by varying lattice
parameters and mapping the total energyE. For most structures
studied here, each independent lattice parameter is varied, and
a quadratic fit to the total energy versus lattice parameter data
is performed. Elastic tensor components are then proportional
to the second derivative of the polynomial. The bulk modulus
K is defined as

where the volume change is induced by a uniform pressurep
described by a stress tensorT1-3 ) p, T4-6 ) 0. Assuming that
the shear componentse4-6 are zero due to symmetry constraints,
upon inversion of eq 2, the bulk modulus becomes

Despite the structural and elastic anisotropy present in many
phases of silica, it is computationally more convenient to
estimate bulk moduli by making isotropic volume changes. In
particular, by shrinking and expanding the unit cell by the same
amount in all directions and then recalculating the energy and
hence the bulk modulus through eq 3, one arrives at an isotropic
approximation to the bulk modulus, denotedKi. In this case,
the stress is induced by a uniform volume change described by
the strain tensore1-3 ) dV/3, e4-6 ) 0. The difference in the
values ofK and Ki provides a measure of elastic anisotropy.
Below, we explore the magnitude of error that arises when this
isotropic approximation is made for anisotropic silicates.

III. Results

In the next three subsections, the results obtained for various
polymorphs are presented. In subsection III.A, the properties

of naturally occurring high-density silica phases are computed
for purposes of benchmarking the DFT method, while in
subsection III.B, the zeolitic low-density polymorphs are
investigated. In subsection III.C, the cohesive energies of
different polymorphs are presented.

A. Benchmarking the Method: Dense Polymorphs.To
model the properties of zeolites using DFT methods, one must
decide which exchange-correlation functional to use and also
confirm that the plane-wave cutoff energy andk-point density
are sufficient to obtain accurate results. A convenient way to
do this is to calculate the structural and mechanical properties
of dense silica phases with relatively small unit cells and then
perform a comparison to earlier experimental and theoretical
results. In addition, by calculating the properties of such phases,
a comparison between the properties of zeolites and dense
polymorphs can be made. We performed this benchmarking on
R-quartz,â-quartz,R-cristobalite,â-cristobalite, andâ-tridymite.
Overall, the agreement between our calculations and previously
reported data is excellent for all five dense phases. In what
follows, we detail results for the mechanical properties of
R-quartz andR-cristobalite, because experimental bulk moduli
are readily available for these phases. The remaining details
for all of the dense phases are presented as Supporting
Information.

TheR-quartz structure has a trigonal nine-atom unit cell with
a space group symmetry ofP3221, or equivalentlyP3121. In
this work, we use a hexagonal nine-atom unit cell that is
constrained to this symmetry. Table 1 shows the excellent
agreement between our present results and previous DFT
calculations onR-quartz. The bulk modulus and elastic tensor
components forR-quartz agree well with experimental results
(Table 2). The isotropic approximation overestimates the bulk
modulus by only 1 GPa out of 38 GPa.

R-Cristobalite has a tetragonal unit cell with a space group
symmetry ofP41212. The calculation is performed using 12-
atom unit cells. TheR-cristobalite has the lowest bulk modulus
of all of the structures investigated here. As a technical
consequence of these small bulk moduli, large strains are
required to obtain reliable data because the energy changes by
only a small amount upon compression. However, for larger
strains, the quadratic fit becomes less accurate; instead, we used
a cubic fit to obtain the second derivative at equilibrium. The
elastic tensor ofR-cristobalite is found to be relatively isotropic.

TABLE 1: Lattice Parameters, Si-O Distances (Å), and Si-O-Si Angles and O-Si-O Angles (deg) forr-Quartz and
r-Cristobalitea

a c d(Si-O) Θ(Si-O-Si) Θ(O-Si-O)

