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We present a new method to compute the energy Green’s function with absorbing boundary 
conditions for use in the calculation of quantum mechanical reaction probabilities. This 
is an iterative technique to compute the inverse of a complex matrix which is based on Fourier 
transforming time-dependent dynamics. The Hamiltonian is evaluated in a sine-function 
based discrete variable representation, which we argue may often be superior to the fast Fourier 
transform method for reactive scattering. We apply the resulting power series Green’s 
function to the calculation of the cumulative reaction probability for the benchmark collinear 
H+H, system over the energy range 0.37-1.27 eV. The convergence of the power series is 
found to be stable at all energies and accelerated by the use of a stronger absorbing potential. 

I. INTRODUCTION 

One of the central tasks in theoretical reaction dynam- 
ics is the development of computational techniques able to 
predict the chemistry of large molecules. The ab initio 
treatment of chemical reactions in the gas phase relies on 
solving the quantum reactive scattering problem. At 
present, exact reactive scattering calculations have been 
reported for three atom systems.“’ In extending theory to 
larger systems, it is important to consider developments in 
both exact techniques and approximate models.3-5 The ap- 
proximate methods are indispensable in determining which 
aspects of the underlying physics control the reactivity. On 
the other hand, exact calculations are required in order to 
calibrate the validity of various approximations. In the 
present study, we focus on exact calculations of chemical 
reaction probabilities. 

The computational effort required by an exact quan- 
tum calculation grows exponentially with the size of the 
system. Accordingly, the amount of information obtained 
from a quantum calculation grows exponentially as well. 
The most extreme case is encountered when one studies the 
dynamics of a pure state in which all the relative phase 
information is required. It therefore seems reasonable that 
the treatment of mixed states, which provides less detailed 
dynamical information, should be less computationally de- 
manding and thus more applicable for the study of larger 
chemical systems. For example, the canonical rate constant 
for a bimolecular chemical reaction can be expressed as 

1 
s 

- 
k(T)=Qr(r) 

dE +N(E), 
--m 27Xe (1.1) 

where p= (kBT) -l, k, is Boltzmann’s constant, and 
IQ,(T) is the reactant partition function including relative 
translational motion per unit volume. In Eq. ( 1.1) , N(E) 
is the microcanonical cumulative reaction probability, 
which in turn is defined6 by 

N(E) = x c I %pnr(E) 1 2, (1.2) 
“p “r 

where [,S,,+(E)] is the S matrix for total energy E. The 
sums in Eq. ( 1.2) are over all energetically allowed states 
of the reactants and products, denoted by quantum num- 
bers n, and nP, respectively. Since the S-matrix elements 
contain the most detailed dynamical information, they are 
most computationally demanding. A formally exact ap- 
proach to obtain k(T) or N(E) which circumvents the 
need to carry out exact S-matrix calculations should in 
principle be more economical, since the information con- 
tent in the former quantities is manifestly independent of 
system size. Two such formulations were given in terms of 
the analysis of reactive flux correlation functions by Ya- 
mamoto’ and by Miller et aZ.’ In the present study we will 
use the latter formulation to calculate the cumulative re- 
action probability. 

Considerable theoretical effort has been devoted to 
evaluating the thermal rate constant k(T) by the flux cor- 
relation formalism of Miller et aZ.8’9 Less attention, how- 
ever, has been given to the direct calculation of the cumu- 
lative reaction probability N(E) . lo The theory for directly 
computing N(E) depends on the microcanonical density 
operator S( E-H), which is formally obtained from the 
outgoing wave energy Green’s function. ’ * Recently, Seide- 
man and Miller-i2 showed how to use absorbing boundary 
conditions (ABC) to construct a convenient, well-behaved 
representation of the energy Green’s function for use in 
N(E) calculations. ABC have been used in the past, pri- 
marily in wave packet propagations, for the study of laser- 
induced dissociation’3 and reactive scattering.‘4 In the con- 
text of a wave packet propagation, absorbing boundary 
conditions facilitate the use of smaller spatial grids by elim- 
inating spurious reflection from grid boundaries. In the 
present context, they are used to enforce outgoing wave 
boundary conditions in the Green’s function without ex- 
plicitly constructing the outgoing waves. In fact, in their 
study of H+H2 reaction probabilities, Seideman and 
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Miller were able to compute N(E) by focusing only on the 
strong chemical interaction region, making no explicit ref- 
erence to the asymptotic reactant and product states that 
would be necessary in a full S-matrix calculation. As such, 
their work represents significant progress in the search for 
an efficient calculation of the microcanonical cumulative 
reaction probability. 

The calculation of N(E) by an absorbing boundary 
condition Green’s function relies on the construction and 
inversion of a complex Hamiltonian matrix. We first dis- 
cuss efficient inversion algorithms. The most straightfor- 
ward inversion technique is LU decomposition, l5 which re- 
quires storage of the Hamiltonian matrix. Iterative 
methods,16 which do not necessarily require such storage, 
are an important alternative to LU decomposition for the 
solution of large systems. The Lanczos algorithm,‘7 in 
which a Hermitian matrix is reduced to tridiagonal form, 
can be used to diagonalize’7(b) or invert’7(c) a matrix with 
minimal storage. This technique has been used extensively 
to treat chemical systems with real Hamiltonians.‘8-20 
Whether the Lanczos algorithm is readily applicable to 
complex symmetric matrices is an open 
question. *7(b)J9(d)921 The generalized minimum residual22 
method (GMRES), however, is an algorithm applicable 
for the solution of arbitrary linear systems. Although it has 
given impressive results23 when used with precondition- 
ing, 24 GMRES can be memory intensive. With the inten- 
tion of extending N(E) calculations to larger systems, we 
have developed a new iterative method for matrix inversion 
which is especially suited for Hamiltonians with absorbing 
boundary conditions. The method is stable, requires very 
little memory (as opposed to GMRES ) , and can readily be 
preconditioned (as opposed to the SYMMLQ’7(C) algo- 
rithm). It is based on Fourier transforming the time- 
dependent wave packet dynamics to obtain the energy- 
dependent reaction probabilities and gives, in the present 
implementation, a power series energy Green’s function. 

