Diffusion in Zeolites™*

Jorg Karger! and Sergey Vasenkov?
Fakultat fiir Physik und Geowissenschaften der Universitat Leipzig,
Linnéstrafe 5, D-04103 Leipzig, Germany

Scott M. Auerbach?

Department of Chemistry and Department of Chemical Engineering,
University of Massachusetts, Amherst, MA USA 01003-9336

Abstract

We review the basic ideas underlying diffusion in microporous solids, and
explore recent efforts over the last two decades to measure and model the
dynamics of molecules sorbed in zeolites. We outline the many important
insights that have emerged regarding diffusion in zeolites, while also under-
scoring the fact that much remains unknown. Particularly intriguing are the
persistent discrepancies among different experimental probes of diffusion for
certain zeolite-guest systems. Clarifying the origin of these discrepant diffu-
sion measurements is undoubtedly one of the great challenges of future zeolite
research. The eventual solution is intimately associated with progress in our
understanding of real crystal structures and with our ability to synthesize
sufficiently ideal zeolite crystallites.
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I. GENERAL INTRODUCTION

The dynamical properties of adsorbed molecules play a central role in reactions and sepa-
rations that take place within the cavities of zeolites and other shape-selective, microporous
catalysts. Selectivity may be strongly influenced, e.g., by the diffusivities of reactant and
product molecules. However, with this selectivity comes a price: significant transport resis-
tance. Zeolite scientists are thus interested in better understanding diffusion in zeolites to
optimize the balance between high flux and high selectivity. These interests have resulted
in a burgeoning field of both experimental and theoretical research, which we review in this
chapter.

Although diffusion coefficients for molecular liquids typically fall in the range of 107°—
1078 m? s, diffusivities for molecules in zeolites cover a much larger range, from 107! m?
s~! for benzene in Ca-Y[1] to 107® m? s~! for methane in silicalite-1 [2]. Such a wide range
offers the possibility that diffusion in zeolites, probed by both experiment and simulation,
can provide an important characterization tool complementary to diffraction, NMR, IR,
etc., because diffusive trajectories of molecules in zeolites sample all relevant regions of the
zeolite-guest potential energy surface. We believe that studying diffusion in zeolites can also
provide information about structural defects and disorder in zeolite-guest systems, which
are very difficult to detect by “conventional” characterization methods (see, e.g., chapters 3
and 10 in this Volume).

In addition to the application-oriented reasons for studying diffusion in zeolites, signif-
icant effort has been devoted to revealing the fascinating physical effects that accompany
such diffusion systems, including: molecular nanoconfinement, connected and disconnected
channel systems, ordered and disordered charge distributions, cluster formation, and single-
file diffusion. The experimental and theoretical concepts, presented and illustrated in this
chapter, refer mainly to diffusion in zeolites as the most important example of microporous
materials. In most cases, however, these concepts can easily be transferred to less ordered
or totally amorphous microporous materials as well [3, 4].

We hope that this chapter provides a launching point for scientists new to the field of
diffusion in zeolites. Towards that end, two excellent monographs [5, 6], one collection [7],
and several penetrating reviews have been written that address both the experimental [8, 9]
and theoretical [10-14] issues that arise when studying diffusion in zeolites. To distinguish
this chapter from others that have been written on the subject, we critically review the
most basic ideas in the field, and explore their most recent applications. For example, we
present a critical (and hopefully balanced) comparison between the Fickian and Maxwell-
Stefan formulations of diffusion. The particular subjects we have chosen to discuss in this
chapter necessarily reflect our own interests and experiences in the field; we regret that no
review can be complete.

The remainder of this chapter is organized as follows: in Sec. II we discuss the macro-
scopic phenomenologies used to describe diffusion in zeolites, and in Sec. III we review the
microscopic dynamics that underlie these phenomenologies. In Sec. IV we describe the de-
velopment and application of various experimental methods for probing diffusion in zeolites,
and in Sec. V we outline recent efforts to model the dynamics of molecules sorbed in zeo-
lites. Finally, in Sec. VI we summarize the basic insights gained so far, and give concluding
remarks about important areas of future research.



II. MACROSCOPIC PHENOMENOLOGY OF DIFFUSION IN ZEOLITES
A. Basics of Mass Transfer in Applications of Zeolites

Diffusion is a mass-transfer process in multi-component systems that can be understood
from both microscopic and macroscopic viewpoints. From the microscopic view, diffusion
results from random thermal motion of molecules, which is also known as Brownian motion
or stochastic motion. We treat this microscopic approach in much more detail later in this
chapter; we now focus on the macroscopic phenomenology of diffusion. From the macroscopic
view, diffusion arises from the tendency for each component in a multi-component system
to disperse homogeneously in space — a direct result of the second law of thermodynamics
[15-17]. Diffusion is typically monitored by measuring material flux densities (hereafter
denoted fluxes), defined as the number of molecules passing through a given surface area
per unit time. The fact that such fluxes typically vanish in the absence of concentration
gradients motivates Fick’s first law, which postulates that material fluxes are proportional
to concentration gradients when such gradients are relatively small [17]. Below, we elaborate
on this and other macroscopic formulations of diffusion; before doing so, we comment on
the multi-component nature of diffusion.

Diffusion is inherently a multi-component phenomenon [18]. To see why, we imagine an
extreme case of equilibration of a macroscopic concentration gradient in a single-component
system, namely the expansion of gas into vacuum. At a microscopic level, the particles com-
prising the expanding gas do not move stochastically; rather, they move ballistically, i.e.,
in straight-line trajectories, until collisions with container walls ensue. At a macroscopic
level, expansion into vacuum would better be modeled as flow via the Navier-Stokes equa-
tion [18]. The presence of other components in a homogeneous system, or an adsorbent in
a heterogeneous system, gives rise to collisions that randomize velocities, hence producing
stochastic rather than ballistic motion. Even self diffusion (vide infra) in a single compo-
nent system is best conceptualized macroscopically as the equimolar mixing of tagged and
untagged components, hence a multi-component system.

Zeolite—guest systems are by construction multi-component. In most practical appli-
cations of zeolite-guest systems, the zeolite crystallites are bound to a fixed macroporous
support [19], usually either silica or alumina, thus rendering the zeolite as a non-diffusing
component. As such, it becomes meaningful to consider single-component diffusion in ze-
olites when we keep in mind that we are really talking about a multi-component diffusion
system with one fixed component (zeolite) and another diffusing component (guest). Of
course, practical applications of zeolites involve multi-component sorbed guest phases, as
arise in both separations (components to be separated, e.g., Ny and Os) and reactions (re-
actants and products, e.g., xylene isomers).

The fact that applications of zeolites do not typically involve large zeolite single crystals,
but rather employ supported zeolite crystallites, means that transport through beds of such
supported zeolite particles involves many distinct types of diffusion, including: diffusion on
support surfaces and in support macropores, as well as diffusion on zeolite crystallite surfaces
and in zeolite nanopores (see Fig. 1 in Chapter 25 of this volume). When using zeolites for
separations and catalysis, one hopes for both high selectivity for and high flux of the most
valuable product(s). Unfortunately, high selectivity is usually obtained at the expense of high
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flux, and vice versa. Because disposal and/or recycle of unwanted byproducts can be rather
costly, one often settles for relatively low fluxes if selectivities can be made high enough.
Because selectivities are usually conferred by processes taking place in the intracrystalline
spaces of zeolites, one expects that the (sometimes relatively low) molecular fluxes emanating
from zeolite membranes or beds are also controlled by intracrystalline transport processes.
For this reason, we focus in the present chapter on intracrystalline diffusion of neutral
molecules in dry zeolites. (In chapter 23, Sherry discusses diffusion of ions in zeolites as
it pertains to ion-exchange applications in hydrated zeolites. And in chapter 25, Krishna
discusses “external” transport resistances that generally arise in applications of zeolites.)

The phenomenon of stochastic molecular motion is not limited to non-equilibrium sys-
tems. However, under typical equilibrium conditions, such stochastic motion does not lead
to macroscopically observable fluxes. Diffusion phenomena under equilibrium conditions
therefore only become visible if particles of the same type can be distinguised from each
other. Conventionally, such experiments are carried out with isotopically labeled particles
[15,20,21]. As such, this type of particle movement is generally referred to as tracer diffu-
sion or self diffusion. In the next Section, we explore the basic phenomenologies of these
diffusion processes in zeolites.

B. Transport and Self Diffusion via Fick’s Laws

As discussed above, Fick’s first law postulates that material fluxes are proportional to
concentration gradients when such gradients are small, in the spirit of linear response theory
[22,23]. Such an ansatz can be pursued for single-component as well as multi-component
diffusion in zeolites. For the latter case, Fick’s first law is given by:

Ne
j; = — Z D,-jﬁcj, (21)
j=1

where N is the number of components, {D;;} are the generalized Fickian diffusion co-
efficients, and j; and ﬁci are the flux and local concentration gradient, respectively, of
component i perpendicular to a given surface. Implicit in Eq. (2.1) is the assumption that
the microporous host-guest system is quasi-homogeneous, because the diffusivities are only
labeled by components, and not by particular directions. As a consequence, the volume and
plane elements used for the calculations of ¢; and J:, respectively, must be large in comparison
with the pore separation and small in comparison with the zeolite crystallite size. In addition
to the linear response ansatz, Eq. (2.1) indicates that the flux of component i is influenced
by all the concentration gradients in the system, not just by the concentration gradient of
component 7. Despite the plausibility of Eq. (2.1), Krishna has argued persuasively that
the diffusion coefficients {D;;} are not physically illustrative transport coefficients, i.e., that
D;; does not represent any particular interaction between particles of components 7 and j
[24]. Indeed, we exploit Eq. (2.1) below only for the purpose of elucidating single-component
self and transport diffusion in zeolites. Diffusion of a multi-component mixture of guests in
zeolites is better characterized by the chemical potential-based approaches discussed in Sec.
I1D.



Depending on the experimental situation, the diffusivities in Eq. (2.1) are given various
names. In the simplest case of only one component, Eq. (2.1) becomes:

ji = —D11601. (22)

Being associated with matter transport, the coefficient D;; is generally referred to as the
transport diffusivity. In this chapter, we adopt the notation Dy = Dy, yielding:

J=—DrVe, (2.3)

which is the more usual expression of Fick’s first law. As discussed above in Sec. 1T A,
the concept of single-component diffusion should be considered with great care. Indeed, if
the system were composed of only a single component under the influence of a macroscopic
concentration gradient, then there would also exist an overall pressure gradient as well. Mass
transport in this situation would be characterized better by the macroscopic phenomenology
of flow, than it would by diffusion [18]. As such, implicit in the single-component expression
of Fick’s first law is the presence of another, non-diffusing component such as a zeolite or
some other heterogeneous material. On the other hand, the Maxwell-Stefan formulation
of diffusion in zeolites, which is discussed in Sec. II D, explicity includes the zeolite in its
expressions.

In practice, extracting transport diffusivities from flux measurements through zeolite
membranes is complicated by the fact that experimentalists usually do not measure concen-
trations gradients, but rather they observe macroscopic reservoir properties such as partial
pressures. As a result, experimentalists often report zeolite membrane permeances, P, or
permeability coefficients, P, given respectively by:

J = —PApz (2.4)
A
_— sz, (2.5)

where Z is the transmembrane direction, Ap is the pressure drop across the membrane,
and L is the measured membrane thickness. The permeance is useful when absolute fluxes
are required for a given membrane and pressure drop, while the permeability coefficient is
preferred when comparing properties of different membranes, especially those with different
thicknesses. However, the permeability coefficient is useful in this regard only when fluxes
scale as L~!, which as we see below in Secs. IIC, III B and V B2, is by no means guaranteed.

With two components involved, the diffusivities may pertain to rather different physical
phenomena depending upon the particular experimental setup. For example, in the typical
tracer (or self) diffusion experiment, the properties of components 1 and 2 are essentially
identical [25], with the total concentration ¢; + ¢y kept uniform throughout the system. As
a result, V (¢ + ¢;) = 0, and hence Ve, = —Ve,, yielding:

=

Ji = —D11601 - D126C2
= — (Dll — Dlg) VCl = —stcl, (26)
where Ds = D11 — D14 is defined as the tracer or self-diffusion coefficient. Both the transport

and self-diffusion coefficients are functions of temperature and concentration, which in the
case of self diffusion is the total concentration of both components.



The relationship between transport and self diffusion can be clarified further using Fick’s
first law by analyzing the diffusion modes for a two-component system of identical, but la-
beled particles [26]. In this case the diffusion matrix ({D;;};=12) is asymmetric, and has
two eigenvectors that correspond to the two eigenmodes of diffusion for differently labeled,
identical particles. The first diffusion eigenmode involves components 1 and 2 diffusing to-
gether, with driving forces proportional to their occupancies, so that the labeling of particles
does not affect their transport. This is the so-called co-diffusion eigenmode, and corresponds
precisely to transport diffusion. The second eigenmode corresponds to equimolar counter-
diffusion, where Jp is equal and opposite to J, at constant total loading. The resulting
diffusivity for the counter-diffusion eigenmode is exactly the self-diffusion coefficient. As
such, the transport and self-diffusion coefficients arise simply from Fick’s first law, as two
eigenvalues of the diffusion matrix for a two-component system of differently labeled, iden-
tical particles.

By combining Egs. (2.3) and (2.6) with the law of matter conservation given by:

de _
dt

=

V- J (2.7)

the time dependencies of the intracrystalline concentrations due to transport and self diffu-
sion are given by:

dc - -
—=V- (DTvc) (2.8)
and
dc*
= DsV%¢* 2.
dt SV c, ( 9)

respectively, where ¢* indicates the concentration of labeled molecules. The general form
of Egs. (2.8) and (2.9) is referred to as the diffusion equation, and also as Fick’s second
law. (In Sec. IV A1, we discuss the interpretation of experimental reaction-diffusion data
by augmenting the diffusion equation with terms that model reactivity.) The slightly more
complex structure of Eq. (2.8) in comparison with Eq. (2.9) is caused by the fact that trans-
port diffusion experiments are carried out under non-uniform concentration conditions, so
that D1 — being generally a function of concentration — must remain within the parenthe-
ses in Eq. (2.8). By contrast, in self-diffusion experiments the total concentration remains
constant. Since it is this total concentration (and not the concentration ¢* of only the labeled
molecules), on which the self diffusivity depends, Dg in Eq. (2.9) may be placed in front of
the differential operator V.

An important example where Eq. (2.8) reduces to the form of Eq. (2.9) involves diffu-
sion in Langmuirian host-guest systems. Such systems involve regular lattices of identical
sorption sites where particle—particle interactions are ignored, except for exclusion of multi-
ple site occupancy. These model systems exhibit Langmuir adsorption isotherms, and give
single-component transport diffusivities that are independent of loading [27]. As a result,
the Langmuirian transport diffusivity can be pulled to the left of the differential operator in
Eq. (2.8), hence reducing to the form of Eq. (2.9).



Solving Eq. (2.9) gives the time dependence of the concentration of labeled molecules;
the initial condition is dictated either by convenience or by experimental circumstances.
Solving for ¢*(,t) with the initial condition ¢*(7,t = 0) = §[7 — 7(0)] gives a quantity that
is proportional to the probability density of the displacements of labeled molecules, i.e., to
the conditional probability that a molecule is at 7 at time ¢ given that it was at 7(0) at time
zero. This probability density is given by:

1 Lo
P(Ft) = ——— ¢ T O /4Dst 2.10
(7, t) (4rDs1)" (2.10)

Armed with this probability distribution, also known as the propagator [5], the mean square
displacement after time ¢ becomes:

(|7(t) — 7(0)*) = 6Dst. (2.11)

Equation (2.11) is known as the Einstein equation; as with Eq. (2.9), the Einstein equation
can be considered as the defining equation of the self-diffusion coefficient. As with Eq. (2.1),
the Einstein equation above assumes a quasi-homogenous host-guest system. Because many
zeolites involve spatially inhomogeneous frameworks, e.g. MFI-type zeolites, it is often more
illustrative to resolve displacements along x-, y- and z-directions according to:

(Ira(t) = ra(0)[*) = 2Dgt, (2.12)

where a = z, y or z, and Dg = (D§ + D§ + D%)/3. The self-diffusion coefficient for
homogeneous systems satisfies Ds = D§ = D§ = DZ. It remains interesting to explore the
extent to which different zeolite-guest systems produce self-diffusion coefficients that deviate
from homogeneity.

Below in Secs. IV and V we describe various experimental and theoretical methods for
studying the time dependencies of local concentrations and mean square displacements of
molecules in zeolites, for the purpose of describing intracrystalline diffusion coefficients. De-
spite this focus on diffusion coefficients, application-oriented zeolite scientists are generally
more interested in quantifying material fluxes through zeolite beds or membranes. While
such fluxes can be influenced by intracrystalline diffusion coefficients, other factors may
also play important roles. In particular, when zeolite particles are relatively small, and
when zeolite membranes are relatively thin, fluxes can be controlled by rates of desorp-
tion from zeolites. In the next Section, we analyze the limiting cases of diffusion-limited
and desorption-limited transport, to reveal which fundamental processes ultimately control
permeation through zeolites.

C. Desorption-limited vs. Diffusion-limited Fluxes

For the following analysis we assume the simplest possible model [28], namely a Lang-
murian host-guest system, which involves a regular lattice of identical sorption sites where
particle—particle interactions are ignored, except for exclusion of multiple site occupancy.
Although corrections to this model change the precise magnitudes of fluxes, the qualitative



conclusions we draw remain unchanged [29]. In order to explore how desorption rates influ-
ence permeation fluxes, we consider transport through a perfect zeolite membrane that has
a thickness of L+1 sites from the top edge to the bottom edge. The model membrane is
shown in Figs. la—c¢ below. Adsorption sites are represented by squares in Figs. 1la—c, while
particles are shown as circles. For this diffusion system, it is more convenient to quantify
concentrations using the concept of fractional occupancy (also known as loading), defined
by @ = N/Nites < 1, where N is the number of sorbed molecules and Ng;es is the total

number of sorption sites. A Langmuirian host-guest system at equilibrium with external
fluid reservoirs will have an equilibrium sorption isotherm of the form:

1
1+ k’d / I/’
where the equilibrium fractional occupancy, 04, is uniform throughout the membrane. kq
is the rate coefficient for desorption, via thermally activated hops of a molecule located in
an edge site to the fluid phase; v is the rate of insertion attempts of molecules from the
fluid phase into each exposed sorption site at the edges of the zeolite; and kunop is the rate
coefficient for site-to-site jumps within the membrane. The fundamental diffusion coefficient
for this problem (vide infra) is given by Dy = knopa®, where a is the site-to-site jump distance.
D, is the single-component transport diffusivity, as well as the low-loading limit of the self
diffusivity. In what follows we set a = 1, which is tantamount to giving membrane thicknesses
in units of a.

Case 1. Below we consider three different situations, each depicted in Figs. la—c. The
first and simplest case, shown in Fig. 1a, involves transport diffusion through the membrane
into vacuum, i.e., the rate of insertion attempts on the vacuum side vanishes. Our goal is
to determine a formula for the steady-state flux as a function of k4, v, Dy and L. For the
following discussion, we express flux as number of particles passing per time per edge site.
To obtain this flux, we write down formulas for the fluxes at the high pressure side, Jy, in
the interior of the membrane, J;, and at the low pressure side, Jp, all as functions of (kq,
v, Dy, L) as well as the average edge concentrations (6y, 61). By applying the steady-state
constraints, Jy = J; and J; = Jg, we solve the resulting 2x2 linear system for (6, 01) to
cast the steady-state flux in terms of the desired quantities.

Figure la suggests that Jy, J; and Jy, satisfy:

J() = I/(l — (90) — kd00

J; = —Dy (GL ; 90) (2.14)

Oeq = (2.13)

Jr, = kqOr.
Equating the fluxes in Eq. (2.14) gives the following steady-state flux:
g vkqDy _ k4Oeq Do
kaL(v + kq) + Do(v + 2kq)  kqL + Do(2 — Oeq)’
where the second equality comes from substituting 6o = v/(v + kq), which is the loading

of the corresponding equilibrium system with both reservoirs presenting insertion attempt
frequencies of v.

(2.15)



We consider the different limiting forms of Eq. (2.15) by first noting that, because 2 — feq
is always of order unity, the denominator is controlled by the relative magnitudes of k4L
and Dy. In the limit where k4L > Dy, Eq. (2.15) reduces to:

_ Dobeyq 0 — by
J=—7 = D0< - ) (2.16)

where 6, and 0, are the edge concentrations assuming local thermodynamic equilibrium.
In the present case, fy = 0o, and f; = 0. In this limit diffusion through the membrane
is much slower than desorption from the edges, so that transport through the membrane
is diffusion-limited. Since the flux scales with L', the permeability coefficient P in this
limit is independent of membrane thickness, as is desired. We also note that in diffusion-
limited transport, the flux is directly proportional to the intracrystalline diffusion coefficient,
justifying the intense effort to quantify this property.

Inherent in this analysis is the assumption of a fixed, finite jump length between adjacent
sites. In the limit where this jump length vanishes while the membrane thickness remains
constant, we have that L — oo and hence kqL > D,, which again produces the diffusion-
limited case [30]. This situation is best described by the (differential) diffusion equation,
Eq. (2.8).

In the opposite limit, where kgL < Dy, Eq. (2.15) now reduces to:

0
J=k « 2.17
. (2_%), (2.17)

which is the desorption-limited extreme because the flux is proportional to the desorption
rate, kq, and is totally independent of the intracrystalline diffusion coefficient. Equation
(2.17) reduces simply to kq when 6, = 1. In desorption-limited transport, which applies
to thin membranes (and by extension to small zeolite particles as well), the concentration
is essentially uniform throughout the membrane, and the flux is independent of membrane
thickness. As such, the desorption-limited permeability coefficient is proportional to the
membrane thickness, L, rather than being independent of L.

The most important message from this analysis is that zeolite scientists should endeavor
to determine whether their systems fall into the diffusion-limited or desorption-limited
regime, to ensure that the more important property is being studied (i.e. Dy vs. kq), and
that proper comparisons are being made (viz. L-dependence of P). In practice, real systems
often fall between these two extremes, giving transport that depends upon both diffusion
and desorption.

Case 2. In the second case, depicted in Fig. 1b, we consider transport diffusion from high
pressure to low (but nonvanishing) pressure. This problem is very similar to that in Case
1 except that in Case 2, the two reservoirs in contact with the membrane present different
insertion attempt frequencies, namely vy and vy, with vy > v;. The flux expressions for J
and J; are unchanged except that for Jy, v is replaced by vy. The flux J;, now becomes k46,
— vr(1 — 61). The resulting steady-state flux, expressed in terms of local thermodynamic
equilibrium concentrations 6, and 8, is given by:

_ kaDyo (B — 01)
kaL+ Dy (2 -0y —01)

(2.18)
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This expression reduces to that found in Case 1 by setting 0, to zero. Although we argued in
Case 1 that (2—6,) is always of order unity, and hence need not be considered in comparing
kqL with Dy, now in Case 2 we find that (2 — 6y — ;) is not always of order unity, especially
when both insertion attempt frequencies are relatively high. As a result, this concentration-
dependent factor must be included when discriminating between different limits.

The diffusion-limited form of Eq. (2.18), which arises when kgL > Dy(2 — 6y — 0;), is

given by:
0, — 0
J:_DO< LL "), (2.19)

which again is Fick’s first law under conditions of local thermodynamic equilibrium of the
edge concentrations. In the opposite limit of desorption-limited transport, Eq. (2.18) reduces

to:
0o — 01,
J=Fky | 2 —"L ). 2.20

d<2—90—eL> (2.20)

Again the desorption-limited flux scales with k4, and is independent of Dy and L. As
with Case 1, Equation (2.20) reduces to kg when 6, = 1. Equation (2.20) appears to have a
pathological limit, however, when both 6, #;, — 1. In this case the driving force for diffusion
vanishes; as a result so should the flux. Indeed, Eq. (2.20) does vanish when 8, = 0, —
1, but that is not the only way to evaluate the limit. Alternatively, we might consider the
case where §, = 1 while §;, — 1. In this case the flux does not vanish, but instead becomes
k4, a seemingly incongruous result. The conundrum is solved when we recall that in this
limit, the system again becomes diffusion-limited because kqL >> Dy(2 — 6y — 01), even if
the membrane is very thin.

We summarize the main conclusions regarding diffusion vs. desorption control of trans-
port diffusion. Membrane transport is diffusion-limited when kqL > Dy(2 — 6y — 6;), which
reduces to kgL > D, under typical circumstances when driving forces are high. Membrane
transport becomes desorption-limited when kgL < Dy(2—6,—0y,), which is especially impor-
tant for thin membranes and for small zeolite particles. In this case permeability coefficients
from membranes with different thicknesses are no longer comparable.

Case 3. In the third case, depicted in Fig. 1c, we consider equimolar counter-diffusion
of identical but labeled particles, i.e. tracer counter-permeation (TCP). As discussed above,
such counter-diffusion of tagged particles (denoted A—particles) and untagged particles (B—
particles) is isomorphic to self diffusion. Here we derive the steady-state counter-flux of
one of the two components; the other component produces equal and opposite flux. The
fundamental flux expressions for .Jy, J; and J;, are essentially identical to those in Case 2,
except that insertion rates are sensitive to the presence of both components at the edges. As
such, vy(1—0y) — vo(1—07) and v, (1—61) — v, (1—07), where 67 is the total concentration
of both components, which is uniform throughout the membrane. By the symmetry of TCP,
Or = 05(2) + 0p(2) = 0a(2) + Oa(L —2) = [1+ ka/(vo +v1)] ", where z labels the location
along the transmembrane direction.