R-quartz
this work, LDA 4.89 5.39 1.60, 1.60 143.8 108.5-110.4
this work, PW-91 5.05 5.51 1.61, 1.62 150.5 108.7-110.0
DFT-LDA7 4.8992 5.3832 1.5987, 1.6045 108.8-110.4
DFT-LDA8 4.9541 5.4414 1.6061, 1.6092
DFT-LDA9 4.8756 5.4052
DFT-PW-917 5.0271 5.5089 1.6137, 1.6170 108.4-110.4
Hartree-Fock/6-311G(d)11 4.953 5.426 1.612* 145.3* 109.5*
experiment28 4.916 5.4054 1.605, 1.614 143.7 108.8-110.5
experiment29 4.9134 5.4052 1.608, 1.610 143.6 108.7-110.5

R-cristobalite
this work, LDA 5.01 7.00 1.60 150.3 108.4-111.2
this work, PW-91 5.09 7.21 1.61 154.1 108.3-111.6
DFT-LDA7 4.9751 6.9261 1.5970,1.5991 147.7 108.3-111.1
DFT-LDA8 5.0630 7.0823 1.6037
DFT-LDA9 4.9586 6.9074
DFT-PW-917 5.1190 7.1683 1.6144, 1.6146 154.2 108.7-111.2
Experiment30 4.9717 6.9222 1.603, 1.603 146.5 108.2-111.4

a An asterisk (*) denotes an average.

K ) V0
d2E

dV2|
V)V0

(3)

K ) (∑
i,j)1

3

(C-1)i,j)
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As such, the isotropic approximation overestimates the bulk
modulus ofR-cristobalite by 2 GPa out of 8 GPa.

B. Siliceous Zeolitic Frameworks:33 SOD, CHA, MOR,
LTA, MFI. Next, we return our focus to silica zeolites. The
aim is to investigate how cohesive energies and bulk moduli
depend on densities and bond angle distributions.

I. Silica SOD.Sodalite is an important zeolite because it forms
a building block of more complex materials such as LTA and
FAU.33 Therefore, by investigating the properties of a sodalite
cage, one can gain insights into the behavior of these more
complex and technologically important zeolites. Sodalite has
been studied previously using periodic first-principles calcula-
tions.8,13,34

All-silica sodalite has a highly symmetric body-centered-cubic
structure with 36 atoms per unit cell. The space group of the
structure has been determined to beIm3hm.35 However, in the
experimental setup, the structure contained encapsulated eth-
ylene glycol in the sodalite cages, which might have led to an
expanded high-symmetry structure. Furthermore, small devia-
tions that would reduce the space group toI4h3m have been
observed. Such deviations stem from a relaxation of the O atoms
from (0yy)- to (xyy)-type positions. At low temperatures, below
220 K, this structure was found to relax toward a monoclinic
low-symmetry phase. In bothIm3hm and I4h3m phases, sodalite
has a single set of symmetry-equivalent Si-O-Si angles.

In this work, both the I4h3m and Im3hm structures are
investigated. TheI4h3mstructure is slightly more stable, by 0.002
eV per SiO2. In both structures, all Si-O-Si angles have equal
values because of the space group symmetries. Equilibrium
lattice parameters and structural properties are listed in Table
3. The LDA results are in good agreement with experiment,
whereas the GGA-PW-91 functional produces lattice parameters
that are too large. The behavior of the Si-O-Si angles as a
function of the lattice parameter is shown in Figure 1 for these
two structures. As the unit cell is expanded, the two Si-O-Si
angles approach each other, whereas during compression, the
angle in theI4h3m structure decreases more rapidly. As a result,
theI4h3mstructure is significantly less rigid, with a bulk modulus
of K ) 18 GPa. On the other hand, theIm3hm phase gives a
bulk modulus of 93 GPa. The latter bulk modulus is high
because the symmetry constraints fix the structure into a saddle-
point configuration on the potential energy surface, in which
collective rotation of SiO4 tetrahedra is symmetry forbidden.

The value for theIm3hmphase is somewhat lower than 122 GPa
reported in ref 8. A possible explanation is the difficulty in
obtaining basis set convergence while using norm-conserving
pseudopotentials for O atoms, as was done in ref 8.