Thus, the present theory includes wave packet propa- 
gation on a grid as a basic component. McCullough and 
Wyatt2’ performed the first such study over 20 years ago 
on the H+H2 system. Since then, Kosloff and co- 
workers2(@ have incorporated many improvements to aug- 
ment the efficiency of exact wave packet propagations, 
such as the Fourier representation29 of the kinetic energy 
operator. This is a uniform grid over a finite interval, as 
opposed to sine-function DVR which involves a uniform 
grid over an infinite interval. It would be interesting to 
determine whether the efficiency of wave packet propaga- 
tion is equivalent based on these two uniform grid repre- 
sentations. That is, one might ask for which physical sys- 
tems would one grid method be superior to the other. We 
will present a qualitative analysis, concluding that sinc- 
function DVR is preferable for the representation of a mo- 
lecular reactive scattering system when a large number of 
grid points, necessary for the Fourier method, can be de- 
leted from the sine-function DVR basis. 

Forming the matrix representation of the Hamiltonian 
operator and manipulating the Hamiltonian matrix to ob- 
tain the observable of interest can be computationally in- 
tensive. A discrete variable representation25 (DVR) can 
ameliorate both of these difficulties, That is, the construc- 
tion of the Hamiltonian matrix is particularly simple in a 
DVR because no multidimensional integrals involving the 
potential function are required. Also, the resulting matrix 
is sparse because the potential is diagonal, which expedites 
an iterative solution.19(b),19(c) In the present research, we 
use a sine-function based DVR (vide infra) first developed 
by Colbert and Miller26 for use in the S-matrix version of 
the Kohn variational principle,‘(b)‘27 and used subse- 
quently for S-matrix calculations’g(b)“9(C) in addition to 
N(E) calculations. l2 This is a uniform grid DVR which is 
constructed from an infinite set of points. It is then 
truncated25(f) to the shape of the potential by deleting grid 
points where the wave function or Green’s function is van- 
ishingly small. The uniform distribution of grid points in- 
herent in this DVR has demonstrated significant efficiency 
in treating the gross anharmonicity of potential functions 
in reactive scattering. 

We perform wave packet evolution by propagating 
over many small time steps, where each short-time evolu- 
tion is effected by matrix multiplication on a grid. For 
many years, matrix multiplication was deemed an inappro- 
priate method for such propagation because of the highly 
oscillatory nature of the short-time coordinate propagator. 
This problem has been addressed by several workers3s35 
who have incorporated, in one guise or another, a filter to 
damp the very high frequency components in the propaga- 
tor that cause numerical problems and are usually unim- 
portant to the dynamics. For example, Coalson com- 
puted real time correlation functions via matrix 
multiplication by adding a small imaginary part to the 
time. Alternatively, Makri3’ deleted momenta greater than 
SOme Pmax from the propagator to yield a well behaved 
effective kernel. This approach was shown to be useful for 
both matrix multiplication and Monte Carlo36 evaluation 
of the time evolution operator. It is interesting to note that 
this latter approach will turn out to be mathematically 
identical to the sine-function DVR of the short-time coor- 
dinate propagator. Inspired by the success of this effective 
propagator, we will present a generalization of Makri’s ef- 
fective kernel which might be more useful in a path inte- 
gra13’ Monte Carlo evaluation of the real time propagator. 

The purpose of the present paper is to introduce the 
power series Green’s function and to show its efficient ap- 
plication to the benchmark collinear H+H, reaction. In 
the next section, we briefly summarize how absorbing 
boundary conditions are incorporated into the flux corre- 
lation formalism for the cumulative reaction probability. 
In Sec. III, we give a detailed description of the power 
series Green’s function, in addition to the qualitative com- 
parison between the Fourier method and sine-function 
DVR. Section IV presents the results and discussion of the 
convergence properties of the power series method. The 
flnal section concludes with some remarks concerning fu- 
ture study, including a generalization of Makri’s effective 
propagator. 
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II. GENERAL METHODOLOGY 

We begin the calculation of the cumulative reaction 
probability with an expression derived from the analysis of 
reactive flux correlation functions8(b) given by 

N(E) =4(2742 Tr[FG(E--H)FG(E--H)], (2.1) 

where “Tr” denotes a quantum mechanical trace. The re- 
active flux operator F in Eq. (2.1) is most generally de- 
fined by 

F=$IWWl,~, 

where h is the step function 

(2.2) 

(2.3) 

and f(q) defines, via the equation f(q) =0, a dividing 
surface which separates reactants from products. Here q 
denotes all the internal molecular coordinates. The micro- 
canonical density operator S(E-H) is formally obtained 
from the outgoing wave energy Green’s function via the 
relation” 

6(E-H) = -k Im G+(E), 

where Gf (E) is defined by3’ 

(2.4) 

G+(E) =lim(E+k-H)-’ 
c-0 

(2Sa) 

=li,A 
I 

m dt exp[i(E+k-H)t/fi]. (2.5b) 
E4lfi 0 

In Eq. (2.5)) adding an infinitesimal imaginary part to the 
energy E provides the outgoing wave boundary conditions 
and in Eq. (2Sb) can be viewed as providing a factor 
which ensures the convergence of the time integral.12@) 

Seideman and Miller recently showed,i2 in the defini- 
tion of G+(E), that subtracting a coordinate dependent 
operator ie(q) from the Hamiltonian H can be equivalent 
to adding a constant ie to the energy E, so long as e(q) is 
negligible in the chemical interaction region. This tech- 
nique, analogous to the use of absorbing potentials in the 
field of time-dependent wave packet propagation,13*14 leads 
to the definition of an absorbing boundary condition 
(ABC) Green’s function. The following alternative, but 
formally exact expression results for N(E): 

N(E)=Tr[G~~~(E)rpG~C(E)rrl, 
where 

G&,(E) = (ES-$--H) -’ 

(2.6) 

(2.7a) 

=f Jam dtexp[i(E+iI’-H)t/S] (2.7b) 

and 

r,=rh, 

r,=r(l-h). 