The only other change from Case 2 to the present one is that Dy is replaced by the
self-diffusion coefficient, Dg, which depends upon 1 in a non-trivial way. For the present

11



Langmuirian system, Dg generally decreases with 61 because blocking sites decreases the
likelihood of counter-diffusion. Many other dependencies can arise for more complicated
systems. Karger and Pfeifer have reported the five most common ways that Dg is found
experimentally to depend on @ for diffusion in zeolites [31], which have also been seen in
simulations (vide infra) [32,33].

The steady-state TCP flux of labeled particles is given by:

_ Ds(l - HT)(VO - I/L) .

J 2.21
kaL + 2Dsg ( )
In diffusion-limited TCP, where k4L > Ds, Eq. (2.21) reduces to:
Ds(]_ - QT)(Z/O - I/L) gL - 0_()
= =-D 2.22
J de S I ) ( )

where once again §, and f;, are the edge concentrations consistent with local thermodynamic
equilibrium. Desorption-limited TCP arises when kqL < Dsg; in this case Eq. (2.21) reduces
to:

J=(1-07)(vy—vL)/2 = kq(By — 01)/2. (2.23)

As in both previous desorption-limited cases, the desorption-limited TCP flux is propor-
tional to k4, and is independent of both the membrane thickness and the relevant diffusion
coefficient (in this case Ds).

The results in this Section have been obtained with very few assumptions, most notably
Fick’s first law, which provides a useful approach for studying single-component transport
through Langmuirian adsorbents. Despite the obvious power of Fick’s formulation, it can
also break down in surprisingly simple circumstances, such as a closed system consisting of
a liquid in contact with its equilibrium vapor. In this case, Fick’s law predicts a non-zero
macroscopic flux because of the concentration gradient at the vapor-liquid interface. The
fact that no macroscopic flux is observed suggests that the real driving force for diffusion
is not the concentration gradient, but rather is the chemical potential gradient, which van-
ishes for this equilibrium two-phase system. Other curiosities can result from the Fickian
treatment of multi-component systems, such as negative Fickian diffusivities [24]. Vari-
ous transport phenomenologies have been developed based on chemical potential gradients;
below we review the theories of Maxwell, Stefan and Onsager.

D. Phenomenologies Based on Chemical Potential Gradients

Maxwell-Stefan Formulation. What we presently call the Maxwell-Stefan formula-
tion of diffusion was developed independently by Maxwell in 1866 and by Stefan in 1871
[24,34,35]. In chapter 25, Krishna discusses this phenomenology and its application to dif-
fusion in zeolites. Because understanding this formulation is important for many of the ideas
below, we briefly review the Maxwell-Stefan picture of diffusion (see also Ref. [24] for the
complete story). For pedagogical reasons, we first develop the Maxwell-Stefan formulation
for bulk systems; then we consider its application for surface diffusion as occurs in zeolites.
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Because the Fickian formulation discussed above in Secs. II B and II C tacitly assumes the
presence of the zeolite, we compare below Fickian diffusivities with Maxwell-Stefan surface
diffusivities.

The Maxwell-Stefan formulation is especially useful when considering transport in multi-
component, multi-phase systems, which is to say most industrially important circumstances.
Indeed, the simplest system amenable to the Maxwell-Stefan formulation is a two-component
bulk fluid, which again points to the fundamentally multi-component nature of diffusion. In
the standard Maxwell-Stefan picture, it is assumed that the n-component fluid under study
has no net gradient in the total concentration. The presence of a net macroscopic (molar
averaged) velocity is not ruled out; diffusive fluxes are defined relative to this net velocity so
that the total diffusive fluxz vanishes. Clearly the Fickian ansatz lacks this constraint, which
makes the Fickian approach appear to be the more natural treatment of zeolite membrane
permeation. In these experiments, the observables of interest are the permselectivities and
the (hopefully non-vanishing) total diffusive flux, all measured relative to the zeolite bed or
membrane. However, we show below the ingenious way that the Maxwell-Stefan approach
manages to treat single-component diffusion in zeolites, while still providing the definitive
treatment of multi-component diffusion in zeolites.

We begin by writing down the Maxwell-Stefan ansatz for a two-component bulk fluid with
a vanishing total diffusive flux. By equating the driving force for diffusion of component 1
(i.e., —ﬁ,ul) with the frictional drag exerted by component 2, the macroscopic velocity of
component 1 relative to that for component 2 satisfies [24]:

—Vu, = RT (“T%S”) , (2.24)
where R is the gas constant, 7" the temperature, x5 the mole fraction of component 2, v; the
macroscropic velocity of component 4, and D is defined as the Maxwell-Stefan diffusion
coefficient. Equation (2.24) suggests that the relative velocity of a particular component is
linearly proportional to its chemical potential gradient; as such the Maxwell-Stefan ansatz
involves linear response theory in much the same way as the Fick ansatz in Eq. (2.1).
However, whereas the Fick formulation focuses on calculating fluxes, the Maxwell-Stefan
picture focuses on balancing forces. In the Maxwell-Stefan approach, the frictional drag
exerted by component 2 is assumed to be proportional to the mole fraction of component
2, with a proportionality coefficient given by the friction coefficient RT/DMS. Although the
Maxwell-Stefan approach is still phenomenological, it seems to reveal the essential physics
of multi-component diffusion in ways that the Fickian approach cannot.

To treat surface diffusion, while still constraining the total diffusive flux to vanish, the
Maxwell-Stefan equations are augmented by one additional component representing the
adsorbent. However, since diffusive fluxes are measured relative to the adsorbent, the latter
cannot contribute diffusive flux to balance the permeant fluxes. This problem is solved
by realizing that whenever a molecule jumps, a vacancy makes a counter-balancing jump.
Thus, the additional component in the Maxwell-Stefan treatment of surface diffusion is
vacant sorption sites. As discussed in Sec. IIC, it is more convenient in surface diffusion
problems to express concentrations through fractional occupancies. In terms of these, the
Maxwell-Stefan ansatz for a two-component sorbed phase takes the form:
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—Vu = RT6, (LMS”?) + RT0,s <%) , (2.25)

D 12 ® D 1,vasc
where 0, = 1—60,—05 is the vacancy loading, and v, is the macroscopic vacancy velocity.
In Eq. (2.25), D% is the Maxwell-Stefan surface counter-diffusivity (note the augmented
superscript) and D}% is the single-component Maxwell-Stefan surface diffusivity for com-
ponent 1. This picture is attractive in its ability to disentangle the zeolite-guest; and
guesti-guest; interactions that determine D%f:c, from the cross-component, guest;-guests

forces that determine D%, In the simple case of single-component diffusion in zeolites, Eq.
(2.25) reduces to:

Vi = R0 (UlDT;)SV) . (2.26)
1,vac

Despite the beauty of the vacancy-based Maxwell-Stefan picture of surface diffusion, ze-
olite scientists need a formulation that allows the calculation of non-vanishing total diffusive
fluxes for comparison with permeation measurements. To arrive at such a Maxwell-Stefan
picture, the additional component must be the zeolite itself, whose macroscopic velocity
Upeo 1S taken to be zero. While this seems to make good conceptual sense, it also implies
that 6., in Egs. (2.25) and (2.26) should be replaced by 6,e,, which itself does not make
much physical sense. This issue is swept under the rug by defining a new single-component
Maxwell-Stefan surface diffusivity according to:

DMSS
DS = 01— (2.27)
zZeo

Considering that the fractional occupancies {6;} were originally derived from mole fractions
{z;} in the Maxwell-Stefan formulation for bulk fluids, and that the mole fraction of zeolite
is likely to be nearly constant and relatively close to unity, the arbitrariness of the definition
in Eq. (2.27) is not too disturbing.

Now we compare the single-component Fickian transport diffusivity defined in Eq. (2.3)
with the single-component Maxwell-Stefan surface diffusivity defined in Eq. (2.27). We
begin by expresssing the chemical potential gradient of component 1 in terms of its loading
gradient and fugacity on the left-hand-side of Eq. (2.26). Furthermore, we multiply both
sides by 6;/RT, and after simple algebra we identify the right-hand-side as Ji [cs DMSS

1,vac?
where J; is the diffusive flux of component 1 and ¢g is the number of moles of sorption sites
per unit volume. Putting these results together yields:

Ji = — DY TV0, = ~DYS Ve, (2.28)
where ¢; = ¢:f; is the local concentration of component 1. In Eq. (2.28), T' is a “thermo-
dynamic correction factor” given by I' = (0ln f;/01n6;)7, where f; is the local fugacity of
component 1. Comparing Eq. (2.28) with Eqgs. (2.2) and (2.3) shows the relation between
the Fickian transport and Maxwell-Stefan surface diffusivities, namely that:

Dy = DYST. (2.29)

1,vac
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This result shows that the transport and Maxwell-Stefan surface diffusivities agree for ther-
modynamically ideal systems, i.e., those for which f; o« #; and hence I' = 1.

Equation (2.29) has been interpreted as suggesting that the Fickian diffusivity actu-
ally represents a composite of both legitimate transport effects and thermodynamic effects.
This perspective is buoyed by the diffusive properties of bulk fluids, which tend to produce
Maxwell-Stefan diffusivities with extremely mild concentration dependencies [24]. Because
the thermodynamic correction factors can have rather strong concentration dependencies,
which are conferred to the Fickian diffusivities, the Maxwell-Stefan bulk diffusivities are
rightly trumpeted as the proper bulk transport coefficients because they are not corrupted
by thermodynamically-induced concentration dependencies. This viewpoint has even been
carried over to diffusion in zeolites, because for zeolite-guest systems with relatively weak
confinement (e.g., methane in silicalite [36]), the single-component Maxwell-Stefan surface
diffusivity can also exhibit a rather weak loading dependence. For this reason, the single-
component Maxwell-Stefan surface diffusivity is often reported as the “corrected diffusivity”
[5, 37], because it has been corrected by removing the thermodynamic effects. In this context,
Eq. (2.29) is sometimes called the Darken equation [5].

However, we do not need to remind the reader that most interesting applications of
zeolites involve rather strong confinement, where the fundamental mechanism of transport
involves infrequent jumps between well-defined sorption sites. As discussed above, the sim-
plest model to describe such strong confinement is the Langmuirian model, for which it is
the Fickian transport diffusivity that contains no loading dependence (D = Dy) [27], while
' takes the form 1/(1 — 6;). As such, the Langmuirian Maxwell-Stefan surface diffusivity
is given by Di\fvséfc = Dy(1 — 6;). In this case, one might regard the Fickian diffusivity as
the “corrected diffusivity,” because the loading dependence of D%fvsjc can be removed by
multiplying by I". Hence, the designation “corrected diffusivity” depends on the physics of
the zeolite-guest system.

Below in Sec. IIT A, we will argue that the (1—6;) loading dependence of D} is identical
to the loading dependence predicted for the Langmuirian self-diffusion coefficient by mean
field theory. This similarity between Dg and D%?VS;C has prompted some researchers to use
an approximate form of the Darken equation, also called the Darken equation for maximum
confusion, where the Maxwell-Stefan surface diffusivity is replaced by the self diffusivity.
When applied to Langmuirian systems, this approximation actually puts in correlations (see
Sec. ITI B) that do not belong. A much better context in which to apply this approximation is
for weakly confined diffusion in zeolites, for which D% is nearly independent of loading, so
that one can replace D%f{fjc by the infinite-dilution limit of Ds. This perspective is supported
by molecular dynamics simulations performed by Maginn et al. [36], and by Skoulidas and
Sholl [38].

The Maxwell-Stefan diffusion equations for a general n-component sorbed phase can be
recast through matrix algebra into the (nxn) Fickian form of Eq. (2.1). Although these
manipulations do not shed much more light on the problem, they show in practice that
negative Fickian diffusivities can arise from a positive-definite set of Maxwell-Stefan surface
diffusivities [24], which casts doubt on the meaningfulness of the multi-component Fickian
formulation. What is perhaps more interesting is the fact that, through the Maxwell-Stefan
formulation, measured multi-component sorption kinetics have been predicted from data

on single-component sorption kinetics and multi-component sorption isotherms [24, 39, 40].
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Using this approach, one predicts that the faster diffusing component is generally slowed
down to the mobility of the slower diffusing component. Measured deviations from this
prediction usually indicate diffusion at grain boundaries, which facilitate unexpectedly rapid
motion [41,42] (see also Chapter 19 by Tsapatsis in this Volume).

These predictions of multi-component sorption kinetics have been facilitated by Krishna’s
suggestion to estimate cross-component Maxwell-Stefan surface diffusivities according to the
following empirical relation [43]:

Dy = [Dy5i (6 = 0)]%/ O+ DI (6; = 0)] %5/t (2.30)
Equation (2.30) generalizes the empirical relation, first proposed by Vignes [44] to describe
multi-component diffusion in bulk liquid mixtures, for the case of surface diffusion. Paschek
and Krishna tested Eq. (2.30) by comparing transport coefficients obtained from kinetic
Monte Carlo (see Sec. VB2) to those obtained from Maxwell-Stefan theory assuming Eq.
(2.30) [45]. Although excellent agreement was found, the sensitivity of this agreement to
the assumed form of D%\J/-[SS was not tested. As such, it remains to be seen whether this
empirical formula embodies the extent to which actual cross-component interactions perturb
the dynamics (e.g., barrier crossings) of multi-component surface diffusion.

In summary then, the analyses in Secs. IIC and IID suggest that the Fickian formu-
lation provides a powerful description of single-component diffusion in zeolites, especially
for Langmuirian zeolite-guest systems; while the Maxwell-Stefan formulation is preferred for
multi-component diffusion in zeolites, by virtue of the empirical relation Eq. (2.30). Because
both formulations involve linear constitutive relations between driving forces and fluxes, all
this analysis begs the question whether diffusion in zeolites proceeds outside of the linear
response regime. The fact that zeolite membranes and crystallites used in experiments and
applications tend to be relatively large on a molecular scale may convert relatively large
pressure drops into relatively small concentration and chemical potential gradients, thus
keeping diffusion in zeolites in the linear response regime. As zeolite scientists explore the
use of thinner zeolite membranes and smaller zeolite crystallites, for the purpose of reducing
or eliminating transport bottlenecks that arise in catalytic applications [46,47], the question
of whether diffusion in zeolites still proceeds in the linear response regime will have to be
explored with more rigor.

Onsager Formulation. Yet another formulation of multi-component surface diffusion
exists, due to Onsager [48], which blends many of the virtues of the Fickian and Maxwell-
Stefan approaches [5]. In particular, as with the Maxwell-Stefan approach, the Onsager
formulation postulates that diffusive fluxes in a multi-component system are linearly pro-
portional to chemical potential gradients. And, as with the Fickian approach, Onsager’s
picture focuses on calculating fluxes and not on balancing forces. The Onsager ansatz takes
the form:

Nc
Ti= =319, 31)
j=1

where {L};} are the Onsager coefficients for surface diffusion, which are postulated by micro-
scopic reversibility [49] to obey the “reciprocity relations” L3; = L3;. By again expressing the
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chemical potential gradients in terms of concentration gradients, the Onsager coefficients can
be related to both Fickian and Maxwell-Stefan surface diffusivities. For the case of single-
component diffusion in zeolites, one finds that Dy = RTL3,T'/c;, which implies that D}5s,
= RT3, /c¢;. For the multi-component case, one finds that the Onsager and Maxwell-Stefan
surface diffusivities are related through a simple matrix relation [34]. Through this relation
one can deduce that the Maxwell-Stefan cross-component surface diffusivities, {D%ISS , also
obey reciprocity: D}}®® = D}{%. The real virtue of the Onsager coefficients is that they
are related to microscopic dynamical quantities through Green-Kubo correlation function

expressions, as discussed below in Sec. 111 C.

III. MICROSCOPIC UNDERPINNINGS OF DIFFUSION IN ZEOLITES

The macroscopic treatments of diffusion discussed above serve the following purposes:
(1) given that diffusivities are provided from other sources, macroscopic diffusion theories
can predict the transport properties of zeolite-guest systems; (i7) given that the transport
properties of a particular zeolite-guest system are known, the relevant diffusivities can be
extracted by interpreting the transport behavior in light of a macroscopic diffusion theory.
Such theories, however, cannot predict diffusivities a priori. Zeolite scientists are generally
interested in predicting the temperature, loading and composition dependencies of diffu-
sivities, as well as their overall magnitudes, for various zeolite-guest systems. Microscopic
approaches that contain information about stochastic molecular motion in zeolites are re-
quired for making such predictions. Below we review the basic microscopic underpinnings
— the statistics and dynamics — that control diffusion in zeolites.

A. Stochastic Motion and Jump Diffusion

Diffusive motion in zeolites arises from collisions with the environment (zeolite and other
guests) that cause the direction of motion to become randomized. Although such stochastic
motion is fundamentally smooth and continuous on the relatively short time scales considered
by molecular dynamics [11], on the longer time scales associated with diffusion, stochastic
motion can be modeled as jumps chosen randomly in accord with prescribed probabilities.
Such approaches are called jump diffusion models [10,12,14], which provide simple pictures
of diffusion that turn out to be remarkably relevant to diffusion in zeolites. As will be
discussed in detail below in Sec. VB 1, jump diffusion models assume that molecules spend
relatively long periods of time vibrating in well-defined sorption sites (e.g., zeolite cages),
with jumps between sites themselves taking negligible time. Below we explore simple jump
diffusion models to reveal the basic temperature and loading dependencies expected for
diffusion in zeolites.

We begin by considering the simplest class of lattices in d-dimensional space, namely
cartesian Langmuirian lattices (see also Sec. II B), which form linear, square or cubic sets
of identical sorption sites. Such systems ignore particle-particle interactions, except for
exclusion of multiple site occupancy. These lattices give Langmuir sorption isotherms and
single-component transport diffusivities that are independent of loading [27]. The two-
dimensional case is pictured in Fig. la—c, each with nearest neighbor sites separated by
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the length a. The probability to make a particular site-to-site jump is 1/2d, because the
coordination number for each site in d-dimensional space is 2d, and each of the 2d possible
jumps occurs with the same fundamental rate coefficient, kyop.-

As discussed above in Sec. II B, the mean square displacement (MSD) provides a measure
of the spatial extent of self diffusion as a function of time. After n jumps of a single random
walker, the MSD for the d-dimensional lattice can be written as:

() = (|37 ) = () + (3505 ) 1)
i=1 i=1 i

Here l: is the displacement vector for the random jump at the i*" step, which is averaged in
(- - -) according to the Bernoulli distribution [16,50]. In Eq. (3.1) we have used the fact that
the term with ¢ # j vanishes when jumps are completely uncorrelated from one another.

The result in Eq. (3.1) is independent of dimensionality, and indeed, holds for any regular
lattice in any dimension consisting of only one site type and one jump length scale, e.g.,
the tetrahedral lattice. When expressed as an explicit function of time, however, the MSD
does depend on dimensionality as well as lattice topology. To see why, we assume that the
average jump time is 7, i.e., that n = t/7. Equation (3.1) then becomes (R?(t)) = a*t/T,
which shows that in normal diffusion the MSD is proportional to time. This should be
contrasted to ballistic motion where the MSD is proportional to t2. The inverse of the mean
site residence time, 77!, is the total rate of leaving a site, which for cartesian Langmuirian
lattices is given by 2dky, because there are 2d identical ways to leave each site. Recalling the
Einstein equation which defines the self-diffusion coefficient in one- and three-dimensions,
namely Eqgs. (2.11) and (2.12), we have that (R*(t)) = 2dDst = 2d(knopa?)t, which shows
that Ds = knopa® for cartesian Langmuirian lattices. This is a truly remarkable result,
showing how the self-diffusion coefficient can be reduced to fundamental length and time
scales. We will show below in III B that when local correlations arise, the MSD retains its
proportionality with time, but when global correlations become important, e.g., in single-file
diffusion, the MSD becomes proportional to t/2 [9, 51].

We will show below in Sec. ITI C that the Maxwell-Stefan and self-diffusion coefficients are
identical at infinite dilution for single-component diffusion on surfaces [36]. We have already
shown above in Sec. IID that the Maxwell-Stefan and Fickian diffusion coefficients agree
at infinite dilution. As such, all three diffusion coefficients take the form khopa2 at infinite
dilution for cartesian Langmuirian lattices. We now explore the temperature dependence
of this expression. Because the length scale @ has little temperature dependence until the
zeolite melts, we focus on kyep. According to transition state theory [10,12,14], we have:

T
KIST = [“’Q(W) .eAsm/kB] ¢ BABD), (3.2)

where T is temperature, kg is Boltzmann’s constant, 8 = 1/kgT, w(T) is the temperature-
dependent site vibrational frequency, AS(T) is the temperature-dependent activation en-
tropy, and AE(T) is the temperature-dependent activation energy. When considering a
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broad temperature range including temperatures for which SAE(T) > 1, the Boltzmann
factor in Eq. (3.2) dominates the temperature dependence of kyop, rendering the factor in
brackets an apparent pre-exponential constant usually denoted by the apparent frequency,
v. In this case the three diffusivities exhibit an Arrhenius temperature dependence taking
the form Dye #P=, where Dy = va® and E, is an apparent activation energy.

On the other hand, when BAE(T) S 1, the temperature dependence of the pre-
exponential factor can become important. In this case the resulting temperature dependence
of the diffusivities is not obvious, and can depend strongly on the details of the zeolite-guest
system. Other temperature dependencies can also arise for diffusion in zeolites when the
site lattice contains different types of sites, e.g., cation sites and window sites [52]. In
this case the competition among different mechanisms of cage-to-cage motion can produce
non-Arrhenius behavior, even when the fundamental site-to-site rate coefficients obey the
Arrhenius temperature dependence [53-55].

The analysis above assumes diffusion at infinite dilution, with only a single molecule in
the zeolite. In Sec. II D, we discussed the loading dependence of the transport and Maxwell-
Stefan diffusivities for Langmuirian lattices. Now we estimate the loading dependence of the
self-diffusion coefficient. In general this is not easy, even for Langmuirian systems, because
of correlations and their dependence on site topology. A simple esimate can be provided by
mean field theory [23]|, which considers the average environment surrounding each random
walker. Using mean field theory we obtain Dg(6) = Ds(0)(1—6) = kpopa®(1—6). The factor
(1—0) is the fraction of jump attempts that are successful because they are directed towards
vacancies. Although this mean field theory estimate can be semiquantitative when each site
is connected to several nearest neighbors (e.g., > 6) [56], it can exhibit significant error for
lattices with low connectivity, e.g., those used to model diffusion in MFI-type zeolites [57].

In summary, we have used a simple lattice model to reveal the fundamental consequences
of stochastic motion, in an effort to explore the basic temperature and loading dependencies
that can be expected for self diffusion in zeolites. These results hold for diffusion in most
microporous materials, as well as diffusion on two-dimensional surfaces such as metals [58].
However, the results in this Section were obtained by completely ignoring the complications
due to correlations. In the next Section, we discuss three different kinds of correlations, and
their impact on diffusion in zeolites.

B. Correlations and Single-file Diffusion

Kinetic Correlations. Diffusion in zeolites can be influenced by correlations that arise
from kinetic effects, geometrical effects and vacancy effects [5, 55]. Kinetic correlations arise
from the inertial tendency towards ballistic molecular motion, i.e., Newton’s first law applied
to zeolite science: a guest molecule moving in a zeolite will tend to move freely until it is
forced to do otherwise. Including kinetic correlations generally increases the MSD; indeed,
when kinetic correlations dominate motion, the MSD becomes proportional to t2. In this
situation the macroscopic phenomenology changes from diffusion to flow. When diffusion
is perturbed only slightly by kinetic correlations, such effects serve to increase the diffusion
coefficient. In the context of the cartesian Langmuirian models discussed above in Sec. IIT A,
kinetic correlations are manifested through “multi-site” jumps, i.e., jumps that begin and
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end at sites other than nearest neighbors. One can show that the self-diffusion coefficient
for a cartesian Langmuirian model with multi-site jumps becomes [58]:

2
a’ — — — — 2
Ds = - > nop (1o — 110) |17t — 1 ”, (3.3)

Mo

where the sum is over all lattice sites indexed by the integers m, excluding the reference
site g, and {knop(o — M)} are the multi-site jump rate coefficients. Ignoring multi-site
jumps reduces Eq. (3.3) back to Ds = knopa?, where kyop is the nearest-neighbor jump rate
coefficient. Including multi-site jumps clearly increases the self-diffusion coefficient. The
convergence properties of this sum are revealed by defining m = | — miy|. By the isotropy
of space present in cartesian Langmuirian models, the summand in Eq. (3.3) depends only
on m. For large m, the degeneracy in m scales with m?!, where d is the dimension of
space. As such, to retain the phenomenology of diffusion, the multi-site rate coefficients
must decay faster than 1/m?"2. In practice, we expect multi-site jumps in zeolites to gain
importance at high temperatures and low loadings, where molecular energy dissipation is
relatively inefficient. Moreover, multi-site jumps should be more prevalent in channel-type
zeolites [b4,55] than in cage-type zeolites [59], because channels are more conducive to
ballistic trajectories.

