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Abstract

In an earlier article, we had indicated two applications where there was a significant improve-

ment in accuracy due to the use of higher order approximation for certain spatial derivatives. The

method of undetermined coefficients was used for this derivative approximation. In this note which

is a sequel to the previous work, we provide a simple prescription for fixing the order of approxi-

mation of the required derivative. This procedure is based on the comparison of the various errors

of the discretisation process.

PACS number: 02.60. Jh

Key words: Numerical differentiation, Method of Undetermined Coefficients, Ra-
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In a previous article [1], we had indicated an implementation of a higher order approximation for

certain spatial derivatives which was based on the method of undetermined coefficients. This resulted

in a significant improvement of accuracy for two specific problems. The first problem addressed the

finite difference solution of a system of two coupled partial difference equations (pde). These pde’s

govern the migration of radioactivity in a porous medium [2]. The second problem pertains to the

quantum mechanical evaluation of rate constant, using the Miller Schwartz Tromp (MST) formula [3].

This is for a bimolecular reaction involving an Eckart potential barrier [4,5]. In the first problem,

the physical process of diffusion has to be assessed at two interfaces which is governed by a first-

order derivative of concentration. These two interfaces are the waste matrix-fracture interface and the

fracture-porous matrix interface. It is this first-order derivative term that was subjected to a higher-

order approximation (a maximum of a seven-point approximation when saturation was reached). The

forward time and centred space (FTCS) discretisation scheme was adopted for both the pdes’s.

In the second problem a Discrete Variable Representation (DVR) Hamiltonian was chosen [6]. The

required rate constant is expressed in terms of the derivatives of the eigen vectors evaluated at the point

which separates the reactants and products. Here a first-order derivative is needed for the eigen vectors.

In this earlier article, no criterion was indicated for the choice of the order of approximation for

the required derivative. We use as high an order as possible till numerical saturation sets in. Here we

indicate a simple criterion which governs the order of approximation which is based on the comparison

of various errors from the discretisation process. The pde for Cp , the concentration of radionuclide in

the porous matrix is given by

∂Cp

∂t
−
Dp

Rp

∂2Cp

∂x2
+ λCp = 0, b ≤ x ≤ B, t ≥ 0 (1)

The pde for the concentration C, along the fracture is given by

∂C

∂t
+
ν

R

∂C

∂z
−
D

R

∂2C

∂z2
+ λC +

q

Rb
= 0, z ≥ 0, t ≥ 0 (2)

Here λ,R,D, ν and θ are the decay constant, the fracture retardation factor, the dispersion co-

efficient, the ground water velocity in the fracture and the matrix porosity respectively. In the last

equation, the second, third and the fourth terms account for advection, diffusion and decay respec-

tively. Rp and Dp are the retardation factor and the dispersion coefficient for the porous medium. Then

q, the molecular diffusive flux crossing the fracture-porous matrix boundary is given by

q(z, t) = −θDp

{

∂Cp

∂x

}

x=b

, z ≥ 0, t ≥ 0 (3)

The continuity of the particle current at the waste matrix-fracture interface under diffusion approx-

imation is implied in the following equation.

−D

{

∂C

∂z

}

z=0

+ νC(0, t) = νCo, t ≥ 0 (4)



The rest of the initial and boundary conditions for solving these coupled pde’s are given in our earlier

paper and we do not repeat them for brevity. It must be emphasized that the concentrations C(z, t)

and Cp(x, z, t) at every spatial point originates due to the diffusive fluxes at the wastematrix-fracture

interface and the fracture-porous matrix interface. These diffusive fluxes in turn depend on the first-

order derivatives in eqns.(3,4). Hence a higher order approximation is implemented precisely for these

quantities through the method of undetermined coefficients described below.

The method of Undetermined Coefficients

The first derivative of f(x) at the point x is approximated by the following (m+ n+ 1)-point approxi-

mation [7,8].

f ′(x) = (1/h)[amf(x−mh) + am−1f(x− (m− 1)h) + am−2f(x− (m− 2)h) + .....