These results suggest that the compressedI4h3m structure
could exist as an intermediate-temperature phase before the
transformation to the low-symmetry monoclinic phase takes
place. TheI4h3m sodalite is favored over theIm3hm sodalite at
higher pressures because of its lower bulk modulus, which
allows the structure to become more dense. Such behavior has
indeed been observed in a high-pressure X-ray and neutron
powder diffraction study of silica sodalite containing encapsu-
lated 1,3-dioxolane template molecules.36

2. Silica CHA.Chabazite is an interesting zeolite because it
has a more complicated structure than sodalite and a more open
framework. The difference is that, in chabazite, SiO4 tetrahedra
are linked to form a network with four crystallographically
distinct Si-O-Si angles. Therefore, the response to external
stress is likely to be more complex. Earlier periodic first-
principles calculations of chabazite have been reported in refs
11-13.

All-silica chabazite has a rhombohedral unit cell that contains
36 atoms. The space group symmetry of chabazite isR3hm. The
space group symmetry allows shear distortions as the rhombo-
hedral angleγ is varied. To calculate the equilibrium value of
γ and also to obtain the bulk modulus, the total energy surface
is mapped as a function ofa andγ. At each point, the internal
coordinates are relaxed. The bulk modulus is extracted by
calculating the dE2/d2V along the minimum-energy path on this
surface.

Lattice parameters of the relaxed chabazite structure are in
good agreement with experimental data (Table 4). They are
slightly underestimated with the LDA and slightly overestimated
with the GGA-PW-91 functional. The LDA equilibrium volume
is 778 Å3, whereas the PW-91 value is 806 Å3. This is in
agreement with the DFT-PW-91 value of 807.9 Å3 reported in

TABLE 2: Bulk Moduli ( K) and Isotropic Approximation to
Bulk Moduli ( Ki), as Well as Elastic Tensor Components, of
r-Quartz and r-Cristobalite (in Units of GPa)

K Ki C11
/ C33 C13

R-quartz
this work, LDA 38 39 95 113 11
DFT-LDA10 42.8 102 97 21
experiment31 38.98 97.16 109.19 13.02

R-cristobalite
this work, LDA 8 10 49 39 -12
experiment32 15.95 63.2 42.4 -4.4
experiment30 11.5

TABLE 3: Lattice Parameters and Si-O Distances (Å), O Special Positions (in Internal Coordinates), and Si-O-Si and
O-Si-O Angles (deg) for Sodalite

a d(Si-O) Ox O y Θ(Si-O-Si) Θ(O-Si-O)

this work, LDA, I4h3m 8.83 1.59 -0.0197 0.6466 156.7 109.1-110.1
this work, LDA, Im3hm 8.87 1.59 0 0.6473 159.8 109.1, 110.2
this work, PW-91,I4h3m 8.92 1.62 -0.0261 0.6461 154.7 109.2-110.0
this work, PW-91,Im3hm 8.96 1.61 0 0.6475 159.3 109.0, 110.4
DFT-LDA,8 Im3hm 8.9431 1.6068 0 0.6477 159.6
experiment,35 Im3hm 8.8273 1.586 0 0.6474 110.4

Figure 1. Behavior of Si-O-Si bond angles in theI4h3m and Im3hm
sodalite structures as thea lattice parameter is varied. Vertical lines
denote the equilibrium structures, and the curves are only to guide the
eye.
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ref 12. Our results indicate that the rhombohedral angleγ
remains fairly constant as the lattice parametera is varied. The
Si-O-Si angles show complicated patterns of relaxation as the
unit cell is compressed (Figure 2). One set of bond angles tends
to decrease uniformly, whereas the three other sets behave in a
nonsystematic fashion, suggesting that more complex coordi-
nates are required to understand how chabazite responds to
pressure. The bulk modulus is large, 59 GPa, indicating that
there is no cooperative mode of SiO4 tetrahedra rotation that
would allow an easy path for compression.

3. Silica MOR.Next, we proceed to even more complex
zeolites. In mordenite the SiO4 network forms a structure which
has a wide range of Si-O-Si angles, up to 180 degrees.
Therefore it is interesting to study whether this spread of values
affects the cohesive energy. This zeolite has been studied earlier
by periodic DFT calculations in ref 6.

Mordenite has an orthorhombic unit cell with a framework
space group symmetry ofCmcm, which however might decrease
to Cmc21 because of the effect of extraframework atoms.38 In
this work, a centrosymmetricCmcm72-atom unit cell is used.
With this particular unit cell choice, the lattice parametersa
andb are equal, and the angleγ between them can vary.