Geometric Correlations. Kinetic and vacancy correlations can influence diffusion in
zeolites, as well as diffusion in a wide variety of other homogeneous and heterogeneous sys-
tems. Geometrical correlations, on the other hand, pertain especially to zeolites as well as
any other anisotropic microporous host. In the language of jump diffusion models, geomet-
rical correlations arise when the sum of jump vectors from a given site does not vanish.
As such, the lattices we have considered thus far in this chapter typically do not exhibit
such correlations. Chabazite provides an interesting exception to this rule; diffusion in this
zeolite can exhibit geometrical correlations even when jump vectors cancel.[60] Geometrical
correlations can arise for other reasons as well, as Diffusion in MFI-type zeolites provides
the prototypical example of geometrical correlations. A schematic of the MFI framework
topology is shown in Fig. 2. In this Figure, we see that the jumps from each straight channel
site (C) cancel, as do the jumps from each zig-zag channel site (Z); thus these sites present
no geometrical correlation. The jumps from each intersection site (I), on the other hand, do
not cancel and thus do present geometrical correlations. Because of this diffusion anisotropy,
Kérger has suggested the benefit of studying the individual cartesian components of the self
diffusivity — DE, DY and D% — whose average is the overall self-diffusion coefficient. In-
deed, assuming that subsequent jumps from channel intersections are uncorrelated in time,
Kérger derived the following geometrical correlation rule:

a? b c?
ﬁ + ﬁ = ﬁ’ (34)

S S S
where a, b and c are the lattice constants along the z-, y- and z-directions, respectively
[61,62]. While this simple correlation rule was found to be in reasonable agreement with
numerous molecular dynamics simulations [63-66], from experimental studies, the only con-
clusion that could be drawn is that the measurements are not inconsistent with the correla-

tion rule [67, 68].
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Geometrical correlations can also be important for diffusion in zeolites with cubic unit
cells, especially in cation-containing zeolites [55]. In these cases, molecules can jump away
from but not into cations, hence producing geometrical correlations. Jousse et al. have
shown that ignoring geometrical correlations can result in overestimating self diffusivities
by an order of magnitude for benzene in Na-Y, and can change the qualitative loading
dependence as well [55].

Vacancy Correlations. In 1951, Bardeen and Herring noted that atom diffusion in
non-porous solids (e.g., metals) proceeds with self-diffusion coefficients that are reduced by
vacancy correlations [69]. This effect is analogous to kinetic correlations, but opposite in
sign, since an atom in a metal has a larger probability to move backward to the site it just
vacated than it does to move onward. A completely analogous effect gains importance for
diffusion in zeolites at high loadings. Figure 3 schematically depicts a site-to-site jump in a
zeolite cage at high loading, which leaves behind a vacancy, i.e., produces particle-vacancy
exchange. Subsequent jumps are more likely to fill this vacancy, thus producing correlations
that reduce self diffusivities. Since mean field theory ignores correlations, these vacancy
effects give self diffusivities lower than mean field theory estimates. The loading dependence
of self diffusivities is thus written as:

Ds(0) = Ds(0)(1 - 0)£(0), (3-5)

where f(f) < 1 is the so-called correlation factor. Since Bardeen and Herring’s seminal
work, a large body of research has been devoted to calculating correlation factors for a
variety of lattice geometries using theory and Monte Carlo simulations [70]. Although no
generally applicable, closed-form expression exists, results have been obtained for a number
of different Langmuirian lattices [71, 72]. Here we give the flavor of how correlation factors
can be estimated.

The simplest approach for estimating correlation factors comes from the Maxwell-Stefan
formulation of tracer diffusion on surfaces [24,73], involving equimolar counter-diffusion
of two identical but labeled species (see also Fig. 1c for an illustration of tracer counter-
permeation). The self-diffusion coefficient from the Maxwell-Stefan approach takes the form:

1
T /DY 4 0/D

1,vac

Ds(6) (3.6)

where 0 = 0, + 0, is the total loading, and DM is the Maxwell-Stefan surface diffusivity
that controls the facility of exchange between labeled and unlabeled particles. Such exchange
is related to vacancy correlations, as we shall illustrate by considering the Langmuirian
transport model, where D%f:c = Dy(1 — 6). Multiplying the top and bottom of Eq. (3.6) by

D} shows that the Maxwell-Stefan correlation factor can be written as:

1
- 14+ (DMSS /D%Ss) 0

1,vac

f(6) (3.7)

In the limit where DY}/ D)% — oo, the correlation factor approaches unity, indicating that
facile exchange washes out vacancy correlations. Along these lines, Nelson and Auerbach

have reported simulations of tracer counter-permeation in anisotropic zeolite membranes,
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which show that vacancy correlations vanish when transport in the plane of the membrane
is fast compared to transmembrane diffusion [28]. Such in-plane transport provides a con-
ceptual picture for the mechanism of identical particle exchange.

For finite values of DM the correlation factor in Eq. (3.7) is less than one as desired.
Unfortunately, no theory exists for estimating the loading dependence of D} for tracer
diffusion. Indeed, application of Eq. (2.30) gives DY = D, which yields f(8) = 1/[1 +
6(1—6)], predicting erroneously that vacancy correlations vanish as § — 1. In the absence of
theoretical foundation, Paschek and Krishna suggest a practical approach [73], namely that
D15 = D)%%, which in essence equates the rate of particle-vacancy exchange with that of
particle-particle exchange. Although the physical validity of this assumption is questionable,
the resulting correlation factor, f(#) = 1/(1+6), gives remarkably good agreement with the
results of kinetic Monte Carlo simulations [73].

One can also estimate the role of vacancy correlations using statistical mechanics. We
begin by recalling the general formula for the MSD given in Eq. (3.1); the second term, with
1 # j, contains the correlations we seek to understand. To obtain the self diffusivity in the
form of Eq. (3.5), we factor out the first term in Eq. (3.1), which gives uncorrelated MSDs

proportional to Dg(0)(1 — €). As such, the correlation factor becomes:

s =102 (i) 30 (0T) 5

i=1 j>i i=1
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where in Eq. (3.8) we have exploited the fact that the off-diagonal sum contains two identical

- =

copies of every i # j combination. Equation (3.9) arises by viewing the quantity <l,— . lj>
as an equilibrium correlation function [5,23,57], which depends only on i—j. As such, the

off-diagonal sum in the numerator gives (n—k+1) terms equal to <f1 : l;> for each value of

—

k, while the denominator gives n identical terms equal to <l; . ll>. In the long-time limit

required by diffusion, where n — co, the third term in Eq. (3.10) is of order 1 compared to
the second term, and as such is ignored. The second term in Eq. (3.10) (without the factor
of 2) was identified by Coppens et al. as a correlation function-type expression, denoted
Ch,, which describes the persistence of correlations as a function of time [57]. The sequence
C,, converges to a finite value for large n, denoted C,,, which is negative when vacancy
correlations dominate. The correlation factor is thus given as f(f) = 1 + 2C.

Coppens et al. studied the convergence of C,, to C, for various lattice topologies and
loadings by performing kinetic Monte Carlo simulations (vide infra) [57], observing three
interesting results: first, correlation factors are smaller for lattices with lower connectivities,
especially for the MFT lattice which has an average connectivity of Z = g despite its three-
dimensional structure (Z = 6 for simple cubic). Second, the more poorly connected lattices
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exhibit slower convergence of C, to C, suggesting longer correlation lengths and times
for such systems. Third, for a given lattice topology, the normalized correlation function,
C,,/Cs, could be fitted to the stretched-exponential 1—e~[(»=1)/7l" "where n, and v depend
on the lattice topology but were found to be independent of loading, hence providing a
universal characteristic of each lattice type.

Although evaluating Eq. (3.10) analytically remains challenging in general, progress can
be made by assuming the Langmuirian model described above. In this case, C, reduces to:

-1

Co= S (0-) (T =0 (0B /(0T

3

k=2 k=1
— — (cosBy) — (cosb)™

= Or) = 6y)F = LT - 11
k_l(cos k) ;(cos 1) 1= (cosfy) (3.11)

where 6 is defined as the angle between the jump vector l: and Z_;_HC, which implies that 6; is
the angle between successive jump vectors for a given molecule. For lattices with sufficient
symmetry, one can show that {cos ;) = (cos0;)* [5], as has been assumed in Eq. (3.11). To
obtain the correlation factor, f(f) = 1 + 2C,, we note that because |{cos;)| < 1, (cos ;)"
vanishes in the limit n — oo. We thus obtain the classical expression for the correlation
factor:

1+ (cosby)
f0) == (cos )’ (3.12)
Equation (3.12) deserves several remarks: first, this result shows that vacancy correlations
in simple lattices result from correlations between successive hops only. Second, the loading
dependence of the correlation factor arises from the loading dependence contained in (cos 6, ).
Third, if kinetic correlations dominate (at low loadings), then {(cos#;) is positive which
increases the self diffusivity from the mean field estimate. Next, when (cosf;) is negative,
which is expected at higher loadings when vacancy correlations are important, the correlation
factor is indeed less than 1. In practice, the quantity (cos#;) can be evaluated from Monte
Carlo simulations or with simple probabilistic arguments [74].

Single-File Diffusion. The correlation function approach of Coppens et al. shows
that vacancy effects can be associated with finite correlation lengths, which grow when
considering lattices with smaller connectivities. Vacancy correlations take on a whole new
demeanor in single-file self diffusion, where molecules can only diffuse in one dimension and
cannot move past one another [9]. In this case the correlation length becomes macroscopic,
which changes the phenomenology of diffusion. In particular, one can show that the MSD
becomes proportional to t'/2 for single-file diffusion in infinitely long files [51,75-77]. It
is interesting to note that the propagator characterizing molecular displacements during
single-file diffusion remains Gaussian [78], even though the time-dependence of the second
moment of this propagator (i.e., the MSD) deviates from that found in normal diffusion.

The prediction of single-file diffusion has spurred great interest in observing experimen-
tally the signature and consequences of single-file diffusion in zeolites, culminating in two re-
ports of ethane single-file diffusion in AIPO4-5 by pulsed field gradient (PFG) NMR [79, 80].
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Despite these reports, some controversy remains because of quasi-elastic neutron scatter-
ing data consistent with normal diffusion for this same system [81]. (These experimental
methods are discussed below in Sec. IV.) The neutron scattering data for cyclopropane
in AIPO4-5 did show the single-file diffusion signature, but only for sufficiently high cyclo-
propane loadings so that guest-guest collisions were likely on the experimental time scale.

Complicating the unambiguous identification of single-file diffusion are (at least) two
phenomena occurring on widely different time scales. First, although particle exchange may
be unlikely, experimental observation on the time scales of such exchange may obfuscate or
even eliminate the t'/2 signature of single-file diffusion [82, 83]. Second, real zeolite single files
are finite in length, which introduces the possibility of a new, “compound” diffusion mode
that becomes important on the time scale for vacancies to permeate through the single file
[82, 84, 85]. For times shorter than the vacancy diffusion time, i.e., t < t. = L?/m Dy where L
is the file length, particle transport proceeds via the non-Fickian, single-file diffusion mode,
with mean square displacements increasing with the square-root of time. For times longer
than t., however, Nelson and Auerbach have shown that self diffusion in single-file systems
is completely described by Fick’s laws, except that the “Fickian” self-diffusion coefficient
depends on file length according to [85]:

Dofrk2L
(]_ — HT)Z/L(I/L + 2D0) - QD()HT]{)d,

where the parameters (kq,v,07) pertain to tracer counter-permeation (TCP) as shown in
Fig. 1c above. Equation (3.13) was obtained by analyzing steady-state TCP fluxes under
single-file conditions, and was verified by open-system kinetic Monte Carlo simulations (see
Sec. VB 2). When single-file transport is diffusion limited, i.e. for large L, Eq. (3.13) reduces
to [82,85]:

lim DSF = 7D0(1 _ HT)

3.14
L—oo LHT ’ ( )

which was originally derived by Hahn and Kérger [82]. Equation (3.14) shows that the corre-
lation factor for finite single files is given by f() = 1/L#, thus unifying vacancy correlations
with single-file diffusion. The L-dependence of this correlation factor also shows the seeds
of the t'/? signature of single-file diffusion, namely that dividing the diffusivity by L in a
diffusion problem is essentially the same as dividing the linear time-dependence of the MSD
by t'/2.

Nelson and Auerbach found that the fraction of time in the single-file diffusion mode
scales inversely with file length for long files, suggesting that Fickian self diffusion domi-
nates transport in longer single-file zeolites. They predicted that the cross-over time be-
tween (medium time) single-file diffusion and (long time) Fickian diffusion is just above the
experimental window for PFG NMR experiments, suggesting that longer-time PFG NMR
would observe this transition.

We close this Section by discussing another type of correlation that has been predicted
to arise in single-file systems, involving correlated cluster dynamics where instead of imag-
ining molecules jumping one at a time, instead they are predicted to jump together [86].
Several characteristics of the zeolite-guest system must conspire for this mechanism to gain
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importance. In particular, the guests must feel sufficient guest-guest attractions, the lattice
of sites for an individual guest must be such that many guests cannot simultaneously fill
different sites without crowding, and finally, the guests must be constrained to diffuse in one
dimension. Assuming these all hold, Sholl and Fichthorn found that activation energies for
these cluster jumps are strongly size dependent and are lower than the barriers for monomer
diffusion.

Having now discussed the various types of correlations that can arise for diffusion in zeo-
lites, we now discuss the most powerful way to quantify such effects, and indeed the diffusion
coefficients themselves, through the use of statistical mechanical correlation functions.

C. Correlation Functions

The relationships between transport coefficients and correlation functions are made ex-
plicit by using linear response theory and the fluctuation-dissipation theorem [23], which
in turn are motivated by Onsager’s regression hypothesis [48]. This hypothesis, first ar-
ticulated in 1931, asserts that correlations between spontaneous equilibrium fluctuations
decay according to the same phenomenology (e.g., the diffusion equation or facsimile) as
do externally induced non-equilibrium disturbances. This relationship, between equilibrium
fluctuations and non-equilibrium relaxation, only holds strictly when the non-equilibrium
disturbances are relatively small, since spontaneous equilibrium fluctuations are themselves
very small in macroscopic systems. The interested reader is referred to the authoritative
sources on correlation functions [87, 88], and also to the lucid review on correlation functions
as they pertain to diffusion in zeolites, by Theodorou et al. [10]. To feign completeness, we
review below the ideas most relevant for understanding how correlation functions can shed
light on diffusion in zeolites.

Self Diffusion. We begin by rewriting the Einstein equation, which serves to define
the self-diffusion coefficient, in an effort to express Ds in terms of a correlation function.
Following Chandler’s approach [23], we write the classical MSD as:

¢ ¢
() = (i) - 0F) = { [ atate)- [ataey). (3.15)
0 0
t
where in the last equality we have exploited the fact that [7(¢) — 7(0)] = / dt'v(t"), where

0
¥(t) is the velocity of the tagged particle at time ¢. Next we differentiate the Einstein
equation with respect to time, and divide by 6, to obtain:

Dg = é li i </0 dtlﬁ(t') /0 dt"U(t")> _ % lim <1—)’(t) ; [f’(t) _ 7:’(0)]) (3.16)

t—oo dt t—o00

- é lim (5(0) - [F(0) — F(—1)]) = / dt (#(0) - #(1)) = /O T E0) - 7). (3.17)
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The last equality in Eq. (3.16) comes from differentiating the square using the fundamental
theorem of calculus; the first equality in Eq. (3.17) arises from the stationarity property
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of equilibrium correlation functions [23]; the final equality in Eq. (3.17) is valid because
by stationarity, equilibrium autocorrelation functions are even functions of time. We have
thus arrived at a so-called Green-Kubo formula, which relates a transport coefficient to an
integrated (velocity) autocorrelation function (VACF).

In practice, using the final result in Eq. (3.17) is only really useful when studying stochas-
tic molecular motion in the absence of large energy barriers, e.g., in bulk fluids or very weakly
confining zeolite-guest systems. For strongly confined zeolite-guest systems, with large en-
ergy barriers separating sorption sites, Eq. (3.17) is much less useful because velocity corre-
lations typically decay well before rare jump events occur. When relatively large barriers are
present, the VACF reveals vibrational information, which can be understood by comparing
the Green-Kubo relation in Eq. (3.17) to the so-called vibrational power spectrum, G(w),
given as:

Glw) = %i: O“Ddt§§%§%§g%%%%e“ﬁ, (3.18)

where w is the vibrational frequency. Comparing Eqs. (3.17) and (3.18) shows that using
the integrated VACF to calculate the self diffusivity for a trapped particle will reveal instead
the low-frequency vibrations of the trapped guest molecule.

We gain some insight into the physical origins of the Maxwell-Stefan formulation by
supposing that the VACF decays exponentially according to the functional form (see Fig.
4):

3kgT
= —ce

—nt/m 3.19
- , (3.19)

where m is the particle mass and 7 is a friction coefficient describing the drag felt by the
particle from its environment. Indeed, the exponential relaxation posited in Eq. (3.19) arises
from the phenomenology of friction. The pre-exponential factor results from the second
moment of the Maxwell-Boltzmann distribution. Plugging this VACF into the Green-Kubo
formula gives Ds = kgT'/n, or alternatively for the friction coefficient n = kgT'/ Ds, which is
the basic physical assumption in the Maxwell-Stefan picture of diffusion. This may explain
why the Maxwell-Stefan formulation is so natural for describing diffusion in bulk fluids and
in weakly confined zeolite-guest systems, where the phenomenology of friction works best.

The assumption of simple exponential relaxation considered above breaks down at both
short and long times. At long times, the VACF is found to decay as t~%? in d-dimensional
space, which implies by further analysis that diffusion as a phenomenology is invalid in
two-dimensions [88]. At short times, simple exponential decay ignores the molecularity of
dense fluids, where backscattering on picosecond time scales produces negative lobes and
subsequent oscillations in the VACF, as shown in Fig. 4. A simple VACF expression to
account for this short-time effect is given by:

_ 3kgT

—mt/m t 3.20
o cos(wt), (3.20)

(@(0) - 9(1))

where m and 7 are the same as before, and w is an effective vibrational frequency in the
fluid. The resulting self-diffusion coefficient takes the form:
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Dg = (kBT) ( n/m (3.21)

m n/m)? + w?’

In the limit where several vibrations are required to produce velocity relaxation, i.e., w >
n/m, the self-diffusion coefficient reduces to Ds = kgTn/(mw)?, which is now quite different
from the Maxwell-Stefan-type expression. As is typical with constitutive relations, the
phenomenology associated with the Maxwell-Stefan formulation [cf. Eq. (2.24)] is consistent
with long-time dynamics, but breaks down for shorter-time phenomena.

When considering self diffusion at finite loadings, one might tag a particular guest
molecule and evaluate Eq. (3.17) from its center-of-mass VACF. Instead, one might uti-
lize all the statistics available from this many-body system according to:

D= > / "t (5(0) - 5.(0) (3.22)

where N is the number of molecules and #;(t) is the velocity of the i*® molecule at time ¢.
This form will be useful for comparison with other diffusivities below.

Transport Diffusion. The above analysis demonstrates the power of correlation func-
tions to elucidate the dynamics underlying self diffusion. What’s really impressive is the
ability of correlation functions to shed light on transport diffusion of both single-component
(36, 38,89-92] and multi-component systems in zeolites [93,94]. In particular, one can use

linear response theory [95] to show that the single-component Onsager coefficient takes the
form [87]:

I = ﬁ /0 "t (70)- 7). (3.23)

where V is the system volume and J| (t) is the spatially averaged, collective flux of the sorbed
phase at time ¢, given by:

J(t) = Zﬁi(t). (3.24)

Substituting Eq. (3.24) into Eq. (3.23) gives:

Iy = so >y | at@o)- 5, (3.25)

which shows that transport diffusion arises from velocity correlations between different
molecules. Recalling the relation between L7, and the single-component Maxwell-Stefan
surface diffusivity, DM = RTLS,/ci, we obtain for DM

1,vac 1,vac*
o0

i DI I AACIOR) (3.26)

i=1 j=1
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This last result deserves several remarks. First, as with self diffusion, using the velocity cor-
relation function in Eq. (3.26) to evaluate diffusivities is practical only for systems confined
by relatively small barriers. Second, in the limit of low loading where correlations between
different particles are unlikely, the second term in Eqgs. (3.27) and (3.28) can be ignored,
hence confirming our assertion above in Sec. III A that the self diffusivity and Maxwell-Stefan
surface diffusivity agree at infinite dilution [36]. Third, the fact that D}%» can be expressed
through such a correlation function, arising purely from dynamics, gives further credence to
the idea that D35 is a “proper” transport coefficient, while the Fickian diffusivity involves
a composite of transport and thermodynamics.

The same steps that relate Dg to the VACF can be reversed for D)5 to give the following

1,vac
mean collective displacement:

A >3 (A0 = RN - 5O (3.29)

i=1 j=1

This expression is useful in numerical simulations for both fluid motion and jump diffusion,
which can be modeled with molecular dynamics and kinetic Monte Carlo, respectively (we
discuss these simulation methods below in Sec. V). However, despite the versatility of Eq.
(3.29), its evaluatation is complicated relative to that for self diffusion for two reasons. First,
as opposed to the MSD which averages a quantity that is either positive or zero, the col-
lective displacements that are averaged in Eq. (3.29) can be negative, which can complicate
statistical convergence. Second, further complicating the statistics is the fact that, whereas
for self diffusion all molecules contribute separate statistics, here for collective motion the
entire system contributes one batch of statistics. In general, these challenges arise from the
common origin that Eq. (3.29) attempts to describe non-equilibrium relaxation by averaging
spontaneous equilibrium fluctuations, which is a formidable statistical task. Despite these
challenges, Sanborn and Snurr successfully used Eq. (3.29) to simulate transport diffusion
in siliceous FAU under a variety of conditions [93,94], by performing many independent
simulations and averaging the results.

For multi-component systems, Onsager’s approach leads to the following correlation func-
tion for the coefficient L5, which couples components o and f [88]:

Lis=gvgr | {50 To), (3.30)

where fa(t) is the collective flux for component « at time ¢. Assuming there are N, and Ng
molecules in components « and j3, respectively, Lj; becomes
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which shows that multi-component transport diffusion is controlled by velocity correlations
between different molecules in different components. In practice, Sanborn and Snurr found
it most convenient to calculate the {L4} coefficients using Eq. (3.31) averaged by molec-
ular simulations, and then to transform these to Fickian transport diffusivities, {D,p}, for

phenomenlogical interpretation [93, 94].
Having now explored the macroscopic phenomenologies and microscopic underpinnings of

diffusion in zeolites, we know focus on perhaps the most important task at hand: measuring
diffusion in zeolites.

IV. METHODS OF MEASURING DIFFUSION IN ZEOLITES

Conceptually understanding zeolitic diffusion is not only complicated by the various phys-
ical situations under which diffusion phenomena may occur. It is also complicated by the fact
that the ranges over which diffusion phenomena may be perceived can be dramatically dif-
ferent for different experimental techniques. It has become common to distinguish between
macroscopic, mesoscopic and microscopic techniques [4,6,96]. In macroscopic techniques,
intracrystalline transport phenomena are recorded by analysing the response of an assembly
of crystals to well-defined changes in the surrounding atmosphere. Mesoscopic techniques
focus on an individual crystal without being able to resolve intracrystalline molecular trans-
port. Only in the microscopic techniques, the primary experimental data directly result from
transport phenomena with molecular displacements smaller than the zeolite crystallites. It
should be noted that this latter definition of a microscopic technique must not be confused
with a convention generally used in statistical thermodynamics where concentrations and
fluxes — being mean values over many particles — are considered to be macroscopic quan-
tities, while microscopic quantities are characteristics of the individual particles. In zeolite
science and technology it has become common use, however, that also concentration- or flux-
based techniques are called microscopic, as soon as a resolution within the crystallites, i.e.
over microscopic dimensions, becomes possible. This Section presents a short description of
the fundamentals of the various experimental techniques of diffusion measurement, together
with typical examples of the results obtained.

A. Macroscopic Methods
1. Steady State Methods

Membrane Permeation. With zeolite material being synthetically available nowadays
as membranes (see Chapter 19 by Tsapatsis in this Volume), diffusion measurements may
immediately be based on Fick’s first law, by determining the flux through the membrane for
a given difference in the sorbate concentrations in the membrane faces. Diffusion measure-
ments of this type assume that transport through the membrane is diffusion-limited (see Sec.
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I1C), which implies that observed fluxes are proportional to diffusivities, and that intracrys-
talline concentrations in the membrane faces can be calculated from sorption isotherms given
the gas phase pressures (or concentrations) of the diffusants. By rearranging Fick’s first law,
the diffusivity results simply from:

_ L

D
T AC’

(4.1)
where L is the membrane thickness and Ac is the concentration drop across the membrane,
estimated from the pressure drop and the sorption isotherm. Permeation studies can be
carried out to determine both transport- and self-diffusivities. In the latter case, the flux and
concentration difference refer to the labeled component in, e.g., tracer counter-permeation
experiments. When studying transport diffusion, one has to take into account that Eq. (4.1)
only applies strictly for a sufficiently small concentration difference over the membrane, so
that for concentration-dependent transport diffusivities, the diffusivity within the membrane
can be taken as a constant equal to its effective mean value.