(2.8a) 

(2.8b) 

Here I’ is a coordinate dependent operator and h is the 
coordinate dependent step function operator which defines 
the reactive flux in Eq. (2.2). If Eq. (2.6) is evaluated in a 
discrete variable representation (DVR) , 12125*26 in which 
case the absorbing potentials Fr and F, are diagonal, N(E) 
becomes 

N(E) = 2 rJqj#) I G&c(qj~sQj;E) I 2r,(qj), j’j 
(2.9) 

where (qj) are the grid points and j is a multidimensional 
grid point index. Equation (2.9) is the working formula 
used in the present study. In what follows, we remove the 
“ABC” subscript from the ABC Green’s function, with 
G+(E) denoting the ABC Green’s operator and G+(E) 
the finite dimensional ABC Green’s matrix. 

The computational challenge involved in Eq. (2.9) is 
clearly the evaluation of the matrix elements of G+(E) 
which connect the reactant and product regions of config- 
uration space. In previous applications,12 these were com- 
puted as the solution of the complex symmetric linear sys- 
tem 
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(El+&H)G+(E)=l (2.10) 
by LU decompsition.15 We call this the direct method of 
solution. For most chemically realistic systems, direct so- 
lution would require the storage and manipulation of ma- 
trices larger than can be held in the central memory of 
modem computers. One of the most fruitful approaches, 
however, in the solution of large linear systems is the use of 
a grid representation for the Hamiltonian in conjunction 
with an iterative solution of the resulting sparse linear sys- 
tem.16 This is because iterative methods do not require 
storage of the Hamiltonian and are especially rapid when 
used to solve sparse systems. 

We now describe a new iterative procedure to compute 
G+ (E) on a grid. The method is based on Eq. (2.7b), i.e., 
the integral representation of the ABC Green’s function. 

Ill. POWER SERIES GREEN’S FUNCTION 

We construct a power series representation of the ABC 
Green’s function by taking a finite upper limit T for the 
time integral in Eq. (2.7b), and by using N evenly spaced 
quadrature points to evaluate the resulting integral. The 
former approximation is valid because the use of ABC to 
define the Green’s function guarantees the convergence of 
the integral in finite time. The latter approximation gener- 
ates the power series. Other representations of the ABC 
Green’s function, which incorporate more sophisticated 
quadrature for the time integral, are possible and are dis- 
cussed in Sec. V. These modifications to Eq. (2.7b) give 
the following power series Green’s function (PSG): 

G+(E) ~2 i w&P, (3.1) 
n-0 

where 

(3.2a) 
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w, = quadrature weights 

(e.g., extended trapezoidal rule 

wn=l-&a-i&r), 

and 

(3.2b) 

M=exp[i(E+$--H)At/fi] ~e’~~“‘K(ht). (3.2~) 

In Eq. (3.2c), K(At) is the propagator with absorbing 
boundary conditions for the duration At. As is common to 
the study of wave packet propagation, we have reduced the 
problem to tinding the most accurate and efficient repre- 
sentation of the propagator. 2(a)73gy40 We use a simple and 
flexible short-time propagator (STP) developed by Feit, 
Fleck, and co-workers4t (also called40(b) the kinetic refer- 
enced split-operator propagator) given by 

fat) =&&) +mf3>, 

where 

(3.3a) 

KsTp(t)zexp[ -i( V-$)t/2fi]e- iTt/ii 

Xexp[ -i( V-fl?>t/2#i], (3.3b) 

H= T+ v. (3.3c) 

This has been used42 extensively in previous time- 
dependent calculations and is a second-order propagator 
because it incorporates second-order commutation error in 
the symmetrization. It has the flexibility of being able to 
treat a time-dependent Hamiltonian, e.g., in a mixed 
quantum-classical time-dependent self-consistent 
fie1d42(d)143 framework, by taking a time step small enough 
that the Hamiltonian is approximately constant. Some al- 
ternatives to the STP to be considered for future study will 
be discussed in Sec. V. We note that implementing propa- 
gators which are valid for longer times is tantamount to 
preconditioning24 the system, i.e., making the Hamiltonian 
matrix more diagonally dominant. 

We represent the STP in Eq. (3.3b) with sine-function 
based DVR (SDVR) for each degree of freedom, where 
the sine function is given by 
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The two methods differ, however, in the actual manner of 
propagation. The Fourier method requires multidimen- 
sional fast Fourier transforms” (FFT) to facilitate prop- 
agation, whereas SDVR relies on sparse matrix multiplica- 
tion. As such, the grid used in SDVR calculations can 
easily be tailored25(n to the shape of the potential energy 
surface (PES), whereas the Fourier method requires the 
use of rectangular or L-shaped4’ grids in order to perform 
the FFT. The implication here is that the rectangular grids 
required for the Fourier method may waste points in un- 
important or unphysical regions of configuration space, 
where the wave function or Green’s function is vanishingly 
small. We conclude, therefore, that for the study of multi- 
dimensional systems where the relevant region of configu- 
ration space is approximately rectangular, the Fourier grid 
can be more computationally efficient. This situation can 
obtain, e.g., in the study of photodissociation to a single 
fragment arrangement, or in gas-surface scattering.47 For 
the study of multidimensional systems, however, where the 
relevant region of configuration space is not rectangular, 
e.g., a gas phase reactive scattering system, SDVR should 
be more efficient if enough grid points are deleted from the 
basis. 

where 

We now give the sine-function based DVR of the 
power series Green’s function. For simplicity, we restrict 
our attention to a one-dimensional system. The multidi- 
mensional generalization is straightforward and will be 
given afterwards. Letting 1 uj) denote the jth SDVR basis 
ket, the matrix power series Green’s function (PSG) be- 
comes 

G+(E) s; ; w,Mn, 
n-0 

(3.6a) 

(3.6b) 

(3.4) 

[ KsrP( t) ] jtj=exp[ -i( vj,-iI’j,) t/2fi] (uj, 1 emiTt” 1 uj) 

Xexp[ -i( Vj-$j)t/2fi], (3.6~) 

It was first described by Colbert and Miller26 for use in the and 
S-matrix version of the Kohn variational principle, and 
used subsequently for S-matrix calculationslg(b)“g(C) in ad- 
dition to N(E) calculations.‘2 Before giving the relevant 
matrix elements, we compare SDVR to the closely related 
Fourier grid method of Kosloff and co-workers2(a)72g which 
has been used extensively in previous wave packet calcula- 
tions.2*44 Both involve uniform grids in configuration space 
able to represent momenta up to 

(3.6d) 

P *a,=*; > (3.5) 

where Ax is the uniform grid spacing. In addition, both 
representations require roughly45*46 N log,N multiplica- 
tions per propagation step, where N is the size of the grid. 