+ a1f(x− h) + a0f(x) + b1f(x+ h) + b2f(x+ 2h) + .....+ bnf(x+ nh)] (5)

In this formula there are (m+n+1) constants, am, am−1, ..., a0, b1, b2, ..., bn which need to be fixed. For

determining these constants, one can conveniently choose the point x as zero. Then by setting f(x) to

x0, x, x2, x3, ..., xm+n successively and then equating the exact f ′(x) to the value of f ′(x) as determined

by the above formula, one gets (m+n+1) linear equations. These equations determine the (m+n+1)

constants. When m = n, this amounts to symmetric differencing. When am, am−1, ..., a1 are all zero,

this results in forward differencing. If b1, b2, ...., bn are all zero, then we have a backward difference

approximation. For the porous flow problem, we need a forward difference scheme since the medium

(i.e fracture) where the concentration is sought is defined only for z ≥ 0+. The minimum and the

maximum orders of approximation that we have used are two and seven respectively. Here an n-point

approximation is given by

{

∂C

∂z

}

z=0+

'
1

∆z

{

a0Cz=0+ + b1Cz=∆z + b2Cz=2∆z + . . .+ bn−1Cz=(n−1)∆z

}

(6)

A similar approximation is used for the derivative term ∂Cp

∂x
. Using the Mean Value Theorem, the error

en of an n-point forward approximation is given by

en =
1

n
(∆z)n−1

{

∂nC

∂zn

}

z=zo

, zo ∈ (0, (n− 1)∆z). (7)

Note that the validity of the above error formula demands the following conditions to be satisfied.

1. The existence of the derivatives ∂jC
∂zj , j = 0, 1, 2, .., (n − 1) which are continuous in the closed

interval [0, (n− 1)∆z].



2. The existence of the derivative ∂nC
∂zn in the open interval (0, (n− 1)∆z).

The existence of the partial differential eqns.(1,2) guarantees the existence of derivatives ∂jC
∂zj for j = 0, 1

which are continuous in the closed interval [0, (n−1)∆z]. In the remaining cases, we assume the existence

of these required higher order derivatives.

Further for evolving a simple practical criterion, we tacitly assume that the derivative term in the

error expression en is of the order of unity. We define E as

E = min{E1, E2, ...., Em} (8)

where E ′

is are the magnitudes of the leading discretisation errors of the remaining spatial derivative

terms of the pde’s. Then the required order of the derivative approximation is arrived at by demanding

that

en ≤ E (9)

For convenience, we set ∆z = ∆x = h. The chosen values of the constants Dp, θ and b are 0.01, 0.01

and 0.0005 respectively. The rest of the constant terms have values equal to unity. We need to consider

the magnitudes of the leading truncation error for the following terms, Dp

Rp

∂2Cp

∂x2 , D
R

∂2C
∂z2 and ν

R
∂C
∂z

. Taking

the derivative term in eqn.(7) as unity, the magnitude of the leading discretisation errors for these

spatial derivative terms are 1
100

h2

12
, h2

12
and h2

6
respectively. The minimum of these three numbers is given

by E = 1
100

h2

12
which is the leading error of the derivative term Dp

Rp

∂2Cp

∂x2 .

This quantity E must be the upper bound for the leading truncation error of the derivative approx-

imant for

q

Rb
= −

θDp

Rb

∂Cp

∂x
(10)

which has the magnitude en given below.

en =
θDp

Rb

hn−1

n
(11)

Hence we have

en ≤ E ⇒
hn−1

5n
≤

1

100

h2

12
⇒

hn−3

n
≤

1

240
(12)

With h = 0.2, to satisfy the above inequality the choice n = 5 is slighly little less than sufficient and for

the same step size, the choice n = 6 is adequate. These conclusions are well supported by the results

in table 1. Again, with the choice h = 0.1, a fifth-order formula should be good enough to satisfy

the above inequality. This is also confirmed by the results of table 2. More importantly, we see the

onset of essential saturation for n = 7 in the results of tables (1,2). This is well in conformity with our



simple analysis. The time steps for the calculations with step sizes h = 0.1 and h = 0.2 are kept at the

same value to maintain identical errors stemming from the discretisation of the time derivatives in the

pde’s. It must be noted that as z increases, there is an over all deterioration of accuracy due to error

accumulation. In tables 1 and 2, the number of converged digits indicates a definitive downward trend

as z increases from 10m to 300m.

Evaluation of the rate constant for the Eckart barrier

In this problem, a bimolecular chemical reaction of the type given below is considered.