Permeation studies with zeolites have been carried out with both compact polycrystalline
membranes [97-99] and with single crystals suitably involved in impermeable foils [100-102].
The data on intracrystalline diffusion provided from permeation studies with polycrystalline
membranes are still heavily corrupted by membrane defects [29,99]. However, as a conse-
quence of their substantial potential for advanced technologies in separation and catalysis
[103], there is no doubt that the quality of zeolite membranes will improve rapidly in the
next few years. At least from the view of fundamental research, permeation studies with
embedded single crystals appear to provide more reliable data on intracrystalline zeolitic
diffusion. Measurements of this type, which may be referred to as mesoscopic, shall be
presented in Sec. IV B.

Membrane Reactors. Another class of steady state experiments for diffusion mea-
surement is based on the involvement of chemical reactions [104,105]. In the simplest case
of a unimolecular, irreversible reaction A—B of first order [5,6,106], the evolution of con-
centration of species A obeys the relation:

ddij = 6 . (DTﬁcA) - ernCA, (42)
which results from Eq. (2.8) by adding the first-order reaction term. Under steady state
conditions, i.e., for dca/dt = 0, the distribution ¢, (and hence the total number) of the
reactant molecules over the individual crystallites becomes a function of the intrinsic diffu-
sivity. Thus, from the effective reactivity (the “effectiveness factor”) being proportional to
the total number of A-type molecules, one is able to determine their intracrystalline diffusiv-
ity. More correctly, one determines the mutual diffusivity of the A and B molecules, which —
by assuming their microdynamic equivalency — has to coincide with their self diffusivities.
As an example, Fig. 5 demonstrates the excellent agreement between the experimentally de-
termined effectiveness factor for the conversion of 2,2-dimethyl butane over ZSM-5 with the
theoretical dependence determined on the basis of gravimetric diffusion measurements [105].
Conversely, the effectiveness factor of catalytic conversion may thus be used to determine
intracrystalline diffusivities.
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2. Transient Methods

Uptake Methods. The conventionally most common technique of diffusion measure-
ment is following the response of the zeolitic host-guest system to a change in the pressure
and/or composition in the surrounding atmosphere. For recording the response, there is in
use a large variety of techniques. The most direct one is following the molecular uptake
by, e.g., a gravimetric device. For a spherical particle of radius R, subject to a step change
in sorbate concentration at the external surface, molecular uptake M (¢) under isothermal
conditions and diffusion control is given by [107]:

M(t) -1 6 - ie*nzﬂ'2DTt/R2
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which exhibits the short-time limit of:
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and the long-time limit of:

(4.5)

The corresponding expressions for other particle shapes may be found, e.g., in [5,107,108].
There is in fact little numerical difference between the response from a spherical particle
and that from a different geometry, but with the same (external) surface-to-volume ratio.
As discussed in Sec. IIC, transient uptake adsorption/desorption measurements yield the
most reliable diffusivity data for large crystals and small diffusivities, where transport is
diffusion-limited. Regardless of whether transport is limited by diffusion or desorption, such
measurements provide important time scales for zeolite scientists to gauge rates of molecular
sorption. Detailed information on the influence of other processes on molecular uptake can
be found in the literature [5,37,108,109]; in what follows, we give a short introduction into
these processes.

Any adsorption process gives rise to a temperature enhancement of the sample as a con-
sequence of the release of the heat of adsorption. In parallel to the particle flux into each
individual crystallite, establishment of equilibrium therefore as well requires heat dissipation
towards the surroundings. For sufficiently fast intracrystalline diffusion, this latter process
may become rate limiting for the overall phenomenon. Its analysis on the basis of Egs.
(4.3)-(4.5) would lead to completely erroneous diffusivities. During desorption experiments,
temperature reduction as a consequence of the consumed heat of desorption leads to com-
pletely analogous effects. Note that this effect cannot be remedied by reducing the pressure
step, since the reduced temperature changes would be paralleled by corresponding reduc-
tions in the internal concentration gradients [110-112]. Heat effects do not occur in tracer
exchange experiments, since here adsorption (or desorption) of the labeled component is
exactly counterbalanced by desorption (or adsorption) of the unlabeled one (cf. Sec. IV A 3).

The real structures of zeolites are likely to differ substantially from the ideal textbook
structures. This is particularly true for the external surfaces of the zeolite crystallites. As
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a zone of pronounced structural heterogeneity, the external crystal surface is predestined to
collapse, e.g., under hydrothermal treatment [113,114]. Simultaneously, the external crystal
surface is a favorite location of coke deposition [115,116]. In both cases, the uptake rates
can be limited by the permeation through the outer surface rather than by intracrystalline
diffusion. Molecular uptake then should follow the simple exponential expression [5]:

M(t) =] — ¢ Bhat/R
M (c0)

(4.6)

where kq is the surface permeativity as shown in Figs. 1la—c.

When deducing intracrystalline diffusivities from macroscopic uptake measurements, it
is generally assumed that immediately after the change in the surrounding atmosphere, the
concentration in the surface layers of an individual crystallite attains its new equilibrium
value. Such an assumption is clearly only valid for sufficiently fast mass transfer through the
bed of crystallites [117]. To quantify this effect one has to relate the dimension of individual
crystallites (radius R) and that of the bed (“radius” Ry) with the respective diffusivities.
The effective bed diffusivity is given by [4, 96]:

Dyep
ep+ (1 —ep)K’

Dy = (4.7)

where €, and D, are the volume fraction of and diffusivity in the macropores, respectively.
The equilibrium constant K is the ratio of the concentrations in the sorbed and gaseous
phases. Uptake is limited by intracrystalline diffusion under the condition RZ/Dy, < R?/Dr.
In the opposite limit, uptake is limited by bed diffusion. Equations (4.3)—(4.5) still apply
to bed-limited diffusion, except with Dt and R replaced by Dy, and Ry, respectively. In
this case, interpreting the uptake results in terms of intracrystalline diffusion would lead to
completely erroneous results.

As a final pitfall, uptake measurements under “piezometric” conditions, i.e., constant
volume—variable pressure conditions, can be corrupted significantly by the finite rate at
which the atmosphere around the sample follows the pressure step in the gas reservoir.
Consideration of this “valve” effect in the calculation of the intracrystalline diffusivity from
the observed pressure data [118-120] can impede the rigor of the experimental procedures
[121].

According to Eq. (4.3), the time constant of molecular adsorption/desorption (when
limited by intracrystalline diffusion) should be proportional to R?/Dy. This time constant
can be expressed as:

ura = [ dt[1 = M0)/M (), (48)
0
which is denoted as the first moment of the uptake curve [108,122,123], and also as the

mean intracrystalline molecular residence time. Evaluating Eq. (4.8) using Eq. (4.3) gives:

R2

intra — T - o~ - 4.
Tintra = 15D (4.9)
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Assuming that uptake is limited by intracrystalline diffusion, and that the distribution of
zeolite particle sizes is reasonably monodisperse, Eq. (4.9) predicts that the uptake time
constant should vary with the square of the crystal radius. As an example, Fig. 6 shows this
proportionality as found in uptake measurements with 2,2-dimethyl benzene in ZSM-5. The
constancy of Dt with varying crystal size can thus be used as a criterion for the validity of
the determined diffusivities.

Zero Length Column. A number of disadvantages of the conventional uptake method
are overcome by the zero length column (ZLC) technique. In this technique, one follows
the desorption of sorbate from a previously equilibrated sample of adsorbent into an inert
carrier stream [124,125]. The concentration of sorbate in the gas stream is usually recorded
by chromatographic detection. The time-dependence of this concentration is a direct image
of the residence time distribution of the molecules within the sorbate particles, which di-
rectly provides the intracrystalline diffusivity. The sensitivity of ZLC is high enough so that
the amount of adsorbent can be reduced to a few milligrams. Mass transfer resistances by
bed effects can thus be excluded. Moreover, the carrier gas excludes any heat effects. As a
consequence of the very principle of ZLC, during measurements the intracrystalline sorbate
concentration drops to zero from the initial value as determined by the partial pressure of
the sorbate in the carrier gas. In order to circumvent ambiguities due to concentration-
dependent diffusivities, the measurements are therefore generally performed at concentra-
tions close to zero. Variants of the ZLC technique have been applied to the measurement of
zeolitic diffusion under liquid phase conditions [126]. In some cases, e.g., branched alkanes
in silicalite, these diffusivities were found to be dramatically larger than in gas phase mea-
surements [127]. This behaviour seems to indicate that under fully saturated conditions, the
silicalite framework swells slightly so that these species are no longer as severely hindered
by interactions with the pore wall. Another variant, tracer ZLC, shall be presented in Sec.
IVA3.

Frequency Response. Both features of a steady state and a transient method may
be recognized in the frequency response (FR) technique [128-130]. In this technique one
follows the response of the sample to a regular periodic perturbation, such as a sinusoidal
variation of the system volume with frequency w. As a consequence, both the induced
pressure variation and the amount adsorbed are also sinusoidally varying functions. They
are interrelated by a complex factor of proportionality, which is a function of the frequency
of the volume variation. Its real and imaginary parts are commonly referred to as the in-
phase and out-of-phase characteristic functions, respectively. They may be calculated from
experimentally directly accessible quantities, viz., the amplitude of pressure variation and
the phase shift between volume and pressure variation. The diffusivities are determined by
matching the experimental curves to the theoretical expressions for a given model. As a
rule of thumb, the out-of-phase characteristic function passes through a maximum at w =
Dt /L% where L is the characteristic length of the particles under study. The out-of-phase
characteristic function is also expected to approach zero for frequencies both much larger
and much smaller than this “resonance frequency” [4]. There is essentially no instrumental
limitation to apply the frequency response technique at very large frequencies, corresponding
to time constants in the millisecond regime. As a non-equilibrium technique, however, the
frequency response method is subject to thermal effects, which may become rate determining
(130, 131].
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Infrared Detection Methods. By combining the frequency response method with
temperature measurement by an infrared (IR) sensor, heat effects can actually be used for an
even more complete recording of the parameters varying during the adsorption/desorption
measurement cycles [131-133]. Using this thermal FR (TFR) method, experimental ob-
servables should more reliably be attributed to the corresponding models of mass transfer.
Figures 7 and 8 present typical results of the application of the frequency response and the
thermal frequency response methods to diffusion studies with zeolites. The extrapolation
of the pulsed field gradient (PFG) NMR results in Fig. 7 to smaller concentrations yields
satisfactory agreement with the results obtained by the frequency response techniques. In
all these studies, the diffusivity is found to decrease with increasing concentration. This
type of concentration dependence (consistent with patterns 1 and 2 of the concentration
dependencies presented in Fig. 7.2 of Ref. [5]) is common for zeolite-guest systems with no
specific adsorption sites. The decrease of the diffusivity with increasing concentration can be
explained qualitatively by the (1 — #) volume exclusion factor discussed above in Sec. IIT A.
The same general tendency of decreasing diffusivity with increasing loading is reflected by
the data in Fig. 8. In addition, the presence of water molecules is found to lead to a much
more pronounced decay in the propane diffusivities. This behavior can be explained by
the formation of ion-water complexes in the windows between adjacent supercages, which
can significantly reduce propane propagation rates. We note that the PFG NMR and TFR
data are in reasonable agreement in both their qualitative trends and their absolute values.
When caring out diffusion measurements by PFG NMR and the thermal frequency response
method in the same concentration range, satisfactory agreement between the data obtained
by these two techniques can also be seen in Fig. 8.

Following molecular uptake by recording the time-dependent mass of the zeolite-guest
system (gravimetric methods), or the pressure and/or temperature responses (piezometric
and frequency response measurements, respectively) only provides information about overall
adsorption/desorption kinetics. In many cases of practical application, however, one is
interested in the mobility of individual components. The application of IR spectroscopy to
studying sorption phenomena has afforded, therefore, a significant breakthrough for diffusion
studies in multi-component zeolite-guest systems [134-136]. Figure 9 shows the evolution of
the primary data (IR bands) in a counter-diffusion experiment with H-ZSM5 where, under
the influence of a concentration step of ethylbenzene in the surrounding atmosphere (bands
at 1496 cm ! and 1453 cm ™! for the adsorbed ethylbenzene), a substantial fraction of the
previously adsorbed benzene molecules (band at 1478 ¢cm™?) is forced out of the crystallites.

Figure 10 shows the kinetics of the replacement of benzene by ethylbenzene in H-ZSM-5,
together with the diffusivities calculated by matching the kinetic curves to the appropriate
solutions of Fick’s second law. Diffusivities deduced under such conditions are referred to
as coefficients of counterdiffusion. The quantity f is a fitting parameter, which accounts for
the fact that the sorbate partial pressures are not instantaneously established at the location
of the sample. The diffusivities shown in Fig. 10 indicate that adding the ethyl substituent
onto benzene does not greatly alter its transport properties, presumably because the “kinetic
diameter” of the molecule is not greatly altered. A bigger change is expected when comparing
benzene to ortho- or meta-xylene, which do have significantly greater effective diameters.

In addition to the conventional chromatographic methods [137], other more sophisticated
experimental techniques have recently been applied to study molecular diffusion in assem-
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blages of zeolite crystallites, including positron emission profiling (PEP) [138,139], temporal
analysis of products (TAP) [140, 141], and (nuclear) magnetic resonance tomography (MRT)
[142,143]. Since reliable information about intracrystalline diffusion can be obtained only
if the observed processes are strongly influenced by intracrystalline mass transfer, these

techniques measure intracrystalline diffusion in zeolites only under rather special conditions
(140, 144,145].

3. Tracer Methods

By involving isotopically labeled and unlabeled molecules, most of the procedures de-
scribed in Secs. IVA 1 and IV A 2 can be adapted to diffusion measurements under equilib-
rium, i.e., to the measurement of tracer or self diffusion. Tracer permeation measurements
necessitate different partial pressures of the labeled component on the two sides of the mem-
brane (preferably zero on one side), while the total pressure of the sorbate, i.e., the sum of
the partial pressures of the labeled and unlabeled components, must be the same on both
sides of the membrane. In Sec. ITC, we refer to this experimental setup as tracer counter-
permeation (TCP), as shown in Fig. lc. In tracer uptake measurements, the process of
measurement is initiated by replacing a certain fraction of the sorbate molecules in the sur-
rounding atmosphere by labeled ones [146]. Flux or uptake analyses are generally performed
by mass spectrometry, which readily allows a discrimination between labeled and unlabeled
molecules.

Tracer Zero Length Column. By performing ZLC with labeled and unlabeled par-
ticles, i.e., tracer ZLC or TZLC, the range of applicability of the ZLC technique can be
greatly enhanced. In TZLC, the sorbate in the carrier gas is switched from a labeled (e.g.,
deuterated) to an unlabeled species [147,148]. Under these conditions, the purging rate of
the labeled component directly yields the intrcrystalline self diffusivity. In contrast to ZLC,
which is essentially confined to very low sorbate concentrations, TZLC can probe the whole
concentration range from zero to saturation. As an example, Fig. 11 shows the results of
self-diffusion measurements of methanol in Na-X by TZLC in comparison with ZLC and
PFG NMR data. The self diffusivities in Fig. 11 have magnitudes of order 10~ m? s~
These data represent an example where satisfactory agreement between various techniques,
in particular between macroscopic and microscopic measurements, has been observed. We
have presented herein additional examples of satisfactory agreement between the results of
different techniques, e.g., in Figs. 7 and 8. The loading dependence of the diffusivities in
Fig. 11 exhibits an initial increase at low to medium loadings, followed by a subsequent
decrease at high loadings. This behavior indicates the presence of special adsorption sites
for methanol in Na-X, presumably over supercage Na cations, because filling these sites
increases the rate of self diffusion. However, when the system approaches saturation, the
blocking of sites takes over and the self diffusivity begins to decrease with loading.

However, there are also systems that reveal systematic discrepancies between the results
obtained by different techniques. As an example, Fig. 12 shows the results of diffusion
studies with benzene in zeolite Na-X by TZLC, FR and PFG NMR [149]. The decreasing
loading dependence observed by both FR and PFG NMR is consistent with the absence
of particularly stable adsorption sites, while the increasing loading dependence observed
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by TZLC signals the presence of such stable sites [32,33]. Until now, no fully satisfactory
explanation of this discrepancy has been reported. As discussed below in Secs. IVD and
V C, this discrepancy is most likely caused by structural heterogeneities in the Na-X zeolites
considered. Defects in the framework topology and/or disorder in the Al/Na distributions
can produce different self diffusivities, depending on the length scales probed by different
experimental methods [150, 151]

Other variants of non-equilibrium measurements, which have been applied to self-
diffusion studies by the use of labeled molecules, include the measurement of molecular
uptake from a surrounding liquid [152] and in closed-loop recycling [153,154]. Being sensi-
tive to the concentrations of, e.g., deuterated and non-deuterated substances, spectroscopic
methods such as IR [134-136] and NMR [155] allow the direct monitoring of labeled and
unlabeled molecules in the sorbed phase.

B. Mesoscopic Methods

The first mesoscopic measurements of diffusion in zeolites were carried out by Wernick
and Osterhuber [156] and by Hayhurst and Paravar [157], who measured molecular fluxes
through crystallites embedded in impenetrable polymer matrices. In addition to permeation
measurements through ordered arrangements of MFI-type zeolites in metallic membranes
[158], Caro and coworkers considered the rate of molecular uptake by restricting access to
only one side of the membrane, while the crystallite faces on the other side remained covered
by a metal foil. In these measurements the diffusivities were found to depend strongly on
the crystallographic direction [101]. Recently, molecular uptake by individual crystals has
been monitored by micro-Fourier Transform (FT) IR [136]. The uptake curve of n-hexane
by an individual H-ZSM-5 crystal in Fig. 13 presents an example of such measurements,
showing that uptake in such systems requires on the order of 10 s to reach saturation.

C. Microscopic Methods
1. Transport Diffusion

Interference Microscopy. Using interference microscopy, the microscopic measure-
ment of transport diffusion in zeolites has been achieved for the first time [159,160]. In this
technique, one determines the change in sorbate concentration integrated along the obser-
vation direction through the crystallite, by following the change of the optical density of
the zeolite crystallites during transient molecular adsorption or desorption. This informa-
tion can be resolved down to pixels of ca. 1lum x 1pm over the cross-section of the crystal
under study. For crystals of cubic symmetry, these integrated data can be translated into
concentration maps by deconvolution [160]. As an example, Fig. 14 shows the evolution
of methanol concentration in zeolite NaCa-A during adsorption, plotted as concentration
maps over three different cross-sections through the crystallites, parallel to and in differ-
ent distances from one of the external faces. These data permit the direct determination
of intracrystalline transport diffusivities by interpreting the spatial-temporal dependence of
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measured concentrations using Fick’s second law, Eq. (2.8). The data in Fig. 14 probe ad-
sorption on time scales of 40 s multiples, and give a transport diffusivity for methanol in
NaCa-A of (8+2)x107' m? s, which is in reasonable agreement with PFG NMR data.
This diffusivity is less than that for methanol in Na-X by more than three orders of mag-
nitude, presumably because of the much smaller windows in A zeolite, but also because of
the stronger charge-dipole attraction between methanol and Ca ions in NaCa-A.

Moreover, interference microscopy provides a sensitive tool for probing structural prop-
erties of zeolite crystallites, which are important in determining their transport behaviour
and which are difficult to detect by other techniques. MFI-type zeolite crystals are well-
known to have an internal hour-glass-like structure, indicating that they are of twinned
rather than of mono-crystalline structure [161, 162]. In order to evaluate the importance for
molecular transport of the internal intersections separating different intergrowth components
of the crystals, the results obtained by interference microscopy have been compared with
corresponding integral concentrations resulting from Monte Carlo simulations [163]. In the
case of isobutane, such comparisons provide clear evidence that molecular uptake proceeds
mostly via the external crystal surface. In this case, the internal interfaces serve as mild
transport resistances for diffusion of isobutane from one intergrowth component to another,
rather than as additional diffusion paths enhancing the penetration rate into the zeolite
particles. Such a situation is different from that found in solid state diffusion with grain
boundary effects [164]. The findings reported in Ref. [163] are in contrast to observations
with iodine, where the molecules have been found to permeate slowly from the gas phase
along the internal interfaces of the crystals filled with large aromatic molecules [165].

2. Self Diffusion

As a consequence of the microscopic size of typical zeolite crystallites, the conventional
techniques of isotopic labeling have thus far failed to be applied to the direct observation of
intracrystalline self diffusion. The only techniques that have been applied to this purpose
are spectroscopic methods, which provide information about the propagation probabilities
of guest molecules within the zeolite sample.

Quasi-elastic Neutron Scattering. Diffusion measurement by quasi-elastic neutron
scattering (QENS) is based on an analysis of the (quasi-elastic) broadening in the energy
distribution of an outgoing neutron beam. The broadening is a consequence of the Doppler
shift caused by the interaction of the neutrons with the diffusants. In this way, the different
rates of motion of the diffusants are recorded in the spectra of neutron energy transfer.

The relevant experimental observable is the so-called double-differential cross section
(0?0 /OQOE), which represents the fraction of neutrons scattered into a solid angle in the
interval [, Q + df], and with energies in the interval [E, E + dE]. This cross section can
be split into incoherent and coherent contributions according to [166, 167]:

0*c
0Q0F
where oinc (0con) denotes the incoherent (coherent) cross section, which is a characteris-

tic quantity for each type of nucleus. The functions Sinc(k,w) and Seon(k,w) denote the
incoherent and coherent scattering functions, respectively, given by [168]:

= UincSinc(k: w) + Octhcoh(ka w), (410)
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Sine(k,w) / 7 / dt e FTNG (7, 1) (4.11)

Seon (K, w) /dT/dte (k-7 “UDG(F ). (4.12)

These are the double Fourier transforms of the correlation functions of particle propagation,
with the momentum transfer ik and energy transfer iw as the Fourier variables conjugate
to 7 and t, respectively. In Eq. (4.11), G5(7,t) denotes the self-portion of the density-
density autocorrelation function in space and time, i.e., G5(7,t) o (5p;(0,0)5p;(7,t)). For
r = || large compared to zeolite unit cells, Gs(7,t) corresponds to the propagator in Eq.
(2.10), which solves the diffusion equation with a delta function initial condition. Inserting
Eq. (2.10) into Eq. (4.11) leads to a neutron energy distribution whose width is given by
[166,167):

AE = hAw(k) = hk*Ds. (4.13)

Equation 4.13 shows that plotting the energy distribution AFE of the scattered neutrons as

L2
a function of k% = ‘k‘ , yields a straightforward means for determining the self diffusivity

Ds. For jump diffusion one obtains [169]:

AE = ; [1 - e*kQ(leﬁ} , (4.14)
where 7 is an apparent mean residence time, and (I?) is an apparent mean square jump
length. These quantities may correpsond with fundamental jump lengths and times, but
they may also represent composites of fundamental jump processes, depending upon the
underlying dynamics. Interpreting QENS data via Eq. (4.14) allows the determination of
both the mean residence time (for large values of k) and the self diffusivity (for small values
of k), where Eqgs. (4.13) and (4.14) coincide. Combining both types of information thus
allows the determination of the mean square jump length.

The function G(7,t) is proportional to the full density autocorrelation function, i.e.,
G(7,t) o (6p(0,0)5p(7,t)), which is related to the probability density that after time ¢, a
particle is found at a displacement 7 from the position where this or any other particle was
located at time t=0. In this way, the coherent scattering function probes collective motions,
giving rise to the measurement of transport diffusivities.

According to Eq. (4.10), the relative values of coherent and incoherent cross sections indi-
cate which scattering process prevails for a given nucleus. Neutron scattering with hydrogen-
containing molecules is essentially incoherent because of the relatively large incoherent cross
section (oic("H) = 79.9%1072 m?) o.on('H) = 1.76x107% m?). In comparison with all
other nuclei, neutron-hydrogen scattering provides the best prospects for self-diffusion mea-
surements. Interestingly enough, proton-containing molecules are also the best suited for
diffusion measurements by PFG NMR, but for a completely different reason, namely, be-
cause of the large gyromagnetic ratio of protons. Table I provides an order-of-magnitude

comparison between the key quantities characterizing the range of diffusion measurements
by QENS and PFG NMR.
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Observable PFG NMR QENS
Ds (m?s71) >10"1° >10"1

V(R%(t)) (m) >1077 <1078

Table I. Diffusivities and root-mean-square displacements accessible by QENS and
PFG NMR.

With deuterium (oy,c(*H) = 2.04x10°2® m?, ocon(*H) = 5.97x10 2 m?), the coherent
contribution to neutron scattering prevails. The first measurement of transport diffusion in
zeolites via coherent QENS was carried out for molecular deuterium (D) in Na-X zeolite
[170]. As such, QENS turns out to be the only technique so far that allows the simultaneous
measurement of transport and self diffusion with one and the same system. In this study, it
was found that the self- and transport-diffusivities do indeed have similar values at low D,
concentrations. For higher loadings, the transport diffusivity increases rapidly and exceeds
the self diffusivity, in complete agreement with the predictions of Eq. (2.29) for fluid-like
motion.