Equation (3.6~) obtains from the fact that the PES and the 
absorbing potential are coordinate dependent operators. In 
Eq. (3.6c), Vi and Ii correspond to the PES and the ab- 
sorbing potential evaluated at the ith grid point, respec- 
tively. The SDVR of the free particle propagator is given in 
the fashion outlined by Colbert and Miller,26 in which one 
first considers a finite particle-in-a-box DVR. With (N- 1) 
functions and grid points and a grid spacing of Ax, the free 
particle propagator becomes 
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2  N-l  
(,-ii”r/fi)~;~ D V R c F  _  nT l  sin(nnj ' /N) 

Xexp (  z i$$)sin(pni /N).  (3.7)  

T o  obta in  the S D V R  of the f ree part ic le p ropagator ,  o n e  
takes the infinite N  limit of E q . (3.7)  keep ing  A x  f ixed, 
g iv ing4’ 

(uj, 1  ,-iTt/fiI u j )  G  lh  (e-iTt/fi)g:jt” D V R  
N - C O  

=  d Y  C O S [~ Y (j’-j)  1  

(3.8)  

W ith the var iab le  t ransformat ion p  =&y/Ax,  the f ree par -  
ticle p ropaga to r  in  E q . (3.8)  takes o n  the m o r e  famil iar  
form 

( u j  1  eBiTt’* 1  uj )  =  
I 

TprI  $ - -$  exp  (@ xjf/fi) 

Xexp (  -@ ‘t/2 m fi i )exp( -&Xj/ f i i>,  

( 3 .9 )  
wherep, ,  is g iven  in  E q . (3.5)  a n d  xi= ihx for i=  j’,j. 

T h e  m a trix e lement  in  E q . (3.9)  is notewor thy  in  th ree 
respects.  First, it is the product  of a n  in tegrat ion weight  
a n d  a  finite gr id  spac ing  representa t ion of the kernel .  This 
product  ar ises because  D V R  inc ludes in tegrat ion weights  
in  the t ransformat ions.  A s  p m a x  g o e s  to infinity ( a n d  A x  
g o e s  to zero),  the summat ion  impl ied  by  m a trix mult ipl i -  
cat ion g o e s  over  into a n  integral ,  a n d  the matr ix  e lement  
b e c o m e s  

lh  (ujt  1  e m iTt’* 1  Uj)  =dx(xj ,  I e m iTt’* I xj),,,t , 
P m n X ’* 

(3 .10)  
recover ing  the kerne l  of the f ree part ic le p ropaga to r  mu l -  
t ipl ied by  the inf ini tesimal in tegrat ion weight .  Second ,  the 
S D V R  of the f ree part ic le p ropaga to r  is easi ly  eva lua ted  
g iv ing the exact  kerne l  tim e s  a  smooth ing  factor that re-  
sults f rom the finite gr id  spacing.  E q u a t ion (3.9)  b e c o m e s  

(Uj , Ie- - iTt '~ lUj )=~(Xj , Ie- iTt ' * IXj )~~ac~ 

w h e r e  
x fsmooth  ( x j~& jJ7%~) ,  (3 .11a)  

(3 .11b)  
In E q . (3.1 lb), erf(z) is the er ror  funct ion of a  complex  
va r iab lee4’ T h e  th i rd,  a n d  p e r h a p s  m o s t in t r igu ing aspec t o f 

Eqs.  (3.9)  a n d  (3.11),  is that they h a v e  b e e n  der ived  be -  
fore in  a  complete ly  di f jPerent  context  by  Makr i3’ In par -  
t icular, she  was  seek ing  a  wel l  b e h a v e d  (i.e., less osci l la- 
tory) representa t ion of the short - t ime kerne l  for use  in  rea l  
tim e  pa th  in tegral  M o n te Car lo31*3g  calculat ions. T h e  ad -  
van tage  g a i n e d  f rom the m a trix e lement  in  E q . (3 .11)  de -  
r ives f rom the asymptot ic  behav io r  of the smooth ing  func-  
t ion ,30p47 namely ,  

l im (Uj’ I emiTtlf i  
a-cc 

IUj )=Si I lC[~ (Xjt-X,)] ,  (3 .12a)  

w h e r e  

Xj l -X j  
( r=-  

t 
(3 .12b)  

a n d  in  the a b o v e  limit p m a x  ( a n d , h e n c e , Ax)  is u n d e r s to o d  
to  b e  f ixed. Thus,  Makr i’s vers ion of the p ropaga to r  auto-  
m a tically inc ludes the effect of h igh  f requency  p h a s e  can-  
cel lat ion that numer ica l  quadra tu re  a n d  M o n te Car lo  al -  
gor i thms h a v e  to work  so  h a r d  to s imulate.  This 
cancel la t ion is mani fest  in  the d a m p i n g  of the f ree part ic le 
p ropaga to r  m a trix e lement  for la rge  cx. In fact, Makr i  
f ound  this p ropaga to r  to b e  so  wel l  behaved ,  that w a v e  
packet  p ropaga t ion  by  st ra ight forward m a trix mult ip l ica- 
t ion was  eff icient a n d  accurate.  That  is precisely the type of 
p ropaga t ion  be ing  d o n e  in  the present  study. It is ana lo -  
g o u s  to the numer ica l  m a trix mult ip l icat ion s c h e m e  of 
B e m e  a n d  co-workers5’ u s e d  to compu te  the canon ica l  
densi ty  m a trix by  a  discret ized pa th  in tegral  in  imag inary  
tim e . It is interest ing to no te  that ou r  numer ica l  tests in-  
d icate that wi thout  the smooth ing  factor, the p ropaga t ion  
b e c o m e s  uns tab le  a n d  numer ica l  over f low occurs.  It is a lso 
wor th  not ing  that Kour i  a n d  co-workers32  h a v e  d e v e l o p e d  
a  di f ferent approx imat ion  to the f ree part ic le coord ina te  
propagator ,  s imi lar  in  spirit to Makr i’s propagator ,  wh ich  
neglects  h igh  m o m e n tum components .  Thus,  the S D V R  of 
the S T P  gives the exact  posi t ion representa t ion of the S T P , 
which,  w h e n  p laced  o n  a  gr id  with finite spacing,  au tomat -  
ically filters out  h igh  f requency  m o m e n tum componen ts  
wh ich  a re  un impor tan t  a n d  difficult to integrate.  