The lattice parameters are in good agreement with experi-
mental data (Table 5). However, experimental structures exhibit
a somewhat wider range of Si-O bond lengths than those
observed in this work and in earlier theoretical studies.6

The distribution of Si-O-Si angles in the relaxed structure
is plotted in Figure 3. In comparison, experimental data for
natural mordenite from ref 38, assumingCmcm framework
symmetry, are also presented. The experimental data show a
minimum Si-O-Si angle, of 137.3°, whereas DFT-LDA gives
a lowest value of 144.2°. Also, in the experimental structure,
there is a set of Si-O-Si triplets with an angle of 168.5°
participating in 4-rings, whereas in the DFT-LDA relaxed
structure, these angles have a lower value of 158.9°. These
differences can be explained by the presence of extraframework
H2O molecules in the experimental sample. Furthermore, the
158.9° Si-O-Si angle is highly sensitive to changes in thea
lattice parameter. When the crystal is compressed or expanded
in the soft [100] direction, the 4-ring to which the Si-O-Si
triplets belong shows significant relaxation (Figure 4). Thus, a
small lattice expansion due to hydration in the experimental
setup might lead to the discrepancy. In contrast, when the strain
is applied in the [010] or [001] directions, the Si-O-Si angle
distribution changes by only a small amount.

The elastic tensor of mordenite is highly anisotropic, with
the [100] direction being the softest while the [010] and [001]
directions are more rigid (Table 6). Thus, the value of the bulk
modulus is largely determined by theC11 elastic constant. The
value ofK obtained here is lower than the calculated value of
74.04 GPa reported in ref 6. In that work, the elastic tensor
components were not explicitly calculated; instead, a series of
fixed-volume calculations was performed, which can lead to

TABLE 4: Lattice Parameters a (Å) and γ (deg), Si-O
Bond Lengths (Å), and O-Si-O Angles (deg) for Chabazitea

a γ d(Si-O) Θ(O-Si-O)

this work, LDA 9.22 94.2( 0.7 1.59-1.60 109.0-110.0
this work, PW-91 9.33 94.4( 0.7 1.61-1.62 108.7-110.2
Hartree-Fock/6-31G(d)11 9.319 94.7 1.613* 109.5*
experiment37 9.291 93.9

a An asterisk (*) denotes an average.

Figure 2. Behavior of Si-O-Si angles in chabazite as thea lattice
parameter is varied. Vertical line denotes the equilibrium structure, and
the different curves, only to guide the eye, correspond to different
angles.

TABLE 5: a, c (Å), and γ (deg) Lattice Parameters for the
Centrosymmetric Unit Cell of Mordenite, as Well as Si-O
Bond Lengths (Å) and O-Si-O Angles (deg)

a c γ d(Si-O) Θ(O-Si-O)

this work, LDA 13.6 7.47 97.6( 0.2 1.59-1.60 108.4-110.7
DFT-LDA6 13.674 7.526 97.12 1.596-1.612 108.0-110.9
DFT-PW-916 13.804 7.606 97.18 1.610-1.630 107.7-111.3
experiment38 a 13.678 7.524 97.18 1.587-1.649 105.5-113.0
experiment39 13.537 7.482 96.99 1.583-1.664 104.8-112.9

a Using Cmcmframework symmetry.

Figure 3. Si-O-Si bond angle distribution in mordenite. The
experimental data from ref 38 and results from present calculations
are shown. The peaks have been smeared by performing a convolution
with a Gaussian function to simplify the presentation.

Figure 4. Pattern of relaxation of the 4-rings when mordenite is being
compressed along [100] axis.

TABLE 6: Bulk and Isotropic Moduli, as Well as Elastic
Tensor Components, of Mordenite (in GPa)

K Ki C11 C22 C33 C12 C13 C23

mordenite, LDA 57 72 59 137 206 64 38 34
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errors due to the large elastic anisotropy. This effect is clearly
seen when comparing the bulk modulus (K ) 57 GPa) to the
modulus for isotropic volume change (Ki ) 72 GPa).