A survey of the range of self diffusivities accessible by incoherent QENS is provided in
Fig. 15, showing diffusivities of n-alkanes in ZSM-5 as a function of the chain length. The re-
sults of other experimental techniques and of molecular simulations are also included in Fig.
15 [166, 171]. These data provide another example of the large differences among diffusivities
obtained with different experimental techniques—discprepancies which arise for some but
not all sysetms. It is remarkable that even the results of the two microscopic techniques,
namely QENS and PFG NMR, do not agree quantitatively for pentane and hexane diffusion
in ZSM-5. Figure 15 exhibits three different types of trends regarding how the diffusivity
varies with alkane chain length: () roughly independent of chain length (molecular dynam-
ics simulation [172]); (i7) monotonically decreasing with chain length (Brownian dynamics
simulation [173], QENS [166], PFG NMR [171] and ZLC [174]); and (i7i) non-monotonically
decreasing with chain length (single-crystal membrane permeation [102]). The question is:
which trend is correct?

The membrane permeation data in Fig. 15, if they are correct, indicate that octane
(Cg) diffuses much faster than does heptane (C;) and nonane (Cy). As such, these data
suggest the possibility of “resonant diffusion,” where the diffusivity is a maximum when the
hydrocarbon chain length is an integer multiple of the lattice repeat unit (and a minimum
for half integer multiples) [175]. Although only one experiment in Fig. 15 observed resonant
diffusion, this phenomenon has received considerable attention from theorists [172, 175-177].
Indeed, the simulation results reported by Runnebaum and Maginn suggest that while alkane
diffusivities in silicalite decrease monotonically with chain length when considering motion
along the z- and z-directions, they exhibit resonant diffusion along the y-direction with
octane exhibiting the maximum diffusivity [172]. In order to determine whether resonant
diffusion actually takes place in zeolites, the many discrepancies among experimental data
shown in Fig. 15 will have to be resolved.

Pulsed Field Gradient NMR. Molecular self-diffusion measurements by the pulsed
field gradient (PFG) NMR technique can be understood on the basis of the classical model of
NMR, in which the spins—i.e., the magnetic moments of individual nuclei, each with their
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associated angular momentum—are assumed to rotate about the direction of a magnetic
field B with the Larmor frequency given by:

w =B, (4.15)

where B = |B| is the magnetic field strength. The direction of B is usually defined by con-
vention as the laboratory-fixed z-axis. The gyromagnetic ratio, v, is a characteristic quantity
of the nucleus under study, attaining the highest value for hydrogen (yg = 2.675x10% T~!
s71). In field-gradient NMR, the magnetic field B is the sum of a spatially constant field
with strength By, and a strongly inhomogeneous field with magnitude B,gq = gz. As such,
according to Eq. (4.15), the Larmor frequency becomes a function of location along the
z-axis, i.e., w = w(z).

In PFG NMR, the additional inhomogeneous field B,4q is applied over two short time
intervals 0 as the so-called field-gradient pulses. By applying a suitable sequence of radio
frequency (rf) pulses (see also Refs. [5,16,178,179]) one generates a transient NMR signal,
the “spin echo.” Omne can show that, for each individual molecule, when the difference
in Larmor frequencies between two field-gradient pulses increases, the spin echo intensity
decreases. The quantitative relation is given by [5, 16, 178-180]:

¥(go,t) = /dFP(F, t) cos(ydgz), (4.16)

where P(7,t) is the Fickian propagator given in Eq. (2.10). The observation time ¢ is given
by the separation between the two gradient pulses. After substituting Eq. (2.10) into Eq.
(4.16), the PFG NMR spin echo attenuation due to diffusion in homogeneous media is given
by:

W(gb,t) = e 109 Dst, (4.17)

hence providing a direct measurement of the self diffusivity. In heterogeneous systems, in
particular under the influence of restricting barriers, it is convenient to introduce an effective
diffusivity given by: Deg = (R?(t))/6t. Deviations from homogeneity can often be accounted
for by simply replacing Ds in Eq. (4.17) by Deg. For diffusion in homogeneous systems, Deg
clearly coincides with the genuine self diffusivity. However, for inhomogeneous systems, Deg
can exhibit time dependence [150], reflecting the various transport resistances probed during
the PFG NMR measurement.

While the range of diffusivities accessible by PFG NMR and QENS are similar, with ca.
107" m? 57! as a typical lower limit, the observed displacements (and hence the correspond-
ing observation times) are distinctly different, as shown in Table I. Typical displacements
covered in PFG NMR are between a few hundred nanometers up to hundreds of microme-
ters, with observation times of milliseconds up to seconds. By contrast, the displacements
observable by QENS are limited to a few nanometers. This has been exploited by Jobic et
al. who used QENS to measure benzene self diffusivities in Na-Y [181], where crystallites
are typically too small (ca. 1 micrometer) for reliable PFG NMR, measurements of intracrys-
talline self diffusion. The benzene self diffusivities measured by Jobic et al. decrease with
benzene loading, in contrast to the increasing loading dependence predicted by Saravanan
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and Auerbach on the basis of kinetic Monte Carlo simulations [32]. If the loading dependence
observed by QENS is correct, then the Monte Carlo simulations overestimate the extent to
which Na-benzene interactions provide specific adsorption sites in Na-Y.

Owing to the quite general relation between the observed spin-echo attenuation and the
patterns of propagation in Eq. (4.16), PFG NMR is particularly suitable for diffusion studies
with heterogeneous systems such as beds of zeolites. Varying the observation time and hence
the covered displacements, PFG NMR is able to probe both intracrystalline diffusion (for
V(R%(t)) < R) as well as long-range diffusion (for /(R?(¢)) > R), where R is the mean
crystallite radius. The long-range diffusivity is the counterpart in self diffusion of the effective
bed diffusivity discussed in Eq. (4.7). Further transport-related phenomena observable in
such studies include diffusion anisotropy [60, 67], the formation of transport resistances [113—
116], deviations from ordinary diffusion such as single-file diffusion [79, 80, 182] and diffusion
on fractals [183], multi-component diffusion [184-187] and diffusion accompanied by catalytic
reactions [188-190].

Before we close this Section on PFG NMR, we note that several other NMR meth-
ods have been developed for and applied to measuring orientational dynamics of molecules
in zeolites. In general, NMR measurements probe an orientational correlation function of
some molecular axis [191]. NMR relaxation and line-width measurements [192-198] typi-
cally assume that this correlation function decays exponentially. With this assumption, the
exponential decay time constant, i.e., the correlation time 7., can be deduced from spin-
spin and spin-lattice relaxation times. Alternatively, the exchange-induced sidebands NMR
method can measure the correlation function itself [199]. Favre et al. applied this approach
to benzene dynamics in Ca-Y zeolite [1], finding a bi-exponential correlation function whose
short- and long-time dynamics were interpreted in terms of intracage and intercage motion,
respectively [200]. Having measured the cage-to-cage rate constant, Favre et al. reported
the self diffusivity of benzene in Ca-Y as Dg = 107 — 107 m? s~! in the temperature
range 338-368 K, perhaps the smallest self diffusivities ever measured for a zeolite-guest sys-
tem. An even more sophisticated approach is the two-dimensional exchange NMR method
[201-203], which measures the orientational correlation function and also the most impor-
tant jump angles in the dynamics, which facilitates the interpretation of the measured time
scales. In general, diffusion coefficients can be extracted from these orientational data only
if the orientational correlation function decay is controlled by cage-to-cage or otherwise long
length-scale dynamics. Because such length scales are typically not measured in these NMR
approaches, one should regard a diffusional interpretation of such data with great care.

D. Correlating Results from Different Measurements

Applying PFG NMR to the investigation of diffusion in zeolites [5,116, 192, 204] has re-
vealed intracrystalline diffusivities that are up to five orders of magnitude larger than those
previously assumed on the basis of macroscopic measurements. Subsequent critical recon-
siderations of classical uptake measurements [37,109-123] and their interpretations led in
many cases to much better agreement among the results of different measuring techniques.
These comparisons are complicated by the fact that different techniques often probe funda-
mentally different physical situations (e.g., equilibrium vs. non-equilibrium conditions) as

41



well as completely different ranges of observation (e.g., nanoscopic vs. macroscopic dimen-
sions). Comparing results obtained under such different conditions necessitates a theoretical
framework for correlating equilibrium and non-equilibrium processes, as well as providing
independent evidence about the structural homogeneity of crystallites. Both problems are
topics of intense current work [8,10,12-14,205,206]. The data in Fig. 15 emphasize that
even in the most recent studies, where the pitfalls of the various techniques and of their
interpretations should have been ameliorated by now, there remain substantial discrepan-
cies. Indeed, a particularly alarming result is shown in Fig. 16, where the self diffusivities of
alkanes in MFI-type zeolites are shown to depend significantly on the mean diffusion path
probed by PFG NMR [151]. While the measurements at higher temperatures and over larger
distances yield constant diffusivities as observed in numerous previous PFG NMR studies
[207,208], recent progress in PFG NMR instrumentation [209] allows diffusion measurements
over much smaller distances, where the diffusivities are found to decrease with increasing
displacements. This experimental finding appears to support one of the old explanations
of the discrepancies between different techniques, namely that their exists a hierarchy of
diffusion barriers [37]. Clarifying the origin of these discrepant diffusion measurements is
undoubtedly one of the great challenges of future zeolite research. The eventual solution is
intimately associated with progress in our understanding of real crystal structures and with
our ability to synthesize sufficiently ideal zeolite crystallites.

V. METHODS OF SIMULATING DIFFUSION IN ZEOLITES

The wide range of diffusional length and time scales encountered by molecules in zeolites
presents unique challenges to the modeler, requiring that various simulation tools, each
with its own range of applicability, be brought to bear on modeling dynamics in zeolites.
In particular, when transport is relatively rapid, the molecular dynamics technique can be
used to simulate both the temperature and loading dependencies of self diffusion [7,11].
On the other hand, when molecular motion is relatively slow because free energy barriers
separating sorption sites are large compared to thermal energies, transition-state theory and
related methods must be used to simulate the temperature dependence of site-to-site jump
rate constants. In this regime, kinetic Monte Carlo and mean field theory can then be
used to model the loading dependence of activated diffusion in zeolites [12,14,210]. When
diffusional length scales become large because of disorder in zeolite structure, field theories
such as the renormalization group approach can be applied. In this Section, we describe
the techniques and applications of these methods, focusing on how the interplay between
guest-zeolite adhesion and guest-guest cohesion controls diffusion in zeolites.

A. Atomistic Methods

The goals of simulating molecular dynamics in zeolites with atomistic detail are two-fold:
to predict the transport coefficients of adsorbed molecules, and to elucidate the mechanisms
of intracrystalline diffusion. Below we discuss the basic assumptions and forcefields un-
derlying such simulations, as well as the dynamics methods used to model both rapid and
activated motion through zeolites.

42



1. Basic Assumptions and Forcefields

Ordered Zeolite Models. Modeling the dynamics of sorbates in zeolites requires an
adequate representation of the zeolite sorbent. Zeolites are crystalline materials, which sim-
plifies tremendously the modeler’s task as compared to the task of modeling amorphous or
disordered microporous materials such as silica gels or activated carbons. Zeolite framework
structures are well-known from many crystallographic studies and easily accessible from ref-
erence material such as Meier and Olson’s Atlas of Zeolite Structure Types [211], commercial
[212] or internet databases [213]. Moreover, the typical size of a zeolite crystallite is 1 to
100 pm, that is, much larger than the length scale probed by atomistic molecular dynamics
simulations. Size effects therefore can often be neglected except for single-file systems [85],
and an adequate modeling of the sorbent is obtained with only a few unit cells included in
the simulation cell, with periodic boundary conditions to represent the crystallite’s extent.

However, a zeolite structure presents some heterogeneities at the atomistic scale: the
arrangement of Si and Al atoms in the structure (or Al and P for AIPO,’s) usually does
not present any long-ranged ordering; and in the general case, extra-framework cations
also occupy crystallographic positions without full occupancy or long-range ordering. The
simplest way to tackle this problem is to ignore it completely; indeed, a good 80% of all
molecular dynamics (MD) studies of guest dynamics in zeolites published since 1997 con-
cern aluminum-free, cation-free, defect-free all-silica zeolite analogs rather than zeolites.
These structures sometimes exist, such as silicalite-1, silicalite-2 and ZDDAY, the respective
analogs of ZSM-5 (structure MFI), ZSM-11 (structure MEL) and Na-Y (structure FAU).
However, the siliceous analogs sometimes do not exist but in the modeler’s view, such as
LTL, the analog of the cation-containing zeolite L. Nevertheless, these models can be very
useful for studying the influence of zeolite structure or topology on an adsorbate’s dynam-
ics, irrespective of the cations [214], or to determine exactly, by comparison, the cations’
influence [198,215]. Furthermore, some zeolites of industrial interest such as ZSM-5 present
high Si:Al ratios, so that their protonated forms have very few protons per unit cell. Heink
et al. have shown, for example, that the Si:Al ratio of ZSM-5 has very little influence on
hydrocarbon diffusivity [171]. In these cases, it is safe to assume that studying diffusion
in a completely siliceous zeolite analog will display most characteristics of the diffusion in
the protonated form. This assumption simplifies several factors of the simulation and of
the subsequent analysis: fewer parameters for the guest-zeolite interaction potential are
needed, the system does not present any heterogeneity, and electrostatic interactions can be
neglected when using adequate van der Waals interaction parameters, therefore decreasing
the computational cost of a force evaluation.

Charge Distributions. There are many cases where such a simplified representation is
inadequate: in particular, exchangeable cations create an intense local electric field (amount-
ing to 3 V/A next to a Ca?* cation in Na-A, according to induced IR measurements) [216]
so that, unless the cation is inaccessible to the sorbate, one cannot neglect its Coulombic
interaction with an adsorbed molecule. The number of cations in the frame depends on the
Si:Al ratio: each Al atom brings one negative charge to be compensated by the adequate
number of mono or multivalent cations. Hence the Si:Al ratio strongly influences the ad-
sorptive properties of zeolites, so much that a change in the amount of Al brings a change in
nomenclature: for example, FAU-type zeolites are denoted zeolite X for Si:Al < 1.5 and ze-
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olite Y for a Si:Al > 1.5. Many groups have investigated the distribution of Al and Si atoms
in zeolites, to determine whether there is any local arrangement of these atoms [217-222].
Since X-ray crystallography does not distinguish Si from Al, this is necessarily determined
from indirect techniques such as Si or Al NMR. Lowenstein’s rule forbids any Al-O-Al
bonds, which brings perfect ordering for Si:Al=1, such as in Na-A. In most other cases, no
local ordering has been found in the studies mentioned above. An exception is zeolite EMT,
where rich Si and Al phases have been found from crystallographic measurements, when syn-
thesized using crown ethers as templates [223]. In zeolite L, aluminum atoms preferentially
occupy Ty rather than T, sites, as found out by neutron crystallography [224].

In the absence of local ordering, a common modeling procedure involves neglecting the
local inhomogeneity of the Si:Al distribution, and replacing all Al or Si by an average
tetrahedral atom T, which is exactly what is observed crystallographically. The Si:Al ratio
then is reflected by the average charge of this T atom, the charges on framework oxygen
atoms, and by the number of charge compensating cations. This T-site model has been
used in many recent modeling studies, and performs very well for reproducing adsorptive
properties of zeolites [225,226]. Indeed, few studies of guest adsorption in zeolites consider
explicit Al and Si atoms [227-229].

The most important inhomogeneity inside cation-containing zeolites comes from the
cation distribution. Indeed, except for very special values of the Si:Al ratio, the possible
cation sites are not completely or symmetrically filled, and crystallographic measurements
only give average occupancies. A common procedure is to use a simplified model, with just
the right Si:Al ratio that allows complete occupancy of the most probable cation sites and
no cations in other sites. This has been used, e.g., by Santikary and Yashonath in their
modeling of diffusion in zeolite Na-A: instead of Si:Al=1, they used a model Na-A with
Si:Al=2, thus allowing complete occupancy of cation site I, which gives cubic symmetry of
the framework [230]. Similarly, Auerbach and coworkers used a model zeolite Na-Y with
Si:Al=2 in a series of studies on benzene diffusion, so that the model would contain just
the right number of Na cations to fill sites I’ and II, thereby giving tetrahedral symmetry
[59,198,231]. In studying Na-X, which typically involves Si:Al=1.2, they used Si:Al=1 so
that Na(III) would also be filled [198]. This type of procedure is generally used to level off
inhomogeneities that complicate the analysis.

It is instructive to observe the effect of the Si:Al ratio of FAU-type zeolites on the
behavior of benzene diffusion, as determined from modeling [198,231,232]. For very high
Si:Al ratios no cations are accessible to sorbed benzene, which only feels a weak interaction
with the framework, and hence diffuses over shallow energetic barriers. These reach only
10 kJ mol~! between the supercage sites and window sites, where benzene adsorbs in the
plane of the 12 T-atom ring (12R) window separating two adjacent supercages [232]. As
the Si:Al ratio decreases toward Na-Y, cation sites II begin to fill in as indicated in Fig. 17.
These Na(II) cations at tetrahedral supercage positions create strong local adsorption sites
for benzene (the Sy site), while the window site remains unchanged. As a consequence, the
energetic barrier to diffusion increases to ca. 40 kJ mol™' [231]. The spread in measured
activation energies for benzene in Na-Y shown in Fig. 17 reflects both intracage and cage-
to-cage dynamics [200], because both NMR relaxation data (intracage) and diffusion data
(cage-to-cage) are shown. When the Si:Al ratio further decreases toward Na-X, the windows
are occupied by strongly adsorbing site III cations. As a consequence, the window site is
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replaced by a strong Sy site where benzene is facially coordinated to the site I1I cation, so
that transport is controlled by smaller energy barriers reaching only about 15 kJ mol ™" [198].
Figure 17 (top and middle) schematically presents this behavior, while on the bottom part
we compare the expected behavior of the activation energy (full line) as a function of Si:Al
ratio to the available experimental observations (points). The correlation between simulation
and experiments is qualitatively reasonable considering the spread of experimental data.
Figure 17 shows the success of using a particular Si:Al ratio to simplify the computation,
and furthermore shows that adding cations in the structure does not necessarily result in an
increase of the diffusion activation energy.

Despite the success of treating disordered charge distributions as being ordered, Chen
et al. have suggested that electrostatic traps created by disordered Al and cation distribu-
tions can significantly diminish self diffusivities from their values for corresponding ordered
systems [150]. In addition, when modeling the dynamics of exchangeable cations [233] or
molecules in acidic zeolites [229], it may be important to develop more sophisticated zeo-
lite models which completely sample Al and Si heterogeneity, as well as the possible cation
distributions. For example, Newsam and coworkers proposed an iterative strategy allowing
the placement of exchangeable cations inside a negatively charged framework [234], imple-
mented within MSI’s Cerius2 modeling environment. In addition, Jousse et al. constructed
a model zeolite H-Y (Si:Al=2.43) by randomly placing aluminum atoms in the frame, and
distributing protons using the following three rules: (i) protons are linked to an oxygen close
to an Al atom; (74) no two hydroxyl groups can be linked to the same silicon atom; (4i7) no
proton can be closer than 4.0 A from another [229], Although these rules do not completely
determine the proton positions, they found that several different proton distributions were
broadly equivalent as far as sorption of benzene is concerned. It is clear from the above
examples that the real issue in modeling the dynamics of sorbed molecules in zeolites comes
from the interaction potentials, also known as forcefields when computed from empirical
functional forms. Before discussing these forcefields in the context of dynamics, however,
we examine a hot topic among scientist in the field: whether framework vibrations influence
the dynamics of guest molecules in zeolites.

Framework Flexibility. This question has long remained an open one, but many recent
studies have made systematic comparisons between fixed and flexible lattice simulations,
based on several examples: methane and light hydrocarbons in silicalite-1 [65,235-238],
methane in cation-free LTA [239], Lennard-Jones adsorbates in Na-A [230] and in Na-Y
[240], benzene and propylene in MCM-22 [241], benzene in Na-Y [242-244], and methane
in AIPO4-5 [245]. In cation-free zeolites, these recent studies have found that diffusivities
are virtually unchanged when including lattice vibrations. Fritzsche et al. [239] explained
earlier discrepancies on methane in cation-free LTA zeolite by pointing out that inappropri-
ate comparisons were made between rigid and flexible framework studies. In particular, the
rigid studies used crystallographic coordinates for the framework atoms, while the forcefield
used to represent the framework vibrations gave a larger mean window size than that in
the rigid case, thereby resulting in larger diffusivities in the flexible framework. By com-
paring with a model rigid LTA minimized using the same forcefield, they found almost no
influence on the diffusion coefficient. Similarly, Demontis et al. have studied the diffusion
of methane in silicalite-1, with rigid and flexible frameworks [236]. They conclude that the
framework vibrations do not influence the diffusion coefficient, although they affect local dy-
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namical properties such as the damping of the velocity autocorrelation function. Following
these findings, numerous recent diffusion studies of guest hydrocarbons or Lennard-Jones
adsorbates in cation-free zeolites keep the framework rigid [83,168,177, 187,214, 246-250].

There are, however, some counter-examples in cation-free zeolites. In a recent MD
study of benzene and propylene in MCM-22 zeolite, Sastre, Catlow and Corma found differ-
ences between the diffusion coefficients calculated in the rigid and flexible framework cases
[241]. Bouyermaouen and Bellemans also observe notable differences for i-butane diffusion
in silicalite-1 [238]. Snurr, Bell and Theodorou used TST to calculate benzene jump rates in
a rigid model of silicalite-1 [251], finding diffusivities that are one to two orders of magnitude
smaller than experimental values. Forester and Smith subsequently applied TST to benzene
in flexible silicalite-1 [252], finding essentially quantitative agreement with experiment, thus
demonstrating the importance of including framework flexibility when modeling tight-fitting
guest-zeolite systems.

Strong framework flexibility effects might also be expected for molecules in cation-
containing zeolites, where cation vibrations strongly couple to the adsorbate’s motions, and
where diffusion is mostly an activated process. However, where a comparison between flex-
ible and fixed framework calculations has been performed, surprisingly little influence has
been found. This has been shown by Santikary and Yashonath for the diffusion of Lennard-
Jones adsorbates of varying size in Na-A. They found a notable difference on the adsorbate
density distribution and external frequencies, but not on diffusion coefficients [230]. Mosell
et al. found that the potential of mean force for the diffusion of benzene in Na-Y remains
essentially unchanged when framework vibrations are included [242]. Jousse et al. also found
that the site-to-site jump probabilities for benzene in Na-Y do not change when including
framework flexibility, in spite of very strong coupling between benzene’s external vibrations
and the Na(II) cation [244]. The reasons behind this behavior remain unclear, and it is also
doubtful whether these findings can be extended to other systems. Nevertheless, the direct
examination of the influence of zeolite vibrations on guest dynamics suggests the following: a
strong influence on local static and dynamical properties of the guest, such as low-frequency
spectra, correlation functions and density distributions; a strong influence on the activated
diffusion of tight-fitting guest-zeolite systems; but a small influence on diffusion of smaller
molecules such as unbranched alkanes.

The preceding discussion on framework flexibility, and its impact on molecular dynamics,
has the merit of pointing out the two important aspects for modeling zeolites: structural and
dynamical. On the structural side, the zeolite cation distribution, channel diameters and
window sizes must be well represented. On the dynamical side, for tight-fitting host-guest
systems, the framework vibrations must allow for an accurate treatment of the activation
energy for molecular jumps through flexing channels and/or windows. Existing zeolite frame-
work forcefields are numerous and take many different forms, but they are generally designed
for only one of these purposes. It is beyond the scope of this article to review all zeolite
framework forcefields [11]; we simply wish to emphasize that one should be very cautious in
choosing the appropriate forcefield designed for the properties to be studied.

Guest-Zeolite Forcefields The guest-framework forcefield is the most important in-
gredient for atomistic dynamical models of sorbed molecules in zeolites. Forcefields for
guest-zeolite interactions are at least as diverse as those for the zeolite framework: even
more so, in fact, as most studies of guest molecules involve a re-parameterization of poten-
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tial energy functions to reproduce some typical thermodynamical property of the system,
such as adsorption energies or adsorption isotherms. Since forcefields are but an analyti-
cal approximation of the real potential energy surface, it is essential that the underlying
physics is correctly captured by the analytical form. Every researcher working in the field
has a different opinion on what the correct form should be; therefore the following discussion
must necessarily remain subjective, and we refer the reader to the original articles to sample
different opinions.

Physical contributions to the interaction energy between host and guest are numerous:
most important are the short range dispersive and repulsive interactions, and the electro-
static multipolar and inductive interactions. Nicholson and coworkers developed precise po-
tentials for the adsorption of rare gases in silicalite-1, including high-order dispersive terms
[253], and have shown that all terms contribute significantly to the potential energy surface
[254], the largest contributions coming from the two and three body dispersion terms. Cohen
de Lara and coworkers developed and applied a potential function including inductive terms
for the adsorption of diatomic homonuclear molecules in A-type zeolites [255,256]. Here also
the induction term makes a large contribution to the total interaction energy. A general
forcefield would have to account for all these different contributions, but most forcefields
completely neglect these terms for the sake of simplicity. Simplified expressions include only
a dispersive-repulsive short-ranged potential, often represented by a Lennard Jones 6-12 or
a Buckingham 6-exp. potential, possibly combined with electrostatic interactions between
partial charges on the zeolite and guest atoms, according to:

UZ(;:ZZ{@—A—({”+%}. (5.1)
T r'rj Trj Trj

In general, the parameters A and B are determined by some type of combination rule from
“atomic” parameters, and adjusted to reproduce equilibrium properties such as adsorption
energies or adsorption isotherms. It is unlikely, however, that such a potential is transferable
between different guest molecules or zeolite structures. As such, the first step of any study
utilizing such a simple forcefield on a new type of host or guest should be the computation
of some reference experimental data, such as the heat of adsorption, and eventually the
re-parametrization of forcefield terms. Indeed, general purpose forcefields such as CVFF do
not give generally adequate results for adsorption in zeolites [257, 258].