For  the mul t id imens iona l  genera l iza t ion  of Eqs.  (3.6)-  
(3.12),  cons ider  the F-d imens iona l  Hami l ton ian  opera to r  
g iven  by  

H =  5  Tcz+V(d,  
Cf=l  

w h e r e  
^  

(3 .13a)  

(3 .13b)  

a n d  

q =  (A.. ,$> (3.13c)  

is a n  F-d imens iona l  point  in  Car tes ian space.  W e  form a n  
F-d imens iona l  gr id  de f ined  by  

q ~ ,=ja&f ,  for jc ,=-cO ,..., - L O , + 1  ,..., + c o  
(3 .13d)  
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for each coordinate q” and corresponding grid point index 
j,. The infinite grid is then truncated by adapting it to the 
shape of the PES. That is, the points qj are retained only if 
they satisfy the energy criterion25(o given by 

v(qj)<vcut 9 (3.14) 
where V,,, becomes a basis set convergence parameter. The 
corresponding ABC-DVR power series Green’s function is 
still given by Eq. (3.6a), where the matrix M is now de- 
fined by 

(M)j,j=ei~At’~[KsTP(At)]j,j 3 

where 

[Kspct)]yj=exp[ -i( 5t-i l?jr)t/2fi] 

(3.15a) 

x 
1 

jl (247: 1 ecdiT@) I “yj] 

XeXp[ -i( Vj-i rj)t/zn] (3.15b) 

and j=(j, ,..., j,) is the F-dimensional grid point index 
alluded to in Eq. (2.9). In Eq. (3.15b), Vj and Ij are the 
F-dimensional PES and absorbing potential, respectively, 
evaluated at qj. Each of the factors in the direct product 
free particle matrix element in Eq. (3.15b) is Eq. (3.1 la) 
evaluated with the appropriate mass and grid spacing, i.e., 

(~7; ( exp ( - iT,t/fi) ( uTaa> 

= A%(q~k I exp ( - iT,t/fi) I 47) exact 

Xfsrn,,th(q~~q~~,t;m,Aq~) - (3.15c) 

In multidimensional SDVR, the Hamiltonian matrix is 
sparse, which leads to N( 2+FN”F) complex multiplica- 
tions for each application of the matrix M, where N is the 
size of the grid.‘g(b)l’g(c) 

To conclude the description of the power series 
Green’s function (PSG), we wish to underscore how the 
recursive calculation proceeds. To compute the jth column 
of the ABC Green’s function, denoted by Gj with elements 
given by 

(Gj)jr=G(qjp,qj), (3.16) 

one forms the dot product of the matrix in Eq. (3.6a) with 
the jth column of the identity matrix. As such, the jth 
column of G + (E) is 

Gj=$ i wna,,j 3 
n-0 

(3.17a) 

where 

%j=Ij 9 

(Ij)j,=6j#j= fi Sj> j, 2 
a=1 

and 

4a 
r[Z(q)]=l+exp[(zm,-z)/~] ’ (3.17b) 

where 

(3.17c) 
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z(q) =maxCR,(d,R,(d I, (4.2b) 

Z max- -Rf;lax, if z(q)=RJq) for y=a,c, (4.2~) 

a n+Ij=M*anj, n=O,l,..., N-l (3.17d) 

with M defined by Eq. (3.15). Equation (3.17d) is the 
recursion relation which defines the iterative method. 

We now present a numerical application of the PSG in 
the study of the cumulative reaction probability for the 
collinear H + H, reactive scattering system. 

IV. RESULTS AND DISCUSSION 

We present the results of the calculation of the cumu- 
lative reaction probability for collinear H+H, over the 
total energy range of 0.37-1.27 eV, using the method out- 
lined in Sets. II and III. The availability of accurate PES’s 
and dynamics calculations makes it a good benchmark sys- 
tem to use to study a new method. We used the Liu- 
Siegbahn-Truhlar-Horowitz (LSTH) 51 PES for the study. 
The coordinates used for the calculations were the mass- 
weighted rectilinear normal modes26152 referenced to the 
transition state on the LSTH PES. We denoted the 2D 
coordinates by q= (x,y) , where x is the reaction coordinate 
and y is the perpendicular vibrational coordinate, i.e., the 
antisymmetric and symmetric stretch, respectively. 

A primitive DVR grid is first laid down along the co- 
ordinates q. We choose the grid spacings in the manner 
suggested by Colbert and Miller.26 That is, given a mass 
and energy scale for each degree of freedom, we fix the 
number of grid points per de Broglie wavelength, denoted 
by ng. This gives the grid spacing for each degree of free- 
dom as 

(4.1) 

For all studies at total energy E, we used E,= E, ma= 1060 
a.u. (the mass-weighted system reduced mass), and n%~4 
points per wave for both degrees of freedom. Next, the 
primitive grid is truncated to yield a nondirect product 
grid as discussed in Eq. (3.14). To avoid an overabun- 
dance of convergence parameters for later discussion, we 
set the energy cutoff VcUt=3.4 eV for all calculations, 
which was found to give satisfactory convergence. 