4. Silica LTA.The LTA framework consists of connected
sodalite cages in a cubic arrangement.40 High-silica forms of
LTA are known as ZK-4. These have been synthesized with
Si/Al ratios as high as 1.7.41 Here, a hypothetical all-silica LTA
structure with a space group symmetry ofPm3hm is studied. In
our earlier publication, this structure was used as a simplified
model of aluminosilicate LTA.42 Silica LTA has 72 atoms per
unit cell and three sets of symmetry-inequivalent Si-O-Si
angles.

The lattice parameter, Si-O bond lengths, and O-Si-O
angles of the relaxed structure are presented in Table 7. The
framework is constrained by the symmetry so that the Si-O-
Si angles cannot relax easily in a cooperative fashion. This
behavior is shown in Figure 5. Also, the bulk modulus of LTA
is fairly high, 46 GPa.

5. Silica MFI.The most complex zeolite studied in this paper
is siliceous MFI, which has 288-atom unit cell and, as with
mordenite, a wide range of Si-O-Si angles. We are not aware
of an earlier first-principles periodic calculation of MFI zeolite.

The high-silica MFI has different structures, depending on
the temperature and whether the crystal has been calcined.43-45

At high temperatures and in the as-synthesized form, where
tetrapropylammonium (TPA) cations occupy the channel junc-
tions, the crystal has orthorhombicPnmaspace group symmetry.
At low temperatures, a displacive phase transformation into a
monoclinic symmetry takes place.46 Here, the high-temperature
orthorhombic phase of silicalite (siliceous MFI) is investigated.
Lattice parameters and Si-O bond lengths of the relaxed
structure are listed in Table 8. The DFT-LDA calculations agree
well with the experimental data. Distributions of Si-O-Si
angles for the computed and experimental structures are shown
in Figure 6. The two distributions mostly agree. Notably, in

the calculated structure, the majority of the angles are between
142° and 165°, whereas in the experimental structure, the range
is from 145° and 168°, indicating a small shift. In both cases,
some Si-O-Si angles have have values as large as 173-179°.
The internal coordinates of the relaxed asymmetric unit are listed
in the Supporting Information.

The bulk modulus (41 GPa) and the elastic tensor components
of silicalite are listed in Table 9. The structure has anisotropic
elastic properties with the [100] axis being the most rigid and
the [010] axis being the softest. The experimental result for
Young’s modulus, i.e., the ratio of uniaxial stress to uniaxial
strain, is 3-5 GPa in the [100] and [010] directions.47 Our
calculated values are significantly larger: 162 GPa in the [100]
direction and 96 GPa in the [010] direction. The difference might
stem from the high space group symmetry that was assumed in
the calculation, which prevents the collapse of the crystal to a
lower-symmetry structure. Furthermore, the experimental samples
were twinned crystals that might have greater flexibility.

C. Cohesive Energies.Cohesive energies of the different
polymorphs (per SiO2, relative toR-quartz) are listed in Table
10. The values are very small, suggesting that the cohesive
energies of silica zeolites are almost independent of structure

Figure 5. Behavior of Si-O-Si angles in LTA as thea lattice
parameter is varied. The vertical line denotes the equilibrium structure,
and the curves, only to guide the eye, correspond to different angles.

TABLE 7: Lattice Parameter, Si-O Bond Lengths, and
O-Si-O Angles for LTA

a (Å) d(Si-O) (Å) Θ(O-Si-O) (deg)

LTA, LDA 11.9 1.58-1.60 108.7-109.7

TABLE 8: Lattice Parameters (Å), Si-O Bond Lengths (Å),
and O-Si-O Angles (deg) for Orthorhombic MFI

a b c d(Si-O) Θ(O-Si-O)

this work, LDA 20.1 19.9 13.4 1.59-1.61 107.9-110.9
experiment45 20.087 19.894 13.372 1.570-1.601 107.1-111.5

Figure 6. Si-O-Si bond angle distribution in the calcined orthor-
hombic MFI. The experimental data from ref 45 and results from present
calculations are shown. The peaks have been smeared by performing
a convolution with a Gaussian function to simplify the presentation.