The simplification of the forcefield terms can proceed further: in all-silica zeolite analogs
with small channels, the electric field does not vary much across the channel and as a con-
sequence the Coulombic term in Eq. (5.1) can often be neglected. This is of course not true
for cation-containing zeolites, where the cations create an intense and local electric field
that generally gives rise to strong adsorption sites. Since evaluating electrostatic energies
is so computationally demanding, neglecting such terms allows for much longer dynamics
simulations. Another common simplification is to represent CHy and CHj groups in sat-
urated hydrocarbons as united atoms with their own effective potentials. These are very
frequently used to model hydrocarbons in all-silica zeolites [177,239, 246, 247,259]. There
is, however, active debate in the literature whether such a simplified model can account for
enough properties of adsorbed hydrocarbons [260-262].

The standard method for evaluating Coulombic energies in guest zeolite systems is the
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Ewald method [263, 264], which scales as nInn with increasing number of atoms n. In 1987
Greengard and Rokhlin [265] presented the alternative “Fast Multipole Method” (FMM)
which only scales as n, and therefore offers the possibility of simulating larger systems.
In general FMM only competes with the Ewald method for systems with many thousand
atoms [266], and therefore is of little use in zeolitic systems where the simulation cell can
usually be reduced to a few hundreds or a few thousand atoms. However, in the special case
where the zeolite lattice is kept rigid, most of the terms in FMM can be precomputed and
stored; in this case Jousse and Auerbach have shown that FMM becomes faster than Ewald
summation for benzene in Na-Y [59].

This Section would not be complete without mentioning the possibility of performing
atomistic simulations in zeolites without forcefields [267], using ab initio molecular dynamics
(AIMD) [268, 269]. Following the original work of Car and Parrinello, most such studies use
density functional theory and plane wave basis sets [270]. This technique has been applied
recently to adsorbate dynamics in zeolites [271-279]. Beside the obvious interest of being
free of systematic errors due to the forcefield, this technique also allows the direct study
of zeolite catalytic activity [271-273]. However, AIMD remains so time consuming that a
dynamical simulation of a zeolite unit cell with an adsorbed guest only reaches a few ps at
most. This time scale is too short to follow diffusion in zeolites, so that current simulations
are mostly limited to studying vibrational behavior [271-276]. Similarly, catalytic activity is
limited to reactions with activation energies on the order of thermal energies [271, 273, 277].
However, the potential of AIMD to simulate transport coefficients has been demonstrated
for simpler systems [280,281], and will likely extend to guest-zeolite systems in the near
future as computers and algorithms improve.

2. Equilibrium and Non-equilibrium Molecular Dynamics

Since the first application of equilibrium MD to guest molecules adsorbed in zeolites in
1986 [282], the subject has attracted growing interest [10-14, 283, 284|. Indeed, MD simula-
tions provide an invaluable tool for studying the dynamical behavior of adsorbed molecules
over times ranging from ps to ns, thus correlating atomistic interactions to experiments
that probe molecular dynamics, including: solid state NMR, pulsed field gradient (PFG)
NMR, inelastic neutron spectroscopy (INS), quasi-elastic neutron scattering (QENS), IR
and Raman spectroscopy.

MD of guest molecules in zeolites is conceptually no different from MD simulations of any
other nanosized system. Classical MD involves numerically integrating classical equations
of motion for a many-body system. For example, when using Cartesian coordinates, one
can integrate Newton's second law: F; = m;a; where m; is the mass of the i*" particle,
a; = d’r;/dt* is its acceleration, and F; = —V,.V is the force on particle 7. The crucial
inputs to MD are the initial positions and velocities of all particles, as well as the system
potential energy function V' (ry,ry,...,r,). The output of MD is the dynamical trajectory
[r;(t),v;(t)] for each particle. All modern techniques arising in the field can be applied
to the simulation of zeolites, including multiple time scale techniques, thermostats and
constraints. The interested reader is referred to textbooks on the method [264, 285, 286],
and to modern reviews [287,288]. In this Section we shall describe only those aspects of
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MD that are especially pertinent to molecules in zeolites. A comprehensive review on MD
of guest molecules in zeolites was published in 1997 by Demontis and Suffritti [11]. Because
the review by Demontis and Suffritti discusses virtually all applications of the method up
to 1996, we will limit our examples to the most recent MD studies.

Parameters. We estimate that the current limiting diffusivity, below which adsorbate
motion is too slow for equilibrium MD, is around Dy, ~ 5 x 107% m? s!, obtained by
supposing that a molecule travels over 10 unit cells of 10 A during a 20 ns MD run. This
value of Dy, is higher than most measured diffusivities in cation-containing zeolites [5],
explaining why so many MD studies focus on hydrocarbons in all-silica zeolite analogs.
Even then, the simplifications discussed above are required in order to perform MD runs of
several ns in a manageable time: simple Lennard-Jones forcefields on united atom interaction
centers without Coulombic interactions, bond constraints on C—C bonds allowing for longer
time steps, and the use of fixed frameworks.

Ensembles. A flexible zeolite framework typically provides an excellent thermostat for
the sorbate molecules. The framework temperature exhibits minimal variations around its
average value, while the sorbate energy fluctuates in a way consistent with the canonical
ensemble. This is valid either for a microcanonical (NV E) ensemble run, or a canonical
(NVT) ensemble run involving mild coupling to an external thermostat. We caution that
coupling the system too strongly to an external bath will almost surely contaminate the
actual sorbate dynamics.

The problem is clearly more complex when the zeolite framework is kept rigid. Ideally,
one should run the dynamics in the canonical ensemble, with just the right coupling constant
to reproduce the fluctuations arising from a flexible framework. When these fluctuations are
unknown, however, it is not obvious whether a canonical or microcanonical run is better. In
the NV E ensemble, the sorbate does not exchange energy with a bath, which may lead to
incorrect energy statistics. This is particularly true at low loading, but may remain true for
higher loadings as well. Indeed, in a direct study of the kinetic energy relaxation of Lennard-
Jones particles in Na-Y, Schrimpf et al. found that the thermalization due to interactions
with the framework is considerably faster than the thermalization due to mutual interactions
between the adsorbates [240]. Therefore, it is probably better to run the dynamics in
the NV'T ensemble, with sufficiently weak coupling to an external thermostat to leave the
dynamics uncontaminated. On the other hand, Jousse et al. have shown that for non-rigid
benzene in Na-Y, there is very rapid energy redistribution from translational kinetic energy
into benzene’s internal vibrational degrees of freedom [244], which proceeds on a time scale
comparable to the thermalization due to interactions with the flexible frame. This suggests
that for sufficiently large, flexible guest molecules, the transport behavior can be adequately
modeled in the NV E ensemble even at infinite dilution.

Although most simulations of diffusion in zeolites have focused on self diffusion for com-
putational simplicity, we note growing interest in performing non-equilibrium MD (NEMD)
simulations on guest-zeolite systems to model transport diffusion. As an aside, we note that
MD experts would classify thermostatted MD, and any non-Newtonian MD for that mat-
ter, as NEMD [289,290]. We shall be much more restrictive and limit the non-equilibrium
behavior to studies involving an explicit gradient along the system, resulting in a net flow
of particles. This is especially interesting in zeolite science, because most applications of
zeolites are run under non-equilibrium conditions, and also because of recent progress in the

49



synthesis of continuous zeolite membranes [291,292] (see also Chapter 19 by Tsapatsis in
this Volume). In this case we seek the Fickian or transport diffusivity, discussed thoroughly
above in Sec. II B; here we only wish to discuss ensembles relevant to this NEMD.

A seminal study was reported in 1993 by Maginn, Bell and Theodorou, reporting NEMD
calculations of methane transport diffusion through silicalite-1 [36]. They applied gradient
relaxation MD as well as external field MD (EFMD), simulating the equilibration of a
macroscopic concentration gradient and the steady-state flow driven by an external field,
respectively. They found that EFMD provides a more reliable method for simulating the
linear response regime. Fritzsche et al. applied NEMD methods to calculate the transport
diffusivity of methane in cation-free LTA (zeolite A) [293], obtaining results in excellent
agreement with the Darken Equation, Eq. (2.29).

Since then, NEMD methods in the grand canonical ensemble have been reported. Of
particular interest is the “dual control volume-grand canonical molecular dynamics” (DCV-
GCMD) method, presented by Heffelfinger and van Swol [294]. In this approach the system
is divided in three parts, a central and two boundary regions. In the central region, regular
molecular dynamics is performed, while in the boundary regions creation and annihilation
of molecules are allowed to equilibrate the system with a given chemical potential, following
the grand canonical Monte Carlo procedure. This or similar methods have been applied to
the simulation of fluid-like behavior in slit pores of very small dimensions (down to a few
o) [295-300]. Martin et al. applied DCV-GCMD to the simulation of methane permeation
through thin silicalite membranes [301]. They found that for very thin membranes, the
external surface resistance is significant, requiring large spatial separations between external
surfaces and grand canonical control volumes to avoid interferences with the grand canonical
statistics.

Arya et al. [91] compared the computational efficiencies and accuracies of DCV-GCMD
and EFMD, both applied to transport diffusion in AIPO4-5. The accuracies of both methods
were benchmarked against equilibrium MD (EMD) calculations of the Onsager coefficient
according to Eq. (3.23). Arya et al. found that EMD and EFMD yield identical transport
coefficients for all the systems studied. The transport coefficients calculated using DCV-
GCMD, however, were lower than those obtained from EMD and EFMD unless: (i) a large
ratio of stochastic to dynamic moves is used for each control volume, and (ii) a streaming
velocity is added to all inserted molecules. In general, these authors found that DCV-GCMD
is much less efficient than either the EMD or EFMD techniques [91].

Data Analyses. Although MD becomes inefficient for modeling activated diffusion, MD
can provide useful information about such transport when barriers are comparable to kgT.
In this case, MD can be used to define a coarse-grained model of diffusion [302,303]. This
coarse-graining requires two inputs: the lattice of sites on which diffusion takes place, and
the kinetic law governing the motions between those sites. The analysis of MD trajectories
as a jump diffusion process allows one to determine the adsorption sites, by monitoring the
positions of maximum probability of the adsorbate during the dynamics [303], as well as the
details of the kinetic law. It has generally been found that residence time distributions follow
a simple exponential dependence, characteristic of random site-to-site jumps. In Fig. 18,
we present such a residence time distribution for the example of benzene diffusing in zeolite
LTL, clearly showing this signature. These observations support the usual assumption of
Poisson dynamics, central to many lattice models of guest diffusion in zeolites (see Sec.
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VB1). However, one often finds correlations between jumps that complicate the coarse-
grained representation of diffusion [54, 55, 303].

Dynamics of Hydrocarbons in Silicalite-1 and 10R Zeolites. Zeolite ZSM-5 is
used in petroleum cracking, which explains the early interest in modeling the diffusion of
alkanes in silicalite-1, the all-silica analog of ZSM-5 [63, 65, 66, 235, 236, 302, 304]. This early
work has been reviewed by Demontis and Suffritti in 1997 [11], and therefore we only wish
to outline recent studies.

As pointed out earlier, the relatively rapid diffusivity of alkanes in the channels of all-
silica zeolites, at room temperature or above, makes these systems perfect candidates for
MD simulations. In general, very good agreement is found between MD self diffusivities and
those of microscopic types of experiments, such as PFG NMR or QENS. Figure 19 gives
an example of this agreement, for methane and butane in silicalite-1 at 300 K (MD data
slightly spread for clarity). This good agreement, in spite of the crudeness of the potentials
used, shows that the diffusivity of light alkanes in silicalite-1 depends on the forcefield
properly representing the host-guest steric interactions, i.e. on the size and topology of the
pores. Recognizing this, many recent studies focus on comparing diffusion coefficients for
different alkanes in many different zeolite topologies, in an effort to rationalize different
observed catalytic behaviors. Jousse et al. studied the diffusion of butene isomers at infinite
dilution in 10R zeolites with various topologies: TON, MTT, MEL, MFI, FER and HEU.
They observed in all cases except for the structure TON, that trans-2-butene diffuses more
rapidly than all other isomers [305]. Webb and Grest studied the diffusion of linear decanes
and n-methylnonanes in seven 10R zeolites: AEL, EUO, FER, MEL, MFI, MTT and TON
[214]. For MEL, MTT and MFI, they observe that the self-diffusion coefficient decreases
monotonically as the branch position is moved toward the center (and the isomer becomes
bulkier), while for the four other structures, Dy presents a minimum for another branch
position, suggesting that product shape selectivity might play some role in determining
the zeolite selectivity. More recently, Webb et al. studied linear and branched alkanes in
the range n = 7 — 30 in TON, EUO and MFI [249]. Again they observe lattice effects
for branched molecules, where D presents a minimum as a function of branch position
dependent upon the structure. They note also some “resonant diffusion effect” as a function
of carbon number, noted earlier by Runnebaum and Maginn [172]: the diffusivity becomes
a periodic function of carbon number, due to the preferential localization of molecules along
one channel and their increased diffusion in this channel. Schuring et al. studied the diffusion
of C; to Cy in MFI, MOR, FER and TON for different loadings [177]. They also find some
indication of a resonant diffusion mechanism as a function of chain length. Their study also
indicates that the diffusion of branched alkanes is significantly slower than that of their linear
counterparts, but only for structures with small pores where there is a tight fit between the
adsorbates and the pores.

Another current direction of research concerns the diffusion of mixtures of adsorbates.
Although the currently preferred atomistic simulation method applied to the adsorption
of mixtures is grand canonical Monte Carlo [306-310], MD simulations are also used to
determine how the dynamics of one component affects the diffusion of the other [187,250,
259, 311]. Sholl and Fichthorn investigated how a binary mixture of adsorbates diffuses in
unidirectional pores [311], finding a dual mode of diffusion for certain mixtures, wherein one
component undergoes normal unidirectional diffusion while the other performs single-file
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diffusion. Jost et al. studied the diffusion of mixtures of methane and xenon in silicalite-1
[187]. They find that the diffusivity of methane decreases strongly as the loading of Xe
increases, while the diffusivity of Xe is nearly independent of the loading of methane, which
they attribute to the larger mass and heat of adsorption of Xe. On the other hand, Gergidis
and Theodorou in their study of mixtures of methane and n-butane in silicalite-1 [250], found
that the diffusivity of both molecules decreases monotonically with increasing loading of the
other. Both groups report good agreement with PFG NMR [187] and QENS experiments
[259].

Single-File Diffusion. Single-file diffusion designates the particular collective motion
of particles diffusing along a one-dimensional channel, and unable to pass each other. As
already mentioned, in that case the long-time motions of the particles are completely cor-
related, so that the limit of the MSD depends on the boundaries of the system. Exact
treatments using lattice models show that the MSD has three limiting dependencies with
time [312,313]: plateau for fixed boundaries, linear with ¢ for periodic boundaries or open
boundaries [85], and /% for infinite pore length. Experimental evidence for the existence of
single-file behavior in unidimensional zeolites [78, 80,182, 314] has prompted renewed inter-
est in the subject during the last few years [85, 86,247,248 315-318]. In particular, several
molecular dynamics simulations of more or less realistic single-file systems have been per-
formed, in order to determine whether the single file \/# regime is not an artifact of the
simple lattice model on which it is based [83,247,248,317,318]. Since the long-time mo-
tions of the particles in the MD simulations are necessarily correlated, great care must be
taken to adequately consider the system boundaries. In particular, when using periodic
boundary conditions, the system size along the channel axis must be sufficiently large to
avoid the linear behavior due to the diffusion of the complete set of molecules.

Hahn and Kaérger studied the diffusion of Lennard-Jones particles along a straight tube
in three cases: (i) without external forces acting on the particles from the tube, (i) with
random forces, and (i74) with a periodic potential from the tube [318]. They find for the
no-force case that the MSD is proportional to ¢, whereas for random forces and a periodic
potential it is proportional to v/%, in agreement with the random walk model. Keffer et al.
performed MD simulations of Lennard-Jones methane and ethane in an atomistic model of
AIPO4-5 [317]. The methane molecules, which are able to pass each other, display undirec-
tional but otherwise normal diffusion with the MSD linear with ¢; while ethane molecules,
which have a smaller probability to pass each other, display single-file behavior with an MSD
proportional to v/t. For longer times, however, the nonzero probability to pass each other
destroys the single-file behavior for ethane. Similar behavior was found by Tepper et al. [83].
Sholl and coworkers investigated the diffusion of Lennard-Jones particles in a model AIPO4-5
(86,247, 248], and found that diffusion along the pores can occur wvia concerted diffusion of
weakly bound molecular clusters, composed of several adsorbates. These clusters can jump
with much smaller activation energies than that of a single molecule. However, the MSD
retains its single-file /¢ signature because all the adsorbates in a file do not collapse to form
a single supramolecular cluster.

These MD simulations of unidirectional and single-file systems confirm the lattice gas
prediction, that the MSD is proportional to /2. They also show that whenever a certain
crossing probability exists, this single-file behavior disappears at long times, to be replaced
by normal diffusion. Similar “anomalous” diffusion regimes, with the MSD proportional to
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t at long times and to t* with o < 1 at short times, have also been found in other systems
that do not satisfy the single-file criteria, such as n-butane in silicalite-1 at high loadings
[250]. Therefore, one should be very careful to define exactly the time scale of interest when
working with single-file or other highly correlated systems.

3. Transition State Theory and Dynamical Corrections

As discussed above in Sec. V A 2, the smallest diffusivity that can be simulated by MD
methods is well above most measured values in cation-containing zeolites [5], explaining
why so many MD studies focus on hydrocarbons in all-silica zeolite analogs. This issue has
been addressed by several groups within the last 10 years [319], by applying reactive flux
molecular dynamics [23, 320] (RFMD) and transition-state theory [321] (TST) to model the
dynamics of rare events in zeolites. This subject has been reviewed very recently [12, 14]; as
a result, we give below only a brief outline of the theory.

Rare Event Theory. The standard ansatz in TST is to replace the dynamically con-
verged, net reactive flux from reactants to products with the instantaneous flux through the
transition state dividing surface. TST is inspired by the fact that, although a dynamical rate
calculation is rigorously independent of the surface through which fluxes are computed [322],
the duration of dynamics required to converge the net reactive flux is usually shortest when
using the transition state dividing surface. The TST approximation can be formulated for
gas phase or condensed phase systems [23, 320, 323], using classical or quantum mechanics
[324]. The rate coefficient for the jump from site i to site j can be expressed classically as
(23, 320]:

king = kissj X figs (5.2)
where kZT_S)JT is the TST rate constant, and f;; is the dynamical correction factor also known
as the classical transmission coefficient. The TST rate constant is given by:
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where m is the reduced mass associated with the reaction coordinate, Q* is the configu-
rational partition function on the dividing surface and @); is the configurational partition
function in the reactant state ¢. The last expression can be evaluated without recourse to
dynamics, either by Monte Carlo simulation [325] or in the harmonic approximation by nor-
mal mode analysis [326]. The dynamical correction factor is usually evaluated from short
molecular dynamics simulations originating on the dividing surface. For classical systems,
fi; always takes a value between zero and one, and gives the temperature-dependent fraction
of initial conditions on the dividing surface that initially point to products and eventually
give rise to reaction.

When one has an educated guess regarding the reaction coordinate, but no knowledge of
the transition state or the dividing surface, a reliable but computationally expensive solution
is to calculate the free energy surface along a prescribed path from one free energy minimum
to another. The free energy surface, F'(zy), which is also known as the potential of mean
force and as the reversible work surface, is given by:
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F(xo) = —kgTIn[L{6(x — 20))] = —kpT In Q(xy), (5.4)

where z is the assumed reaction coordinate, xy is the clamped value of x during the en-
semble average over all other coordinates, the length L is a formal normalization constant
that cancels when computing free energy differences, and @Q(xo) is the partition function
associated with the free energy at xy. In terms of the free energy surface, the TST rate
constant is given by:
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where the integral over z is restricted to the reactant region of configuration space. Com-
puting TST rate constants is therefore equivalent to calculating free energy differences.
Numerous methods have been developed over the years for computing e #¥®) many of
which fall under the name umbrella sampling or histogram window sampling [23, 286, 327].

While Egs. (5.2)—(5.5) are standard expressions of rare event theory, the exact way in
which they are implemented depends strongly upon the actual system of interest. Indeed,
if the transition state dividing surface is precisely known (as for the case of an adatom),
then kZT_S)]T provides a good first approximation to the rate coefficient, and the dynamical
correction factor accounts for the possibility that the particle does not thermalize in the
state it has first reached, but instead goes on to a different final state. This process is called
“dynamical recrossing” if the final state is identical to the original state, and otherwise is
called “multi-site jumping.” The importance of dynamical recrossing or multi-site jumping
depends on a number of factors, of which the height of the energy barriers and the mechanism
of energy dissipation are essential.

For example, the minimum energy path for benzene to jump from a cation site to a
window site in Na-Y is shown in Fig. 20, alongside the corresponding energy plot [231].
Despite benzene’s anisotropy, a reasonable model for the cation <+ window dividing surface
turns out to be the plane perpendicular to the three-dimensional vector connecting the two
sites. This simple approach yields dynamical correction factors mostly above 0.5 [59].

In a complex system with many degrees of freedom it might be difficult, or even impos-
sible, to define rigorously the dividing surface between the states. In this case the transition
state approximation may fail, requring the calculation of f;;. Indeed, TST assumes that
all trajectories initially crossing the dividing surface in the direction of the product state
will eventually relax in this state. This statement will be qualitatively false if the supposed
surface does not coincide with the actual dividing surface. In this case, the dynamical
correction factor corrects TST for an inaccurately defined dividing surface, even when dy-
namical recrossings through the actual dividing surface are rare. The problem of locating
complex dividing surfaces has recently been addressed using topology [328], statistics [329]
and dynamics [330, 331].

Siliceous Zeolites. June, Bell and Theodorou reported the first application of TST
dynamically corrected with REMD for a zeolite-guest system in 1991 [319], modeling the
diffusion of Xe and “spherical SF¢” in silicalite-1. This system is sufficiently weakly binding
that reasonably converged MD simulations could be performed for comparison with the rare
event dynamics, showing excellent quantitative agreement in the diffusivities obtained. The
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dynamical correction factors obtained by June et al. show that recrossings can diminish rate
coefficients by as much as a factor of ca. 3, and that multi-site jumps along straight channels
in silicalite-1 [54] contribute to the well known diffusion anisotropy in MFI-type zeolites [61].
Jousse and coworkers reported a series of MD studies on butene isomers in all-silica channel
zeolites MEL and TON [303, 332]. Because the site-to-site energy barriers in these systems
are comparable to the thermal energies studied in the MD simulations, rare event dynamics
need not apply. Nonetheless, Jousse and coworkers showed that even for these relatively
low-barrier systems, the magnitudes and loading dependencies of the MD diffusivities could
be well explained within a jump diffusion model, with residence times extracted from the
MD simulations.

As discussed in Sec. V A 1, Snurr, Bell and Theodorou applied harmonic transition state
theory (TST) to benzene diffusion in silicalite-1, assuming that benzene and silicalite-1 re-
main rigid, by using normal mode analysis for the 6 remaining benzene degrees of freedom
[251]. Their results underestimate experimental diffusivities by one to two orders of magni-
tude, probably more from assuming a rigid zeolite than from using harmonic TST. Forester
and Smith subsequently applied TST to benzene in silicalite-1 using constrained reaction
coordinate dynamics on both rigid and flexible lattices [252]. Lattice flexibility was found
to have a very strong influence on the jump rates. Diffusivities obtained from the flexible
framework simulations are in excellent agreement with experiment, overestimating the mea-
sured room temperature diffusivity (2.2x107'* m? s7') by only about 50%. These studies
suggest that including framework flexibility is very important for bulkier guest molecules,
which may require framework distortions to move along zeolite channels or through windows
separating zeolite cages.

Cation-containing Zeolites. Mosell, Schrimpf and Brickmann reported a series of
TST and RFMD calculations on Xe in Na-Y [333,334] in 1996, and benzene and p-xylene
in Na-Y [242,243] in 1997. They calculated the reversible work of dragging a guest species
along the cage-to-cage [111] axis of Na-Y, and augmented this version of TST with dynamical
corrections. In addition to computing the rate coefficient for cage-to-cage motion through
Na-Y, Mosell et al. confirmed that benzene window sites are free energy local minima, while
p-xylene window sites are free energy maxima, i.e. cage-to-cage transition states [242,243].
Mosell et al. also found relatively small dynamical correction factors, ranging from 0.08-0.39
for benzene and 0.24-0.47 for p-xylene.