The absorbing potential in the ABC Green’s function 
simulates the effect of outgoing wave boundary conditions. 
It does so by absorbing completely, without back reflec- 
tion, any flux from the interaction region that encounters 
the edge of the grid in all energetically allowed arrange- 
ments. As previously discussed by many authors,‘2-‘4 the 
optimal form of the absorbing potential is one which ab- 
sorbs probability as rapidly (in space) as possible without 
reflection. We use one of the forms suggested by Seideman 
and Miller,12 a sigmoid function given by 
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FIG. 1. The LSTH potential surface as a function of the Jacobi coordi- 
nates (R,r). The other contours show the sigmoid absorbing potential 
where R= 1.1 eV and n=O.27 a.u. The distribution of grid points shown 
was used for the convergence tests at E=0.52 eV. 

and RJR,) is the translational Jacobi coordinate in the 
reactant (product) arrangement. In the symmetric case of 
collinear H+H2, we have z,, = Ry = RF, where we 
have used z,,= 5 au. for most of the calculations. A typ- 
ical grid is shown in Fig. 1 including the contours of the 
absorbing potential l?(q). The parameters il and q are 
optimized by running appropriate convergence tests. For 
the convergence of the power series Green’s function, we 
single out the parameter /z as being especially important. 
This is clear from the following analysis: We let l?(q) = 2il 
be a constant absorbing potential. We also assume Eq. 
(2.7b) for G+(E). If one takes a finite upper limit T for 
the time integral, the error incurred is given by 

The cumulative reaction probability for collinear 
H+H,, computed by the method outlined in Sets. II and 
III, is shown in Fig. 2. The circles represent the reaction 
probabilities computed by Bondi et aZ.53 using R-matrix 
propagation on the LSTH PES. The agreement is excellent 
over the whole energy range. Because the cumulative reac- 
tion probability for collinear H+H, is well known, we will 
not discuss its physical content. In the energy range where 
there is only one asymptotic vibrational channel open 
[EE (0.37, 0.78 eV)], the error is always less than 1%. In 
the higher energy regime, the error is always less then 
1.6%. We now present the convergence study of the PSG 
results. 

G+ C-J3 I finite T= G+(E)[l--O(e-‘T’fi)]. (4.3) 

Thus, we expect to see exponential convergence in the pa- 
rameters /z and T. Although this analysis is complicated by 
the use of a coordinate-dependent absorbing potential, it 
seems plausible that to converge the PSG with as few iter- 
ations as possible, it may be beneficial to use larger values 
of/z than in previous studies. Results of this analysis will be 
discussed. 

The two important convergence parameters intro- 
duced by the power series expansion of the ABC Green’s 
function are the total propagation time T and the time step 
At. The total time T represents the time required for reac- 
tion and absorption by I. The time step At is the duration 
in which the STP is a faithful representation of the prop- 
agator. These are both a function of the dynamics and the 
choice of absorbing potential. We measure At in units of a 
fundamental small time given by 

min grid length mAx2 
rgfi,j = 

max grid velocity==’ (4.4a) 

Before stating the results, we wish to comment briefly 
on the scaling of the computational expense of the PSG 
with respect to central memory and CPU time. For an 
F-dimensional system with, on average, n grid points per 
degree of freedom, the PSG scales as1g(b)J1g(c)*26 NRHsNI- 
TERF~N, where NRHs is the number of reactant grid points 
for which a vector of G+ (E) is computed and Nrrss is the 
number of iterations per RHS. From our experience, this 
roughly scales as FnN3. The PSG requires only three vec- 
tors of length N for the essential recursion and summation, 
in addition to a very small number of vectors to enhance 
the speed of each iteration. Clearly this is where the PSG is 
favorable over direct methods. 

That is, At = f rsrid, where f is some unitless number. If we 
choose AX by the criterion in Eq. (4.1), we also find that 

2di 1 27r#i 1 
?arid=E~=:E~r (4.4b) 

where IZ~ is defined in Eq. (4.1). Equation (4.4b) shows 
that this fundamental small time should, at least, be small 
enough to integrate the energy dependent oscillations in 
the time integral. Whether it is small enough for propaga- 
tion, i.e., whether f is of order unity for convergence, is 
discussed below. 

In the context of calculating N(E) by the ABC-DVR 
approach, l2 the present work represents a new iterative 
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FIG. 2. The cumulative reaction probability for the collinear H+H, 
reaction. The circles are the R-matrix propagation results (summed over 
final states in Ref. 50), and the line is the power series Green’s function 
results. 
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method to invert a complex matrix with less memory re- 
quired than GMRES.22*24 The overall computational 
framework, i.e., Eq. (2.9), is not new and is not what is 
being tested here. As such, we gauge the error of the power 
series expansion in the following way: First we converge 
N(E) using the direct ABC-DVR method. Then, using the 
same Hamiltonian and grid parameters, we compute the 
PSG result. Relative error is therefore defined as 

NPSG(E) -Ndmect(E) 
error = 

I’@=* (El 
x loo, (4.5) 

where the convergence of the direct result is based on the 
calculations of Bondi et aZ.53 

First we study the convergence of N(E) at E=O.52 
eV. We use a grid and absorbing potential (2 = 1.1 eV and 
7=0.27 a.u.> for which the direct ABC-DVR N(E) 
=0.242, whereas the R-matrix propagation gives N(E) 
=0.244. Figure 3(a) shows the percent error of N(E) 
from the direct result as a function of the common loga- 
rithm of f, where Ttid=20.2 a.u.=O.49 fs. We see very 
well behaved, monotonic convergence to the direct result. 
This is remarkable for the following reason: As the time 
step is made smaller in Fig. 3(a), the exact STP becomes 
more oscillatory and hence, more difficult to integrate. 
However, the SDVR of the STP is sufficiently well behaved 
that it can be integrated with the same DVR grid while 
changing the time step by three orders of magnitude. Tak- 
ing the first result that remains in the 1% error band as 
converged, f =0.3 or At=6 a.u.=0.15 fs is the optimal 
time step for the STP. This time step is about l/SO of the 
asymptotic H, ground state vibrational period, which is 
approximately 8 fs.54 Such a small time step is necessary to 
obtain accurate results for a large value of T. 

Figure 3 (b) shows the convergence of N(E) to the 
direct result for B=0.52 eV as a function of the total prop- 
agation time T. For the calculations in the solid curve, we 
set f =0.05 or At= 1 a.u.=O.O24 fs. For those in the 
dashed curve, f = 1 or At=20.2 a.u. =0.49 fs. Both curves 
show the same very smooth convergence. In fact, since the 
rate of convergence with respect to the total time T is 
independent of the time step At, optimization of the two 
temporal parameters can be performed independently. Us- 
ing the same 1% convergence criterion above, we see the 
optimal T= 5000 a.u. = 121 fs. With these parameters, the 
PSG required for N(E) at E=0.52 eV converges in 
roughly 800 iterations. 