TABLE 9: Bulk Modulus K and the Elastic Tensor
Components of Silicalite (in GPa)

K C11 C22 C33 C12 C13 C23

silicalite, LDA 41 179 101 140 -29 29 -2

TABLE 10: Cohesive Energies of the Different Polymorphs
Relative to r-Quartza

cohesive energy
(eV/SiO2)

this work
Si-O-Si angle

distribution (deg)

structure LDA PW-91 experiment LDA PW-91

R-quartz 0 0 143.8 150.5
â-quartz 0.02 0.00 154.0 154.3
R-cristobalite 0.03 -0.03 0.02948 150.3 154.1
â-cristobalite 0.03 -0.04 151.3 152.3
â-tridymite 0.04 180.0
sodaliteI4h3m 0.05 -0.02 156.7 154.7
sodaliteIm3hm 0.05 -0.02 159.8 159.3
chabazite 0.07 0.00 0.118( 0.01649 146.7-152.0 146.8-151.4
mordenite 0.05 144.2-180.0
LTA 0.08 147.2-157.7
silicalite 0.05 0.070( 0.00849 142.7-178.6

a Room-temperature experimental enthalpies of formation (ref 49
and as cited in ref 48) are also listed for some structures.
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and density. The naturally occurring polymorphs,â-quartz,
R-cristobalite, andâ-cristobalite, have slightly lower energies
than do the synthetic low-density phases. Interestingly, the
cohesive energies are almost constant, even for the structures
with very high Si-O-Si angles, such asâ-tridymite, or
structures with broad Si-O-Si angle distributions, such as
mordenite and silicalite. The results also show that the agreement
between the LDA results and experimental data is fairly good,
considering how small the relative cohesive energies are.
However, the GGA-PW-91 appears to underestimate the
cohesive energy differences and even predicts that the most
stable polymorph isâ-cristobalite, rather thanR-quartz. The
origin of this behavior is not clear and needs to be investigated
further.

IV. Discussion

Cohesive energies of the different zeolites and dense poly-
morphs are remarkably independent of the local atomic structure
and, in particular, of the Si-O-Si angle distribution. The Si-O
bond lengths have almost constant values at about 1.6 Å, and
the O-Si-O angles are generally close to the tetrahedral angle
of 109.5°. However, Si-O-Si angles can vary from 140° to
180°, and the densities of the structures vary widely (Table 11).
Some correlation between the density and cohesive energy
appears to be present, as observed earlier both experimentally50

and theoretically.51 For instance, the two least dense polymorphs,
chabazite and LTA, also have the highest cohesive energies.
The reliability of this correlation warrants further investigation.

The bulk moduli of the different polymorphs show no
correlation with density. This can be seen by comparing
polymorphs for which the densities are almost the same, such
as sodalite and mordenite: the bulk moduli differ by a large
factor. Instead, the network and space group symmetry con-
straints in a particular structure play an important role. They
determine whether Si-O-Si angles are free to relax in modes
that involve rotations of SiO4 tetrahedra.52 The effect of
symmetry becomes clear when pairs of structures with the same
network connectivity but with different space groups, such as
I4h3m sodalite andIm3hm sodalite, are found to have very
different bulk moduli. Often, in such cases, one of the
configurations is a saddle-point structure. The bulk modulus
becomes artificially high because of the constraints required to
stabilize this symmetry during energy minimization.

For most structures, the elastic properties are anisotropic. The
softness under uniaxial strain is accompanied by large relax-
ations of Si-O-Si angles, whereas strain along rigid directions
leads to only small relaxation. Such behavior is evident, e.g.,
in mordenite, where large relaxations of the Si-O-Si angles

are observed as the strain is applied along the [100] direction.
To understand the elastic properties and to obtain an accurate
value for the bulk modulus, an explicit calculation of the elastic
tensor components is required. Making the isotropic approxima-
tion gives an estimate of the bulk modulus that is uniformly
higher than the actual bulk modulus, by as much as 30% in our
calculation above.