At about the same time in 1997, Jousse and Auerbach reported TST and RFMD calcu-
lations of specific site-to-site rate coefficients for benzene in Na-Y [59], using Eq. (5.2) with
jump-dependent dividing surfaces. As with Mosell et al., Jousse et al. found that benzene
jumps to window sites could be defined for all temperatures studied. Jousse et al. were
unable to use TST to model the window — window jump because they could not visualize
simply the anisotropy of the window — window dividing surface. For jumps other than win-
dow — window, we found dynamical correction factors mostly above 0.5, suggesting that
these jump-dependent dividing surfaces coincide closely with the actual ones. Although the
flavors of the two approaches for modeling benzene in Na-Y differed, the final results were
remarkably similar considering that different forcefields were used. In particular, Mosell et
al. used MD to sample dividing surface configurations, while Jousse and Auerbach applied
the Voter displacement-vector Monte Carlo method [325] for sampling dividing surfaces.
The apparent activation energy for cage-to-cage motion in our study is 44 kJ mol~!, in very
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reasonable agreement with 49 kJ mol~! obtained by Mosell et al.

Finite Loadings. Tunca and Ford reported TST rate coefficients for Xe cage-to-cage
jumps at high loadings in ZK-4 zeolite, the siliceous analog of Na-A (structure LTA) [335].
These calculations deserve several remarks. First, because this study treats multiple Xe
atoms simultaneously, defining the reaction coordinate and dividing surface can become quite
complex. Tunca and Ford addressed this problem by considering averaged cage sites, instead
of specific intracage sorption sites, which is valid because their system involves relatively
weak zeolite-guest interactions. They further assume a one-body reaction coordinate and
dividing surface regardless of loading, which is tantamount to assuming that the window
separating adjacent a-cages in ZK-4 can only hold one Xe at a time, and that cooperative
many-Xe cage-to-cage motions are unlikely. Second, Tunca and Ford advocate separate
calculations of Q* and Q; for use in Eq. (5.3), as opposed to the conventional approach
of calculating ratios of partition functions viz. free energies [325]. It is not yet obvious
whether separating these calculations is worth the effort. Third, Tunca and Ford developed a
recursive algorithm for building up (/V + 1)-body partition functions from N-body partition
functions, using a “test particle” method developed for modeling the thermodynamics of
liquids. Although the approach of Tunca and Ford has a restricted regime of applicability,
it nonetheless seems promising in its direct treatment of many-body diffusion effects.

Free Energy Surfaces. Maginn, Bell and Theodorou performed reversible work calcu-
lations with a TST flavor on long chain alkanes in silicalite-1 [173], finding that diffusivities
monotonically decrease with chain length until about n-Cg, after which diffusivities plateau
and become nearly constant with chain length. Bigot and Peuch calculated free energy
surfaces for the penetration of n-hexane and isooctane into a model of H-mordenite zeolite
with an organometallic specie, Sn(CHzs)s, grafted to the pore edge [336]. Bigot and Peuch
found that Sn(CHs)s has little effect on the penetration barrier of n-hexane, but they pre-
dict that the organometallic increases the penetration barrier of isooctane by 60 kJ mol=*.
Sholl computed the free energy surface associated with particle exchange of Ar, Xe, methane
and ethane in AIPO,4-5, a one-dimensional channel zeolite [337], suggesting time scales over
which anomalous single-file diffusion is expected in such systems.

Jousse, Auerbach and Vercauteren modeled benzene site-to-site jumps in H-Y zeolite
(Si:Al=2.43), using a forcefield that explicitly distinguishes Si and Al, as well as oxygens in
Si-O-8Si, Si-O-Al and Si-OH-Al environments [229]. Such heterogeneity creates many distinct
adsorption sites for benzene in H-Y. Multiple paths from site to site open as the temperature
increases. To simplify the picture, Jousse et al. computed the free energy surface for benzene
motion along the [111] axis in H-Y, which produces cage-to-cage migration. Due to the
multiplicity of possible cage-to-cage paths, the temperature dependence of the cage-to-cage
rate constant as computed by umbrella sampling exhibits strong non-Arrhenius behavior.
These calculations may help to explain intriguing NMR correlations times for benzene in
H-Y, which also exhibit striking non-Arrhenius temperature dependencies [197].

Quantum Dynamics. Of all the dynamics studies performed on zeolites, very few
have explored the potentially quantum mechanical nature of nuclear motion in micropores
[338—-341]. Quantum modeling of proton transfer in zeolites [339, 341, 342] seems especially
important because of its relevance in catalytic applications. Such modeling will become more
prevalent in the near future, partially because of recent improvements in quantum dynamics
approaches [341], but mostly because of novel electronic structure methods developed by
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Sauer and coworkers [343,344], which can accurately compute transition state parameters
for proton transfer in zeolites by embedding a quantum cluster in a corresponding classical
forcefield.

To facilitate calculating quantum rates for proton transfer in zeolites, Fermann and
Auerbach developed a novel semiclassical transition state theory (SC-TST) for truncated
parabolic barriers [341], based on the formulation of Hernandez and Miller [345]. Our SC-
TST rate coefficient is stable to arbitrarily low temperatures as opposed to purely harmonic
SC-TST, and has the form k5C-TST = ETST . T where the quantum transmission coefficient,
I', depends on the zero-point corrected barrier and the barrier curvature. To parameterize
this calculation, Fermann, Blanco and Auerbach performed high level cluster calculations
[342] yielding an O(1) — O(4) zero-point corrected barrier height of 86.1 kJ mol™!, which
becomes 97.1 kJ mol~! when including long range effects from the work of Sauer et al. [343].
Using this new approach, Fermann and Auerbach calculated rate coefficients and crossover
temperatures for the O(1) — O(4) jump in H-Y and D-Y zeolites, yielding crossover tem-
peratures of 368 K and 264 K, respectively. These results suggest that tunneling dominates
proton transfer in H-Y up to and slightly above room temperature, and that true proton
transfer barriers are being underestimated by neglecting tunneling in the interpretation of
experimental mobility data.

B. Lattice Models

When modeling strongly-binding or tight-fitting guest-zeolite systems, theoretical meth-
ods specialized for rare event dynamics such as TST and kinetic Monte Carlo (KMC) are
required. These methods are applied by coarse-graining the molecular motions, keeping only
their diffusive character. In zeolites, the well-defined cage and channel structure naturally
orients this coarse-graining toward lattice models, which are the focus of this Section.

The simplest such model was proposed by Ising in 1925 [346]. Many variants of the Ising
model have since been applied to study activated surface diffusion [58]. Although in principle
a lattice can be regarded simply as a numerical grid for computing configurational integrals
required by statistical mechanics [347], the grid points can have important physical meaning
for dynamics in zeolites, as shown schematically in Fig. 21. Applying lattice models to
diffusion in zeolites rests on several (often implicit) assumptions on the diffusion mechanism;
here we recall those assumptions and analyze their validity for modeling dynamics of sorbed
molecules in zeolites.

1. Basic Assumptions

Temperature-independent Lattice. Lattice models of transport in zeolites begin
by assuming that diffusion proceeds by activated jumps over free energy barriers between
well-defined adsorption sites, i.e., that site residence times are much longer than travel
times between sites. These adsorption sites are positions of high probability, constructed
either from energy minima, for example next to cations in cation-containing zeolites, and/or
from high volume, for example channel intersections in silicalite-1. Silicalite-1 provides a
particularly illustrative example [251]: its usual description in terms of adsorption sites
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involves two distinct channel sites, where the adsorbate is stabilized by favorable energy
contacts with the walls of the 10R channels; and an intersection site at the crossing between
the two channel systems, where the large accessible volume compensates entropically for less
favorable contacts (see Fig. 2). Depending on the temperature, one or both types of sites
can be populated simultaneously.

The silicalite-1 example points to the breakdown of the first assumption inherent in
lattice models, namely, that adsorption and diffusion of guests in zeolites proceeds on a
fixed lattice of sites, independent of external thermodynamic variables such as temperature.
Clearly this is not the case. Indeed, when kg7 becomes comparable with the activation
energy for a jump from site 7 to site f, a new lattice that subsumes site 7 into site f may be
more appropriate [54]. Alternatively, one may retain site ¢ with modifications to the lattice
model discussed below, taking into account so-called kinetic correlations that arise from the
relatively short residence times in site ¢ [54, 55, 303].

Poisson Statistics. The second assumption inherent in most lattice models of diffusion,
which is related to the first, is that subsequent jumps of a given molecule are uncorrelated
from each other, i.e., that a particular site-to-site jump has the same probability to occur
at any time. This assumption results in a site residence time distribution that follows the
exponential law associated with Poisson statistics [348]. In Fig. 18 we have seen that such
a law can indeed result from the analysis of MD trajectories. As a result, lattice models
can often be mapped onto master rate equations such as those in the chemical kinetics of
first-order reactions [348,349]. This fact highlights the close connection between reaction
and diffusion in zeolites, when modeled with lattice dynamics.

Deviations from Poisson statistics would also arise if a molecule were most likely to jump
in phase with a low frequency zeolite framework vibration, such as a window breathing mode
[350], or if a molecule were most likely to jump in concert with another guest molecule. An
extreme case of this latter effect was predicted by Sholl and Fichthorn [86,247], wherein
strong adsorbate-adsorbate interactions in single-file zeolites generated transport dominated
by correlated cluster dynamics instead of single molecule jumps. In this case, a consequence
of Poisson statistics applied to diffusion in zeolites at finite loadings ceases to hold, namely,
there no longer exists a time interval sufficiently short so that only one molecule can jump
at a time.

Loading-independent Lattice. The final assumption, which is typically invoked by
lattice models of diffusion at finite loadings, is that the sites do not qualitatively change
their nature with increasing adsorbate loading. This assumption holds when adsorption
sites are separated by barriers such as windows between large cages [335], and also when
host-guest interactions dominate guest-guest interactions. This loading-independent lattice
model breaks down when the effective diameter of guest molecules significantly exceeds the
distance between adjacent adsorption sites, as high loadings create unfavorable excluded-
volume interactions between adjacent guests. This effect does not arise for benzene in
Na-Y [53], which involves site-to-site distances and guest diameters both around 5 A, but is
predicted for Xe in Na-A by classical density functional theory calculations [351].

Despite these many caveats, lattice models have proven extremely useful for elucidating
qualitatively and even semi-quantitatively the following physical effects regarding: (i) host
structure: pore topology [57, 352,353, diffusion anisotropy [28, 61], pore blockage [354], per-
colation [355], and open system effects [28, 85]; (i7) host-guest structure: site heterogeneity
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[32,33] and reactive systems [356]; and (4i7) guest-guest structure: attractive interactions
(332,352, 353], phase transitions [357,358]|, concerted cluster dynamics [86,247], single-file
diffusion [9,85], and diffusion of mixtures [311,359,360]. In what follows, we outline the
theory and simulation methods used to address these issues.

2. Equilibrium and Non-equilibrium Kinetic Monte Carlo

Kinetic Monte Carlo (KMC) models diffusion on a lattice as a random walk composed
of uncorrelated, single molecule jumps as discussed above, thereby providing a stochastic
solution to the dynamics associated with the lattice model. Although KMC models transport
as sequences of uncorrelated events in the sense that jump times are extracted from Poisson
distributions, KMC does account for spatial correlations at finite loadings. Indeed, when
a molecule executes a jump at higher loadings, it leaves behind a vacancy that is likely to
be occupied by a successive jump, thereby diminishing the diffusivity from the mean field
theory estimate, as discussed in Sec. III B.

KMC is isomorphic to the more conventional Monte Carlo algorithms [264], except that
in a KMC simulation random numbers are compared to ratios of rate coefficients, instead of
ratios of Boltzmann factors. However, if the pre-exponential factors cancel in a ratio of rate
coefficients, then a ratio of Boltzmann factors does arise, where the relevant energies are
activation energies. KMC formally obeys detailed balance, meaning that all thermodynamic
properties associated with the underlying lattice Hamiltonian can be simulated with KMC.
In addition to modeling transport in zeolites, KMC has been used to model adsorption
kinetics on surfaces [361], and even surface growth itself [362].

Algorithms. KMC can be implemented with either constant time-step or variable
time-step algorithms. Variable time-step methods are efficient for sampling jumps with
widely varying time scales, while fixed time-step methods are convenient for calculating
ensemble averaged correlation functions. In the constant time-step technique, jumps are
accepted or rejected based on the kinetic Metropolis prescription, in which a ratio of rate
coeficients, kpop/kre, is compared to a random number [200, 363]. Here k. is a reference
rate that controls the temporal resolution of the calculation according to Aty = 1/kres-
The probability to make a particular hop is proportional to knep/krer, Which is independent
of time, leading natually to a Poisson distribution of jump times in the simulation. In the
fixed time-step algorithm, all molecules in the simulation attempt a jump during the time
Atpin- In order to accurately resolve the fastest molecular jumps, k.. should be greater than
or equal to the largest rate constant in the system, in analogy with choosing time steps
for MD simulations. However, if there exists a large separation in time scales between the
most rapid jumps, e.g. intracage motion, and the dynamics of interest, e.g. cage-to-cage
migration, then one may vary k. to improve efficiency. The cost of this modification is
detailed balance; indeed, tuning ks to the dynamics of interest is tantamount to simulating
a system where all the rates larger than ks are replaced with k.

A useful alternative for probing long-time dynamics in systems with widely varying jump
times is variable time-step KMC. In the variable time-step technique, a hop is made every
KMC step and the system clock is updated accordingly [354, 364]. For a given configuration
of random walkers, a process list of possible hops from occupied to empty sites is compiled
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for all molecules. A particular jump from site 7 to j is chosen from this list with a probability
of ki_;/kiot, where ko is the sum of all rate coefficients in the process list. In contrast to
fixed time-step KMC, where all molecules attempt jumps during a KMC step, in variable
time-step KMC a single molecule ezecutes a jump every KMC step and the system clock is
updated by an amount At, = —In(1 — x)/kos, where z € [0,1) is a uniform random number
and n labels the KMC step. This formula results directly from the Poisson distribution,
suggesting that other formulas may be used in variable time-step KMC to model kinetic
correlations [303]. In general, we suggest that simulations be performed using the variable
time-step method, with data analyses carried out by mapping the variable time-step KMC
trajectories onto a fixed time-step grid [349] as discussed in Sec. VB 2.

Ensembles. Guest-zeolite systems at equilibrium are inherently multi-component sys-
tems at constant temperature and pressure. Since guest molecules are continually adsorbing
and desorbing from more-or-less fixed zeolite particles, a suitable ensemble would fix Nz =
amount of zeolite, ug = chemical potential of guest, p = pressure and T = temperature,
keeping in mind that ug and p are related by the equation of state of the external fluid
phase. However, constant-pressure simulations are very challenging for lattice models, since
constant pressure implies volume fluctuations, which for lattices involve adding or deleting
whole adsorption sites. As such, constant-volume simulations are much more natural for
lattice dynamics. Since both the volume and amount of zeolite is virtually fixed during
intracrystalline adsorption and diffusion of guests, we need to specify only one of these vari-
ables. In lattice simulations it is customary to specify the number of adsorption sites, Ng;tes,
which plays the role of a unitless volume. We thus arrive at the natural ensemble for lattice
dynamics in zeolites: the grand canonical ensemble, which fixes g, Ngites and 7.

The overwhelming majority of KMC simulations applied to molecules in zeolites have
been performed using the canonical ensemble, which fixes Ng = number of guest molecules,
Nsites and T'. Although the adsorption-desorption equilibrium discussed above would seem
to preclude using the canonical ensemble, fixing N¢ is reasonable if zeolite particles are large
enough to make the relative root-mean-square fluctuations in Ng rather small. Such closed-
system simulations are usually performed with periodic boundary conditions, in analogy
with atomistic simulations [264, 286]. Defining the fractional loading, 6, by § = Ng/Nsites,
typical KMC calculations produce the self-diffusion coefficient Dy as a function of T" at fixed
f for Arrhenius analysis, or as a function of # at fixed T, a so-called diffusion isotherm.

There has recently been renewed interest in grand canonical KMC simulations for three
principal reasons: to relax periodic boundary constraints to explore single-file diffusion with
lattice dynamics [85], to study non-equilibrium permeation through zeolites membranes
[28], and in general to explore the interplay between adsorption and diffusion in zeolites
[307,365,366]. Grand canonical KMC requires that the lattice contain at least one edge
that can exchange particles with an external phase. In contrast to grand canonical MC
used to model adsorption, where particle insertions and deletions can occur anywhere in the
system, grand canonical KMC must involve insertions and deletions only at the edges in
contact with external phases, as shown in Fig. la—c.

The additional kinetic ingredients required by grand canonical KMC are the rates of
adsorption to and desorption from the zeolite [367]. Because desorption generally proceeds
with activation energies close to the heat of adsorption, desorption rates are reasonably
simple to estimate. However, adsorption rates are less well-known, because they depend on
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details of zeolite crystallite surface structure. Qualitative insights on rates of penetration
into microporous solids are beginning to emerge [368, 369], as well as zeolite-specific models
of such penetration phenomena [301, 336, 370]. Calculating precise adsorption rates may not
be crucial for parameterizing qualitatively reliable simulations, because adsorption rates are
typically much larger than other rates in the problem. For sufficiently simple lattice models,
adsorption and desorption rates can be balanced to produce the desired loading according to
the adsorption isotherm [28]. If one assumes that the external phase is an ideal fluid, then
insertion frequencies are proportional to pressure p. As such, equilibrium grand canonical
KMC produces the self-diffusion coefficient as a function of p and 7. Alternatively, for non-
equilibrium systems involving different insertion frequencies on either site of the membrane,
arising from a pressure (chemical potential) gradient across the membrane, grand canonical
KMC produces the Fickian or transport diffusion coefficient, D, as a function of 7" and the
local loading in the membrane.

Models of Finite Loading. The great challenge in performing KMC simulations at
finite loadings is that the rate coefficients {k;_,;} should depend upon the local configuration
of molecules because of guest-guest interactions. That is, in compiling the process list of
allowed jumps and associated rate constants on the fly of a KMC simulation, TST or related
calculations should be performed to account for the effect of specific guest configurations
on the jump rate coefficients. To date, this “ab initio many-body KMC” approach has not
been employed because of its daunting computational expense. Instead, researchers either
ignore how guest-guest interactions modify rate coefficients for site-to-site jumps; or they use
many-body MD at elevated temperatures when guest-guest interactions cannot be ignored
(330, 331].

A popular approach for modeling many-body diffusion in zeolites with KMC is thus the
“site blocking model,” where guest-guest interactions are ignored, except for exclusion of
multiple site occupancy. This model accounts for entropic effects of finite loadings, but not
energetic effects. Calculating the process list and available rate coefficients becomes par-
ticularly simple; one simply sums the available processes using rates calculated at infinite
dilution [371]. This model is attractive to researchers in zeolite science [372], because block-
ing of cage windows and channels by large, aromatic molecules that form in zeolites, i.e.
“coking,” is a problem that zeolite scientists need to understand and eventually control.

The site blocking model ignores guest-guest interactions that operate over medium to
long length scales, which modify jump activation energies for site-to-site rate coefficients
depending upon specific configurations of neighboring adsorbates. By incorporating these
additional interactions, diffusion models reveal the competition between guest-zeolite ad-
hesion and guest-guest cohesion [332,373,374]|. Qualitatively speaking, the diffusivity is
generally expected to increase initially with increasing loading when repulsive guest-guest
interactions decrease barriers between sites, and to decrease otherwise. At very high load-
ings, site blocking lowers the self diffusivity regardless of the guest-guest interactions.

To develop a quantitative model for the effects of guest-guest attractions Saravanan et
al. proposed a “parabolic jump model,” which relates binding energy shifts to transition
state energy shifts [32,56]. This method was implemented for lattice gas systems whose
thermodynamics is governed by the following Hamiltonian:
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where M is the number of sites in the lattice, @ = (nq,ng,---,ny) are site occupation
numbers listing a configuration of the system, and f; = ¢; — T's; is the free energy for
binding in site 4. In Eq. (5.6), J;; is the nearest neighbor interaction between sites ¢ and j,
i.e. Ji; = 0 if sites ¢ and j are not nearest neighbors.

Saravanan et al. assumed that the minimum energy hopping path connecting adjacent
sorption sites is characterized by intersecting parabolas, shown in Fig. 22, with the site-to-
site transition state located at the intersection point. For a jump from site ¢ to site j, with

1,7 =1,..., M, the hopping activation energy including guest-guest interactions is given by:
1 6EY 1

E.(i,j) = EO(i,j) + AE; | - c AEZ | —— 5.7

(Z’j) a (Z’]) + J (2 + k.Z]aZQJ + ] leja’?j ’ ( )

where E” (1, 7) is the infinite dilution activation energy calculated using the methods of Sec.
V A3, and a;; is the jump distance. AE;; is the shift in the energy difference between sites %
and j resulting from guest-guest interactions, and is given by AE;; = (E; — E;) — (¢, —€4),
where B}, = g5, + Z;\il Jiimy. This method allows the rapid estimation of configuration
dependent barriers during a KMC simulation, knowing only infinite dilution barriers and
the nearest neighbor interactions defined above. The parabolic jump model is most accurate
when the spatial paths of jumping molecules are not drastically changed by guest-guest
interactions, although the energies can change as shown in Fig. 22. The influences of nearest-
neighbor attractions have also been considered in the analytical treatment of tracer exchange
and particle conversion in single-file systems [374].

Infinite Dilution Simulations. Most KMC simulations of diffusion in zeolites are per-
formed at high guest loadings, to explore the effects on transport of guest-guest interactions.
A handful of KMC studies have been reported at infinite dilution, to relate fundamental rate
coefficients with observable self diffusivities for particular lattice topologies. June et al. aug-
mented their TST and RFMD study with KMC calculations of Xe and SFy self diffusivities
in silicalite-1 [319]. They obtained excellent agreement among apparent activation energies
for Xe diffusion calculated using MD, KMC with TST jump rates, and KMC with RFCT
jump rates. The resulting activation energies fall in the range 5-6 kJ mol !, which is much
lower than the experimentally determined values of 15 and 26 kJ mol ! [119, 375]. van Tassel
et al. reported a similar study in 1994 on methane diffusion in zeolite A, finding excellent
agreement between self diffusivities calculated with KMC and MD [376].

Auerbach et al. reported KMC simulations of benzene diffusion in Na-Y showing that
the cation — window jump (see Fig. 20) controls the temperature dependence of diffu-
sion, with a predicted activation energy of 41 kJ mol™' [231]. Because benzene residence
times at cation sites are so long, these KMC studies could not be compared directly with
MD, but nonetheless yield reasonable agreement with the QENS barrier of 34 kJ mol~!
measured by Jobic et al. [181]. Auerbach and Metiu then reported KMC simulations of
benzene orientational randomization in various models of Na-Y with different numbers of
supercage cations, corresponding to different Si:Al ratios [200]. Full cation occupancy gives
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randomization rates controlled by intracage motion, whereas half cation occupancy gives
rates sensitive to both intracage and intercage motion. This finding prompted Chmelka and
coworkers to perform exchange-induced sidebands NMR experiments on labeled benzene in
the corresponding Ca-Y (Si:Al=2.0), finding indeed that they were able to measure both the
cation — cation and cation — window jump rates within a single experiment [1]. Finally,
when Auerbach and Metiu modeled benzene orientational randomization with one quarter
cation occupancy, they found qualitative sensitivity to different spatial patterns of cations,
suggesting that measuring orientational randomization in zeolites can provide important
information regarding cation disorder and possibly Al distributions.

Finite Loadings. Theodorou and Wei used KMC to explore a site blocking model
of reaction and diffusion with various amounts of coking [359]. They showed that xylene
isomerization catalyzed by ZSM-5 is biased toward production of the most valuable isomer,
p-xylene, because the diffusivity of p-xylene is much greater than that of m-xylene and o-
xylene, thus allowing the para product to diffuse selectively out of the zeolite particle. This
seminal study exemplifies the potential benefits of understanding and controlling transport
in zeolites.

Nelson and coworkers developed similar models, to explore the relationship between the
catalytic activity of a zeolite and its lattice percolation threshold [377,378]. In a related
study, Keffer, McCormick and Davis modeled binary mixture transport in zeolites, where
one component diffuses rapidly while the other component is trapped at sites, e.g. methane
and benzene in Na-Y [355]. They used KMC to calculate percolation thresholds of the rapid
penetrant as a function of blocker loading, and found that these thresholds agree well with
predictions from simpler percolation theories [379].

Coppens, Bell and Chakraborty used KMC to calculate the loading dependence of self
diffusion for a variety of lattices, for comparison with mean field theories (MFT) of diffusion
[57]. These theories usually predict Dg(0) = Dy(1—8), where 6 is the fractional occupancy of
the lattice and Dy is the self diffusivity at infinite dilution. Coppens et al. found that the error
incurred by MF'T is greatest for lattices with low coordination numbers, such as silicalite-1
and other MFI-type zeolites. Coppens et al. then reported KMC simulations showing that
by varying the concentrations of weak and strong binding sites [33], their system exhibits
most of the loading dependencies of self diffusion reported by Kérger and Pfeifer [31]. Bhide
and Yashonath also used KMC to explore the origins of the observed loading dependencies
of self diffusion, finding that most of these dependencies can be generated by varying the
nature and strength of guest-guest interactions [352, 353].

Benzene in Na-X. Auerbach and coworkers reported a series of studies modeling the
concentration dependence of benzene diffusion in Na-X and Na-Y zeolites [32,53, 56,74,
371]. These studies were motivated by persistent, qualitative discrepancies between different
experimental probes of the coverage dependence of benzene self diffusion in Na-X [5], as
shown in Fig. 12. Pulsed field gradient (PFG) NMR diffusivities decrease monotonically with
loading for benzene in Na-X [380], while tracer zero-length column (TZLC) data increase
monotonically with loading for the same system [149].