Now we consider varying parameters in the absorbing 
potential to effect more rapid absorption in time. Once 
again, consider E=0.52 eV. At this energy, the ABC-DVR 
cumulative reaction probability is stable over a range of/z 
up to approximately 1.6 eV. At il= 1.5 eV, N(E) by direct 
ABC-DVR gives the value 0.245. In Fig. 3 (c), we show 
the same as Fig. 3 (b), except with this elevated value of L., 
the absorbing potential strength parameter. In this case, 
convergence of N(E) is obtained with a total propagation 
time T=4000 a.u. =97 fs. This calculation, requiring 
roughly 650 iterations, represents a modest savings in com- 
putation with fairly little effort in optimization of the ab- 
sorbing potential. 

-20.0 ’ 
-2.0 

(a) 

(W 
Total time T (fs) 

6.0 , 

4.0 

2.0 

0.0 

-2.0 
60.0 80.0 100.0 120.0 140.0 

w 
Total time T (fs) 

FIG. 3. Convergence of N(E) at E=0.52 eV. (a) Convergence with 
respect to the split-operator time step At. The abscissa is log& ), where 
the time step is At=f~s,, with ~~~=20.2 a.u.=0.49 fs. Note the smooth 
convergence obtained with a single DVR grid which results from the 
nonoscillatory effective propagator (Ref. 30). The optimal At=6 a.u. 
=0.15 fs. (b) Convergence with respect to total integration time T. The 
solid curve has At=1 a.u.=0.024 fs and the dashed curve has At=20.2 
a.u.=0.49 fs. The optimal T=5000 a.u.=121 fs. (c) The same as Fig. 
3(b), except the absorbing potentia1 strength parameter is increased to 
L=1.5 eV. In this case, the optimal T=4000 a.u.=97 fs. The power 
series converges more rapidly with a stronger absorbing potential. 
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Similar convergence properties were obtained at higher 
energies, in which more than one asymptotic vibrational 
channel is open. In general, f~O.3 is sufficient with this 
STP to give results accurate to about 1%. The total time T 
required for convergence can be easily estimated given the 
size of the grid and the available translational energy. In 
addition, grid sizes and total propagation times can be re- 
duced by using stronger absorbing potentials. 

V. CONCLUDING REMARKS 

We have described a new method to compute the ab- 
sorbing boundary condition energy Green’s function on a 
sine-function DVR grid using a power series expansion. 
This is an iterative procedure for inverting the complex 
matrix (El +ilW’/2- H ), which requires very little mem- 
ory. We have demonstrated the accuracy and convergence 
properties of the PSG method by applying it to the calcu- 
lation of the cumulative reaction probability for collinear 
H+H2. In addition, we have qualitatively discussed the 
numerical efficiency of SDVR relative to the FFT method. 
We have concluded that both approaches have their proper 
regime of efficient application, and in particular, that 
SDVR should be superior when many grid points can be 
deleted from the rectangular grids required for the FFT. 
We believe that the computation of N(E) by the PSG 
method has the basic ingredients necessary for the realistic 
study of larger chemical systems. First, by computing the 
microcanonical reaction probability, an averaged quantity, 
relatively small grids can be used which focus points in the 
interaction region where the chemical dynamics takes 
place. Second, by using an iterative’solution for the Green’s 
function, we avoid having to store the Hamiltonian matrix 
and can in principle treat larger systems. 

There are several avenues for future study suggested by 
the present results. In this section, we consider the follow- 
ing: iirst, possible improvements in the calculation of N( E) 
by an ABC Green’s function on a grid; and second, a gen- 
eralization of Makri’s effective free particle propagator. 

The present calculation of the cumulative reaction 
probability uses uniform grids in space and time to inte- 
grate the Schrodinger equation. The uniform grid in space 
provides a simple matrix representation of the Hamiltonian 
operator. The uniform grid in time facilitates a power se- 
ries expansion of the ABC Green’s function. This is surely 
not the most sophisticated approach. We now discuss pos- 
sible improvements which amount to the use of more flex- 
ible spatial and temporal quadratures. 

We conjectured in Sec. III that, for the study of reac- 
tive scattering, the SDVR uniform grid would be more 
computationally efficient than the Fourier uniform grid be- 
cause of the ease of basis truncation with SDVR. However, 
a nonuniform grid DVR, e.g., Gauss-Hermite DVR, 
would also have all the advantages that were attributed to 
SDVR.25’0 In addition, a nonuniform grid DVR might in 
principle be more efficient because it originates from adap- 
tive quadrature. For example, the H+O, system, which 
has a deep well in the interaction region, is represented 
more efficiently in Gauss-Her-mite DVR than in 
SDVR.‘g’C’ A uniform grid would also be very inefficient in 

the case of strongly exoergic systems, e.g., the F+H, re- 
action. In general, treating complicated systems will re- 
quire that the grid be adapted to the shape of the PES. In 
the case of collinear H + H,, which has no deep wells and 
is thermoneutral, the uniform grid defined in SDVR is 
sufficient. 

The uniform grid in time is used to construct a power 
series expansion of the ABC Green’s function. This a sim- 
ple, but primitive approach. The most sophisticated alter- 
native would be to diagonalize the complex Hamiltonian, 
giving the time integral in Eq. (2.7b) in one “iteration.” 
This is analogous to preconditioning the linear system 
(2.10) with the exact inverse of the Hamiltonian. Interme- 
diate between these two extremes is the short iterative 
Lanczos propagator @IL) developed by Park and 
Light20ca’ and systematically tested by Leforestier 
et aLmca) In this method, a vector q. propagated for a 
small duration t to yield $t is given by its spectral repre- 
sentation 