A+BC → AB + C (13)

Here, one needs the rate constant k, for the formation of the molecule AB and it is defined by

d[AB]

dt
= k[A][B] (14)

Under certain assumptions, a quantum mechanically exact expression is provided by the Miller Schwartz

Tromp [MST] formula [3]. Here, k is evaluated as a time integral of the flux-flux autocorrelation function

Cf (t).

kQ =
∫

∞

0
dtCf (t) (15)

Here Q is the partition function for reactants. The Eckart potential barrier considered is of the type

V (s) = V0 Sech
2(s) (16)

Here V0 is a constant and s is the reaction coordinate. We construct a Hamiltonian matrix H in the

Discrete Variable Representation (DVR) basis [6]. Diagonalization of H yields the eigenvalues {Ei}

and the eigenfunctions {ψi(s)}. The correlation function Cf (t) is then given by [3]

Cf (t) =
∑

i,j

exp [−β(Ei + Ej)/2] cos[(Ei − Ej)t/h̄] |〈i|F̄ |j〉|
2

(17)

where

|〈i|F̄ |j〉|
2

= (h̄/2m)2|ψ′

i(0)ψj(0) − ψi(0)ψ
′

j(0)|
2

(18)

The derivative term of the eigen function ψ in the last equation is evaluated by the higher order

approximation formula. The zero there defines the point (the transition surface in one space dimension)

that separates the reactants and products.

There are few complications here. In the case of the porous medium, we could compare the truncation



errors of all the derivative terms which formed the basis of fixing the order of required approximation.

In other words,the required order is fixed by demanding the leading discretisation error of this derivative

term must be comparable to the truncation errors of the other derivative terms of the pde’s. By analogy,

we need to have an estimate of the reference error in the eigen values and eigen vectors as a function of

N , the size of the basis functions. This error has contributions from various components. They stem

from the approximation property of the basis functions, truncation of the number of basis function

from infinity to a finite number and also from the diagonalization procedure employed. Unfortunately,

precise estimates do not exist for the DVR basis. Numerical observations indicate that the accuracy

lies some times close to an exponential order and it is mostly better than the order O(1/N 2) [9,10]. We

fix our attention on the quantity Cf (0). The converged value of this quantity, accurate to the last digit

evaluated here, by the choice N = 300 is 1.5012037.

Because the potential barrier is a symmetric function, we choose an odd-order approximation. Below,

we list the 5,7,9 and 11 point approximations for the derivative and the associated leading truncation

errors [7,8]. In the truncation errors below, we have omitted the derivative term as in the earlier case.

Due to symmetry, we notice that the coefficient of the middle term, namely ψ(0), is zero and so it does

not figure in the formulae below.

ψ′(0) ' (1/h) {(−1/12)[ψ(2h) − ψ(−2h)] + (2/3)[ψ(h) − ψ(−h)]} (19)

E = O(h4/30) (20)

ψ′(0) ' (1/h) {(1/60)[ψ(3h) − ψ(−3h)] − (3/20)[ψ(2h) − ψ(−2h)] + (3/4)[ψ(h) − ψ(−h)]} (21)

E = O(h6/140) (22)

ψ′(0) ' (1/h){ − (1/280)[ψ(4h) − ψ(−4h)] + (4/105)[ψ(3h) − ψ(−3h)]

− (1/5)[ψ(2h) − ψ(−2h)] + (4/5)[ψ(h) − ψ(−h)]} (23)

E = O(h8/630) (24)

ψ′(0) ' (1/h){(1/1260)[ψ(5h) − ψ(−5h)] − (5/504)[ψ(4h) − ψ(−4h)] + (5/84)[ψ(3h) − ψ(−3h)]

− (5/21)[ψ(2h) − ψ(−2h)] + (5/6)[ψ(h) − ψ(−h)]} (25)

E = O(h10/2772) (26)

Compared to the forward approximation of the porous flow problem, the error estimates here indicate a

much better accuracy due to symmetry. With h = 10/39 which corresponds to N = 40, the values of E

for the 5,7,9 and 11 point approximations are 1.44× 10−4, 2.03× 10−6, 2.97× 10−8 and 4.43× 10−10. In



order that these error estimates for the derivative to to be satisfied, the eigen vector ψ must be known

at the discrete spatial points exactly within the machine precision. Alternatively, it is also sufficient if

the precision of the function values is better than 4.43× 10−10, which is the maximum precision for the

choice n = 11. However, ψ is not known exactly and the errors in ψ as a function of N are again not

known precisely. Hence the convergence pattern displayed in table 3 does not conform to the calculated

precision of the derivatives. Again, as a function of N , the convergence of the rseluts in table 3 is not

exponential. The calculations were performed in Matlab with a minimum of 14 digit precision.