Saravanan et al. performed KMC simulations using the parabolic jump model to account
for guest-guest attractions [32,56]. The KMC results for benzene in Na-X are in excellent
qualitative agreement with the PFG NMR results, and in qualitative disagreement with
TZLC. Other experimental methods yield results for benzene in Na-X that also agree broadly
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with these PFG NMR diffusivities [381-383]. Although the evidence appears to be mounting
in favor of the PFG NMR loading dependence for benzene in Na-X, it remains unclear just
what is being observed by the TZLC measurements. To address this issue, Brandani et al.
reported TZLC measurements for benzene in various Na-X samples with different particle
sizes. They found tracer exchange rates that exhibit a normal dependence on particle size,
suggesting that their diffusivities are free from artifacts associated with unforeseen diffusion
resistances at zeolite crystallite surfaces [149].

Noting that molecular transport in TZLC measurements samples longer length scales
than that in PFG NMR experiments, Chen et al. have suggested that the TZLC method
may be more sensitive than is PFG NMR to electrostatic traps created by random Al and
cation distributions [150]. By performing a field theory analysis of an augmented diffusion
equation, Chen et al. estimate that such charge disorder can diminish the self diffusivity by
roughly two orders of magnitude from that for the corresponding ordered system. This effect
is remarkably close to the discrepancy in absolute magnitudes between PFG NMR and TZLC
diffusivities for benzene in Na-X at low loadings [149]. This intriguing prediction by Chen
et al. suggests that there should be a striking difference between benzene diffusion in Na-X
(Si:Al=1.2) and in Na-LSX (Si:Al=1), since the latter is essentially an ordered structure.
We are not aware of self-diffusion measurements for benzene in Na-LSX, but we can turn
to NMR spin-lattice relaxation data for deuterated benzene in these two zeolites [198, 384].
Unfortunately, such data typically reveal only short length scale, intracage dynamics [200],
and as a result may not provide such a striking effect. Indeed, the activation energy asso-
ciated with the NMR correlation time changes only moderately, decreasing from 14.040.6
kJ mol~! for Na-X [198] to 10.6+0.9 kJ mol~! for Na-LSX [384], in qualitative agreement
with the ideas of Chen et al. [150]. It remains to be seen whether such electrostatic traps
can explain the loading dependence observed by TZLC for benzene in Na-X.

By varying fundamental energy scales, the model of Saravanan and Auerbach for benzene
in FAU-type zeolites exhibits four of the five loading dependencies of self diffusion reported
by Kérger and Pfeifer [31], in analogy with the studies of Coppens et al. [33]. and Bhide
and Yashonath [352,353]. However, in contrast to these other KMC studies, Saravanan
and Auerbach explored the role of phase transitions [357,358] in determining the loading
dependencies of self diffusion [32]. In particular, they found that Kérger and Pfeifer’s type
III diffusion isotherm, which involves a nearly constant self diffusivity at high loadings, may
be characteristic of a cluster-forming, subcritical adsorbed phase where the cluster of guest
molecules can extend over macroscopic length scales. Such cluster formation suggests a
diffusion mechanism involving “evaporation” of particles from clusters. Although increasing
the loading in subcritical systems increases cluster sizes, Saravanan and Auerbach surmised
that evaporation dynamics remains essentially unchanged by increasing loading. As such,
the subcritical diffusivity is expected to obtain its high loading value at low loadings, and
to remain roughly constant up to full loading.

In addition, Saravanan and Auerbach found that Karger and Pfeifer’s types I, IT and IV
are characteristic of supercritical diffusion, and can be distinguished based on the loading
that gives the maximum diffusivity, fn... For example, the PFG NMR results discussed
above for benzene in Na-X are consistent with O, S 0.3, while the TZLC data give Omay
2 0.5 (see Fig. 12). The KMC simulations of Saravanan and Auerbach predict that O
will decrease with increasing temperature, increasing strength of guest-guest attractions,
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decreasing free energy difference between site types, and in general anything that makes
sites more equally populated [32].

Reactive Systems. Trout, Chakraborty and Bell applied electronic structure methods
to calculate thermodynamic parameters for possible elementary reactions in the decomposi-
tion of NO, over Cu-ZSM-5 [385]. Based on these insights, they developed a KMC model of
reaction and diffusion in this system, seeking the optimal distribution of isolated reactive Cu
centers [356]. This hierarchical approach to realistic modeling of complex systems presents
an attractive avenue for future research.

Open Systems. Gladden et al. developed a versatile open-system KMC program that
allows them to study adsorption, diffusion and reaction in zeolites simultaneously [366]. They
have applied their algorithm to model ethane and ethene binary adsorption in silicalite-1
[366], finding excellent agreement with the experimental binary isotherm.

Nelson and Auerbach reported open-system KMC simulations of anisotropic diffusion [28]
and single-file diffusion [85] (infinitely anisotropic) through zeolite membranes. They defined
an anisotropy parameter, 7, according to n = k,/ky, where k; and k, are the elementary
jump rates in the transmembrane and in-plane directions, respectively. For example, the
n < 1 case models p-xylene permeation through a silicalite-1 membrane (see Fig. 2) oriented
along the the straight channels (b-axis), while > 1 corresponds to the same system except
oriented along the the zig-zag (a-axis) or “corkscrew” channels (c-axis) [291]. The limiting
case 1 = 0 corresponds to single-file diffusion.

Nelson and Auerbach have studied how the self diffusivity depends upon membrane thick-
ness L, and anisotropy n. However, the long-time limit of the MSD may not be accessible
in a membrane of finite thickness. Furthermore, the natural observable in a permeation
measurement is steady-state flux rather than the MSD. To address these issues, they simu-
lated two-component, equimolar counter-permeation of identical, labeled species—i.e. tracer
counter-permeation—which has been shown to yield transport identical to self diffusion [26].
Such a situation is closely related to the tracer zero-length column experiment developed by
Ruthven and coworkers [149]. When normal diffusion holds the self diffusivity is indepen-
dent of membrane thickness, while anomalous diffusion is characterized by an L-dependent
self diffusivity. For n > 1, Nelson and Auerbach found that diffusion is normal and that
MFT becomes exact in this limit [28], i.e. Ds(8) = Dy(1 — 6). This is because sorbate mo-
tion in the plane of the membrane is very rapid, thereby washing out any correlations in
the transmembrane direction. As 7 is reduced, correlations between the motion of nearby
molecules decrease the diffusivity. For small values of 7, a relatively large lattice is required
to reach the thick membrane limit, such that particle exchange becomes probable during the
intracrystalline lifetime. The extreme case of this occurs when n = 0, for which diffusion is
strictly anomalous for all membrane thicknesses.

As discussed in Sec. IIT1 B, Nelson and Auerbach applied open-system KMC to study the
nature of anomalous diffusion through single-file zeolites of finite extent [85]. They found
that open, single-file systems have diffusivities that depend on file length, L, according to
Eq. (3.13). The intracrystalline lifetime during normal, one-dimensional tracer exchange
obeys:

L2

— o L? .
opn <L (5-8)

Tintra =
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where the proportionality follows from the fact that, in normal diffusion, the diffusivity is
independent of system size. However, to describe the intracrystalline lifetime during single-
file self diffusion, Dt in Eq. (5.8) must be replaced by Dsr from Eq. (3.13), giving [82, 84, 85:

intra — T oo~ T N 1 Ay L3, .
Tt = 19 Des  12aDo(1 — ) (5.9)

where Dy is the infinite dilution jump diffusivity, and a is the nearest neighbor site-to-site or
cage-to-cage distance. The L? scaling in Eq. (5.9) plays an important role in the discussion
below of molecular traffic control.

Direct experimental verification of the L-dependence of the single-file self-diffusion coef-
ficient [Eq. (3.13)] will require careful tracer counter-permeation experiments on single-file
zeolites of various particle sizes. Before this daunting task is achieved, more indirect means of
verification may prove useful. Along these lines, de Gauw et al. recently interpreted reaction-
diffusion experiments on n-hexane and 2,2-dimethylbutane in Pt/H-mordenite [386]. They
found that the only way they could interpret their data was by assuming an intracrystalline
lifetime scaling as L?, hence providing support for the ideas above. Rodenbeck et al. also
found it necessary to interpret activation energies for reactions catalyzed in zeolites in light
of single-file diffusion [387]. The general correlation between chemical reaction and moleular
propagation in single-file systems is a challenging task of current experimental [316, 388, 389]
and theoretical [387,390, 391] research.

Molecular Traffic Control. The possibility of enhancing reactivity by “molecular
traffic control” [392, 393] (MTC) emerges when considering diffusion and reaction in networks
of single-file systems [394-396]. The effective reactivity can be enhanced by MTC if reactant
and product molecules are adsorbed along different diffusion paths in the interior of zeolite
crystallites. Recent MD simulations have confirmed that this assumption, which underlies
MTC, can be realized for two components in an MFI-type zeolite [397].

To explore the possible consequences of MTC, Karger and coworkers have developed
lattice models that simulate the basic MTC assumption [395,396,398]. In particular, the
extreme case has been considered where channels of one type can accommodate only reactant
molecules (A), while channels of a second type, perpendicular to those of the first type,
can accommodate only product molecules (B). Within this channel network, the channel
intersections are assumed to give rise to an irreversible reaction, A—B. It is further assumed
that the network is in contact with a gas phase containing A molecules at a certain constant
pressure, and that there is no re-entrance of B molecules. Figure 23 shows that the effective
reactivity in such a system can dramatically exceed the reactivity in a reference system,
where both channels are equally accessible to both types of molecules.

This enhanced reactivity can be understood by considering the mean life time in single-
file systems as provided by Eq. (5.9). We imagine using this relation to estimate the mean
time required for reactant and product molecules to diffuse from one channel intersection
to an adjacent one, with L being proportional to the number of sites between intersections.
This estimate, however, applies only to the reference system, where the total concentration
(sum of reactant and product concentrations) is constant throughout the system. Under the
condition of molecular traffic control, however, the concentration of reactant molecules is
found to drop from outside into the interior, while the concentration of product molecules
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(along the other set of parallel channels) drops from inside to outside. Under the influence
of such concentration gradients, molecular transport in single-file systems proceeds under
the conditions of normal diffusion [77,399], with mean life times given by Eq. (5.8) rather
than by Eq. (5.9). Thus, with an increasing number of sites between intersections, transport
inhibition will become progressively more significant because of the proportionality to L3
rather than to L?, leading to the observed reactivity enhancement with molecular traffic
control in comparison to that with the reference system.

C. Mean Field and Continuum Theories

Mean field and continuum theories provide a way to analyze the behavior of systems on
length scales that are too large for even coarse-grained models to handle [210]. In the end,
we come full circle to the Fickian and Maxwell-Stefan formulations of diffusion!

Lattice Topology. The diffusion theory discussed above relies on the tetrahedral topol-
ogy of FAU-type zeolites. Developing such a theory for general frameworks remains challeng-
ing. Braun and Sholl developed a Laplace-Fourier transformation method for calculating
exact self-diffusion tensors in generalized lattice gas models [400], expanding on the ma-
trix formalism originally introduced by Fenzhe and Kérger [401]. These methods generally
involve quite heavy matrix algebra, which can sometimes hide the underlying physical mean-
ing of the parameters. Jousse, Auerbach and Vercauteren developed an alternative method
for deriving analytical self-diffusion coefficients at infinite dilution for general lattices, by
partitioning the trajectory of a tracer into uncorrelated sequences of jumps [55]. This ap-
proach can be used to analyze both geometric correlations due to the non-symmetric nature
of adsorption sites in zeolite pores, and kinetic correlations arising from insufficient ther-
malization of a molecule in its final site. This method was applied to benzene diffusion in
Na-Y (geometric correlations) and to ethane diffusion in silicalite-1 (geometric and kinetic
correlations), yielding quantitative agreement with KMC simulations [55]. The new method
was also extended to finite loadings using MF T, yielding a completely analytical approach
for modeling diffusion in any guest-zeolite system.

Maxwell-Stefan and Fick. Krishna and van den Broeke modeled the transient per-
meation fluxes of methane and n-butane through a silicalite-1 membrane using both the
Fick and Maxwell-Stefan formulations [402]. Transient experiments showed that initially
the permeation flux of methane is higher than that of n-butane, but that this methane flux
eventually reduces to a lower steady-state value. The Maxwell-Stefan formulation succeeded
in reproducing this non-monotonic evolution to steady state for methane; the Fick formula-
tion failed qualitatively in this regard. This is attributed to the fact that multi-component
systems pose a challenge to the Fick formulation of diffusion, as discussed in Sec. IID. van
de Graaf, Kapteijn and Moulijn used the Maxwell-Stefan formulation to interpret permse-
lectivity data for the separations of ethane/methane and propane/methane mixtures with a
silicalite-] membrane [39]. Based only on separately determined single-component adsorp-
tion and diffusion parameters, the Maxwell-Stefan model gave permselectivities in excellent
agreement with their experimental data.

Membrane Disorder. Nelson, Tsapatsis and Auerbach computed steady-state so-
lutions of the diffusion equation to evaluate the influence of defects, voids and diffusion
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anisotropy on permeation fluxes through model zeolite membranes [29]. Nelson et al. aug-
mented the lattice configuration shown in Fig. 1la with various kinds of defect structures,
and used a time-dependent, numerical finite difference approach for computing steady-state
fluxes in a variety of situations. They found that with a reasonable anisotropy and with a
moderate density of voids in the membrane, permeation fluxes can be controlled by jumps
perpendicular to the transmembrane direction. This suggests that oriented zeolite mem-
branes may not behave with the intended orientation if there is a sufficient density of defects
in the membrane.

Charge Disorder. As discussed in Sec. VB2, Chen et al. explored the extent to which
static charge disorder in zeolites influences self diffusivities on different length and time
scales. They focused on the effects from random charge-polarization interactions for ben-
zene in Na-Y zeolite, using Debye-Hiickel correlation functions. Chen et al. augmented the
standard diffusion equation [Fick’s second law, cf. Eq. (2.9)] with terms representing the
effects of these fluctuating interactions. They analyzed the resulting equation in the hydro-
dynamic limit using time-dependent renormalization group theory [23], finding that such
disorder can diminish benzene self diffusivities in Na-Y by one to two orders of magnitude.

This field theory approach appears promising for explaining qualitatively the data in Fig.
16, which shows that PFG NMR self diffusivities can depend sensitively on the length scales
probed. However, to explain quantitatively the data in Fig. 16, this approach will require
much more accurate input from correlation functions describing the static charge disorder
in zeolites. Such information can only come from careful, atomistic simulations, which in
turn must be validated by experiments capable of measuring disorder in zeolites.

VI. SUMMARY AND PROSPECTS FOR THE FUTURE

In this chapter we have reviewed the basic ideas underlying diffusion in microporous
solids, and have explored recent efforts over the last two decades to measure and model
the dynamics of molecules sorbed in zeolites. These studies have revealed many important
insights regarding diffusion in zeolites; here we summarize a subset of these ideas. The basic
theories of diffusion on two-dimensional surfaces and in dense solids have been successfully
modified to produce new insights regarding transport in microporous materials. The rela-
tionships between the many diffusivities, including the Fickian, Maxwell-Stefan, Onsager,
corrected, transport and self diffusivities, have been elucidated. The temperature depen-
dence of diffusion in zeolites most often exhibits Arrhenius behavior. Reliable activation
energies for diffusion can be measured nowadays with increasingly sophisticated experimen-
tal techniques, such as those based on NMR or neutron scattering. The loading dependence
of diffusion in zeolites is less predictable, although recent calculations have revealed how the
interplay between host-guest and guest-guest interactions can give rise to different loading
dependencies. Regarding multi-component diffusion in zeolites at high loadings, one gener-
ally expects that the faster diffusing component is slowed down to the mobility of the slower
diffusing component. Good to very good agreement among various experiments and sim-
ulations has been obtained for the simplest zeolite-guest systems, often involving all-silica
zeolites (e.g., silicalite) and simple hydrocarbons (e.g., methane or butane).

For each of the generalizations above, myriad zeolite-guest systems exist that break the
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rules. This underscores the fact that, despite our increasing level of understanding, much
remains unknown regarding diffusion in zeolites. For example, it is not clear whether perme-
ation through zeolites occurs in the linear response regime for typical concentration drops
and particle sizes. In addition, we do not generally know whether transport is diffusion- or
desorption-limited in present applications of zeolites. We have much to learn about the cou-
pling between reaction and diffusion in zeolites, especially in single-file systems capable of
producing molecular traffic control. Particularly intriguing are the persistent discrepancies
among different experimental probes of diffusion for certain zeolite-guest systems. For exam-
ple, pulsed field gradient (PFG) NMR and tracer zero length column (TZLC) self diffusivities
are in very good agreement for methanol in Na-X, but in total disagreement for benzene
in the same zeolite. Despite the careful experiments performed to validate the TZLC data,
there appears to be mounting evidence in favor of the PFG NMR diffusivities. This raises
the question: what exactly is TZLC measuring for this particular system? Furthermore,
as simulation methods have become more reliable over the past decade, it becomes timely
to ask what causes persistent discrepancies between certain experiments and simulations,
e.g., between quasi-elastic neutron scattering and kinetic Monte Carlo self diffusivities for
benzene in Na-Y? We must answers these questions before our knowledge of diffusion in
zeolites can be used generally to develop new and improved processes in zeolite science.

Many zeolite scientists have suggested that defects and disorder in zeolites can lead to the
observed discrepancies discussed above. Given the intricate topologies that zeolites purport-
edly adopt, it seems highly unlikely that they do so without error. Discovering the nature of
framework defects, and their role in influencing diffusion in zeolites, represents an important
area for future zeolite research. In addition to framework defects, most zeolites are riddled
with disordered charge distributions, arising from disordered framework aluminum and ac-
companying charge-compensating ions. Measuring correlations in these disordered charge
distributions will be crucial for quantifying their impact on diffusion in zeolites. We can also
consider external zeolite surfaces as defects, providing different transport resistances that
need to be understood. In general, such defects and disorder patterns can produce different
diffusivities depending on the length scales probed. Elucidating these effects remains one of
the great challenges for future zeolite research.

In addition to thoroughly understanding diffusion in the more commonly studied host-
guest systems, it is important to explore the properties of future diffusion systems as well.
One can imagine remarkable properties of polymers or biomolecules intercalated into large-
pore zeolites. Also of interest is the transport behavior of electronically-active species in
zeolites, such as metals or charge-transfer complexes. Much can be learned from drawing
analogies between zeolite-guest systems and other nanoporous systems such as biological
ion channels, which also exhibit intricate structures and impressive selectivities. We hope
that this chapter provides the necessary launching point for the next generation to solve the
mysteries we have discussed, as well as those we have not yet imagined.
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TABLES

TABLE I. Diffusivities and root-mean-square displacements accessible by QENS and PFG NMR.

Observable | PFG NMR| QENS
Ds (m? s 1) >1071° >10"1
(R2(t)) (m) >10~7 <1078
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FIG. 1. Two-dimensional Langmuirian zeolite membranes with various boundary conditions:
(a) Single-component permeation into vacuum; (b) Single-component permeation from high to low
(but non-zero) pressure; and (c) Tracer counter-permeation.
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FIG. 2. Channel and site structure of silicalite-1 showing Intersection sites (I), straight Channel
sites (C) and Zig-zag channel sites (Z).

86



FIG. 3. Schematic depiction of a molecular site-to-site jump; subsequent jumps of molecules
(dark) are likely to fill the newly formed vacancy (light).
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FIG. 4. Normalized velocity autocorrelation functions: (circles) Continuous fluid giving expo-
nential decay; (line) Molecular fluid showing back-scattering oscillations.
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FIG. 5. Measured effectiveness factors (n) for the conversion of 2,2-dimethyl butane over
H-ZSM-5 catalysts, as a function of the Thiele modulus (®). Data are calculated from diffu-
sivities, obtained by conventional sorption studies, and compared with the theoretical curve that
relates the two (Ref. [105]).

FIG. 6. Variation of the (gravimetric) diffusional time constant, R?/ D, with the square of the
crystal radius, showing conformity with the diffusion model (Ref. [105]).

FIG. 7. Corrected diffusivities (¢f. Eq. (2.29)) of propane in silicalite-1 obtained by the fre-
quency response technique (o, * and x: temperatures as indicated), by uptake measurement (i.e.,
“single-step frequency response”) (A: 333 K) and by PFG NMR (A: 333 K) (Ref. [130]).

FIG. 8. Corrected diffusivities (c¢f. Eq. (2.29)) of propane in NaX at 303 K in an anhydrous (*)
and a hydrated (o) sample, compared with PFG NMR diffusivities (A) (Ref. [133]).

FIG. 9. Set of IR spectra for successive replacement of preadsorbed benzene by ethylbenzene.
(4) indicates the strongest benzene band; () indicates those of ethylbenzene (Ref. [136]).

FIG. 10. Uptake curves of counter-diffusion as derived from the evolution of IR-spectra (cf.
Fig. 9)) for ethylbenzene vs. benzene in H-ZSM-5 (Ref. [136]).

FIG. 11. Self diffusivities of methanol in NaX at 373 K measured by TZLC and PFG NMR,
compared to the transport diffusivity at infinite dilution determined by (normal) ZLC (Ref. [148]).

FIG. 12. Comparison of benzene diffusivities in NaX obtained by TZLC, frequency response
(FR) and PFG NMR (Ref. [149)).

FIG. 13. Uptake kinetics of n-heptane on a single crystal of H-ZSM-5 as measured by mi-
cro-FTIR-spectroscopy (Ref. [136]).

FIG. 14. Concentration profiles ¢(z,y, z;t) of methanol in an NaCaA-type single crystal of edge
length L at 293 K at different times ¢t = 0, 40, 80 and 160 s (from bottom to top) after the sorption
has started. Data are represented for different planes parallel to one outer face at z-values indicated
on top of the figures (Ref. [159]).

FIG. 15. Intracrystalline self diffusivities of n-alkanes at low loadings in MFI zeolites at 300
K, as a function of alkane chain length, obtained by: MD simulations (M); Brownian dynamics
(¢); QENS (+); single-crystal membrane permeation (57); ZLC (A); and PFG NMR (*) (Refs.
[166, 180]).
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FIG. 16. Dependencies of self-diffusion coefficients on the measured root-mean-square displace-
ments, for n-butane in two different samples of silicalite-1 (a and b) (Ref. [151]).
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FIG. 17. Activation energies of benzene diffusion in FAU-type zeolites. The top part shows
Si:Al ratios of FAU-type zeolites, with the corresponding occupied cation sites. The middle part
represents schematic benzene adsorption sites, and the energy barriers between them arising from
different cation distributions. C is a benzene supercage site far from a cation, W is a benzene
window site far from a cation, S2 is a cage site close to an Sy; cation, S3 is a window site close to
an Sy cation. The bottom part gives diffusion activation energies for various Si:Al ratios. The
solid line shows the overall trend from simulations, symbols are particular experiment or simulation
results: 1. Forni et al. [403], 2. Billow et al. [381], 3. Lorenz et al. [404], 4. Sousa-Gongalves et al.
[197], 5. Isfort et al. [203], 6. Jobic et al. [181], 7. Burmeister et al. [405], 8. Auerbach et al. [231],
9. Bull et al. [196] and 10. Auerbach et al. [198].
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FIG. 18. Cage residence time distribution of benzene in zeolite LTL showing agreement with
Poisson statistics, computed from a 1 ns molecular dynamics simulation at 800 K with a single

benzene molecule in the simulation cell.
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FIG. 19. Self-diffusion concentration dependence of methane and butane in silicalite-1 at 300K,
from PFG NMR, QENS and MD simulations, showing good agreement with the (1 — #) loading
dependence predicted by mean field theory. Crosses are NMR data from Caro et al. [2] for methane
and Heink et al. [171] for butane, while the star shows QENS butane data from Jobic et al. [406].
In all cases, error bars represent an estimated 50% uncertainty. Letters are MD results (slightly
spread for clarity): a-1 for methane and m-s for butane, from the following references: (a) June et
al. [63], (b) Demontis et al. [65], (c) Catlow et al. [235], (e) Goodbody et al. [66], (f) Demontis et al.
[236], (g) Nicholas et al. [407], (h) Smirnov [237], (i) Jost et al. [187], (j) Ermoshin and Engel [408],
(k) Schuring et al. [177], (1) Gergidis and Theodorou [250], (m) June et al. [302], (n) Herndndez
and Catlow [409], (o) Maginn et al. [173], (p) Bouyermaouen and Bellemans [238], (q) Goodbody
et al. [66], (r) Gergidis and Theodorou [250] and (s) Schuring et al. [177].
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FIG. 20. Cation <> window path for benzene in Na-Y (transition state indicated in bold), with
a calculated barrier of 41 kJ mol™! (Ref. [231]).
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FIG. 21. Schematic lattice model for molecules in cage-type zeolites, showing cages, intracage
sites and window sites (left), as well as the specific lattice geometry for benzene in Na-Y zeolite
(right).
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FIG. 22. Site-to-site jump activation energies perturbed by guest-guest interactions, approxi-
mated with parabolic jump model.
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FIG. 23. Ratio of overall reaction rates in MTC and reference (REF) systems, é51C /¢REF | for
5 channels as a function of the number [ of sites in the channel segments between two neighboring
intersections (Ref. [395]).
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