Illt~Cexp[--i(H-iir/2)t/~])SIL~o 

-it v,& exp ( - i$$/fi> 

where 

(5.la) 

ck=v,f ’ & (5.lb) 

and ( vk) and (ek) are the complex eigenvectors and eigen- 
values, respectively, computed from diagonalizing the trid- 
iagonal matrix obtained from K Lanczos iterations.‘g(d)Y21 
Three features of the SIL method are worth mentioning. 
First, if the propagation duration t is relatively small, only 
a handful of Lanczos iterations are required to accurately 
represent $p 40~~) Second, given the initial vector rJo and the 
number of Lanczos iterations intended, the duration t over 
which SIL is accurate can be predetermined.20(a)‘20(b) This 
last point explicitly demonstrates the adaptive nature of the 
SIL integrator. And third, since SIL gives the time depen- 
dence of the propagated vector analytically, the Fourier 
transform of the propagated vector can be trivially ob- 
tained. As such, it seems very useful for the integral rep- 
resentation of the ABC Green’s function. Indeed, consider 
splitting the time integral in Eq. (2.7b) into N terms, each 
for a duration At,=t,-t,,-,, where to=0 and t,=T the 
finite upper time limit. One can show that the jth column 
of G+ (E) becomes 

N K(n) 
Gj(E) = c c Vkn~ knJ knj *c Y- a-0, (5.2a) 

n=l k=l 

where 

Cklj=V~lj’~O’O=VkTlj’lj= (Vkljlj 9 (5.2b) 

cknj = vknj = *q-*9 for n> 1, (5.2~) 

fknj(E)=~eXP[i(E-ek~j) (tn+tn-l)/2fi] 

Xsinc[ (E-Eknj)AtJ2fi], (5.2d) 
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and where sine(x) is defined in Eq. (3.4). In Eq. (5.2) 
(vk) nj and (Ek) nj are the complex eigenvectors and eigen- 

&,,,h(x’,&t;m,~) 

values, respectively, for the nth time duration in the com- 
putation of the jth column of G+(E). The key for the 
efficiency of this method is that the propagator obtained 
after K Lanczos iterations is accurate for a time longer than 
KAt, where At is the optimal split-operator propagation 
duration. Numerical tests of this approach are underway. 

We consider the generalization of Makri’s effective free 
particle kernel. For simplicity, we consider a 1D system 
with mass m. The success of Makri’s propagator is based 
on the filtering of high frequency momenta which are un- 

and 

important and difficult to integrate. To this end, we denote 
a general momentum filter by w(p) with the property that 
it goes to zero asp + f CO. This gives a generalized effective 
free particle kernel given by 

= exp 
1 I 

-i~J~~x)2]exp[~tan-1(~)]] 

X](~lR:B,)‘nexp[-‘~~~~x)2]], 

1 m 
A==, B=z, (5.5c) 

AxAp=ii. (5.5d) 

This effective propagator has three remarkable features. 
First, it is clear from Eq. (5.5) that the phase factor in 
&&,& identically cancels the very rapid oscillations in the 
exact free particle kernel as t goes to zero, i.e., B)A. This 
is crucial to the stability of the effective propagator. Sec- 
ond, the form of the filtering function, a Maxwell- 
Boltzmann distribution, suggests that we are imposing an 
artificial temperature for which kBTfilter/2= Ap2/2m. This 
is analogous to the approach of Coalson in which an 
artificial temperature was used to compute dipole autocor- 
relation functions. Imposing an artificial temperature in 
the propagator is tantamount to propagation in complex 
time, which D011~~ showed is stable even with numerical 
matrix multiplication (NMM) . In addition, Thirumalai 
and Beme have carried out NMM calculations of the 
propagator in complex time in the study of (nonartiflcial) 
temperature dependent correlation functions. Using 
AP=P,, for the N(E) calculations at E=0.52 eV, the . . 

(x’lexp( -ip2t/2m+i) Ix),~= I_‘,” &exp(ipx’Pi) 

Xexp( -ip2t/2mfi> 

Xexp(-@x/fi)w(p). (5.3) 

By the convolution theorem,55 one can show that the as- 
ymptotic form of this effective kernel is given by 

lim (x’lexp( -@‘t/2mfi) Ix)eff= W(x’-x), (5.4a) 
a-m 

where 

x’ -x 
a=- 

t 

and 

(5.4b) 

W(x) = s +=I dp . 
- epx’fiw (p) 

--oo LITi-+? 
(5.4c) 

is the Fourier transform of the momentum filter. In the 
trivial case where w(p) = 1, i.e., no filter, then Eq. (5.3) 
gives the exact kernel. If we set w(p) = 1 if (p ( <pm= and 
zero otherwise, we recover Makri’s effective kernel, which 
we have used in a uniform grid DVR. Its asymptotic form 
(3.12a) is trivially obtained from Eq. (5.4). Now consider 
the case where w(p) has a Gaussian form 

w(P) =exp( -p2/2Ap2). 

Then the effective propagator is 

(x’lexp( -ip2t/2mfi) Ix)af 

= (x’ 1 exp( -ip2t/2mfi) I x),act 

x &moth (x’,x,t;m,~), 

where 

(5.5a) 

(5.5b) 

artlfictal temperature is Tfilterz 50 000 K. Clearly this tem- 
perature is not low enough to interfere with the microca- 
nonical density operator, but might be low enough to filter 
out the high momentum components which are unimpor- 
tant to the dynamics. 

Finally, an approximation to the coordinate propaga- 
tor containing the same real Gaussian as in Eq. (5.5~) has 
been previously obtained in the context of “distributed ap- 
proximating functions” by Kouri, Hoffman, and co- 
workers.32(c)Y32(d) They were also seeking a more well be- 
haved coordinate free particle propagator. To this end, 
they analytically propagated a Her-mite polynomial fit to an 
initial wave packet and observed what effective propagator 
would have evolved the exact wave packet to obtain the 
same result. It is clear, from the present analysis, that their 
approach is tantamount to filtering out high frequency 
components in the propagator from the start, without the 
need to fit an initial wave packet. The intriguing aspect of 
this propagator, as Kouri, Hoffman, and co-workers cor- 
rectly point out,32(c)‘32(d) is the possibility of performing a 
path integral Monte Carlo evaluation of the real time prop- 
agator using the real Gaussian in Eq. (5.5~) as the sam- 
pling distribution. However, there are some potential prob- 
lems that may arise from this strategy. First, importance 
sampling based on free particle dynamics may require very 
short time slices and may not be able to anticipate the 
details of long-time dynamics. Second, a Gaussian filter, 
which is characterized by only one parameter, may not be 
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flexible enough to damp the high momentum components 
while giving the small components unit weight. Neverthe- 
less, the possible success of this approach bears further 
thought and numerical testing. 
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