When external stress is applied, the most important relaxation
mechanism is the change in Si-O-Si angles, whereas the
relaxation of O-Si-O angles or Si-O bond lengths is less
prevalent. The bulk moduli for all the structures are relative
large. This leads to an apparent paradox: why is there a large
energy penalty for deforming the structure of anyparticular
polymorph, even though the cohesive energies of thedifferent
polymorphs that have very different structures are almost equal?
Despite this apparent paradox, the fact remains that a reliable
model of silica must reproduce the following results of our DFT
calculations: (i) cohesive energies should vary little from one
polymorph to the next, and (ii) bulk moduli should be relatively
large and sensitive to network constraints.

In what follows, we speculate on how to build models that
satisfy these criteria. Models vary in complexity. We begin by
discussing simple models and then proceed to more sophisticated
ones. A very simple model of a zeolite is an assembly of corner-
sharing rigid SiO4 tetrahedra. This model can satisfy the criterion
of almost equal cohesive energies. However, it is easy to show
that, with such a model, some phases such asR-cristobalite are
no longer mechanically stable at nonzero pressures because there
exist deformation paths involving only rigid-body rotations and
translations of tetrahedra. This problem can be tackled by adding
an Si-O-Si bond-bending term to the potential energy expres-
sion; we are presently investigating such models. Also, to
account for the full range of bulk moduli for different zeolites
and to avoid overly high values of the bulk modulus, some
flexibility of tetrahedra has to be allowed. These approaches
have similarities to the rigid-unit models used in ref 52.

For modeling subcolloidal silica nanoparticles, which are
often negatively charged under alkaline conditions, atomistic
models are likely required. Typically the Si-O bonding is
modeled by Born-Meyer-type potentials that have short-ranged
repulsion and electrostatic attraction between Si and O. How-
ever, with rigid-ion pair potentials, it is difficult to obtain
accurate cohesive energies, as shown in ref 5. In that work, a
range of both dense and zeolitic polymorphs was modeled using
both rigid-ion and shell model potentials, and a comparison with
experimental structural and cohesive energy data was performed.
The shell models generally gave better agreement with experi-
mental data. Empirical force-field calculations have also been
performed to compute the elastic properties of silica poly-
morphs.53-55 Accurate results can be obtained if experimental
elasticity data are used for parameter fitting. However, it is not
clear whether these force fields can reproduce the cohesive
energies accurately for a wide range of zeolites.

V. Conclusions

Calculations of various silica zeolites using DFT-LDA plane-
wave pseudopotential techniques were performed. The structures
included are silica sodalite, chabazite, mordenite, silica LTA,
and silicalite. Furthermore,R- and â-quartz,R- and â-cristo-
balite, andâ-tridymite were investigated to perform bench-
marking and comparisons. The equilibrium geometries, elastic
properties, and cohesive energies were calculated. The cohesive
energies are almost independent of structure, despite large
variations in the Si-O-Si angle distribution among the different

TABLE 11: Volume per SiO2 Unit (Å 3) in Different Silica
Polymorphs Calculated Using DFT-LDA and DFT-PW-91
Methods

structure LDA PW-91 experimenta

R-quartz 37 41 37.7
â-quartz 40 42 39.4
R-cristobalite 44 47 42.8
â-cristobalite 45 47 45.3
â-tridymite 49 45.9
sodaliteI4h3m 57 59
sodaliteIm3hm 58 60 57.3-57.4
chabazite 65 67 66.5
mordenite 57 58.2, 56.7
LTA 69
silicalite 56 55.6

a Experimental values calculated from the lattice parameters tabulated
above and in the Supporting Information.
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polymorphs. Bulk moduli were found to depend strongly on
network constraints and space group symmetry. These factors
determine whether the Si-O-Si angles can relax in a coopera-
tive fashion to relieve stress. Furthermore, large elastic aniso-
tropy was observed.

Several interesting questions about the electronic structure
in these systems remain to be investigated. For example, it is
of interest to study the extent to which Si-O bond polarization
varies from site to site or from polymorph to polymorph. Further
calculations are required to address such issues.

These results show that, for an empirical potential to be
transferable, it must obey the condition that cohesive energy
differences are small while bulk moduli are large. The results
presented here can be used to test the reliability of such models.
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