Still, in table 3 we observe a very slow but definitive trend of improvement of accuracy as we increase

n, the order of the derivative approximation. This is for the following reasons.

1. Due to symmetry there is a partial cancellation of systematic errors. That is the systematic error

(not random error) in ψ(jh) is partially cancelled by the systematic error of the term ψ(−jh) since

they occur in pair as [ψ(jh) − ψ(−jh)]. Here we assume that due to symmetry, the systematic errors

in both ψ(jh) and ψ(−jh) have the same sign and perhaps they may have equal magnitude.

2. The derivative expression involves pairs of terms like [ψ(jh) − ψ(−jh)]. The multiplier coefficients

for these pairs occur with alternating signs. Whenever the intrinsic sign of errors of two consecutive

pairs is the same, partial error cancellation can still occur.

Finally, in table 4, we have presented the derivative of the first eigen vector at the origin for various

values of N and n. Again, we do not see evidence of exponential convergence as a function of N . Even

for N = 300, the maximum number of converged digits in the derivative (for a 11−point approximation)

is just six.

Conclusions

We have indicated a method of finding the order of approximation for some spatial derivatives which

govern the accuracy critically for two physical problems. This is based on comparing the various errors

arising out of the discretisation process. For the porous flow problem, the method predicts a satisfactory

order beyond which saturation sets in. The method could not be applied for the Eckart barrier problem.

This is not due to any intrinsic failure of the method but because the reference error estimates for the

required quantities for this innately more complex problem do not exist. This we will address in future

work.



Table 1. Concentration along the fracture as a function of z and n

delz=0.2; delx=0.2; dt= 0.004; B=100; z=500

z Exact n=2 n=3 n=4 n=5 n=6 n=7

10 0.62931 0.63334 0.62907 0.62919 0.62920 0.62920 0.62920

20 0.36274 0.37204 0.36264 0.36261 0.36263 0.36263 0.36263

30 0.18401 0.19572 0.18427 0.18402 0.184030 0.18403 0.18403

40 8.2194E-02 9.2464E-02 8.2539E-02 8.2180E-02 8.2175E-02 8.2176E-02 8.2176E-02

50 3.2303E-02 3.9364E-02 3.2640E-02 3.2324E-02 3.2313E-02 3.2313E-02 3.2313E-02

60 1.1193E-02 1.5161E-02 1.1425E-02 1.1219E-02 1.1208E-02 1.1208E-02 1.1208E-02

70 3.4266E-03 5.3036E-03 3.5508E-03 3.4446E-03 3.4372E-03 3.4368E-03 3.4368E-03

80 9.2898E-04 1.6916E-03 9.8306E-04 9.3800E-04 9.3433E-04 9.3405E-04 9.3404E-04

90 2.2357E-04 4.9374E-04 2.4327E-04 2.2719E-04 2.2571E-04 2.2557E-04 2.2556E-04

100 4.7879E-05 1.3234E-04 5.3989E-05 4.9083E-05 4.8584E-05 4.8533E-05 4.8528E-05

200 4.3037E-12 7.5596E-14 3.5903E-14 3.0974E-14 3.0055E-14 2.9867E-14

300 3.3128E-22 3.2637E-26 3.5583E-27 1.9720E-27 1.6742E-27 1.5982E-27

Table 2. Concentration along the fracture as a function of z and n

delz=0.1; delx=0.1; dt=0.004; B=100; z=500

z Exact n=2 n=3 n=4 n=5 n=6 n=7

10 0.62931 0.63128 0.62918 0.62922 0.62922 0.62922 0.62922

20 0.36274 0.36737 0.36263 0.36262 0.36263 0.36263 0.36263

30 0.18401 0.18991 0.18406 0.18400 0.18401 0.18401 0.18401

40 8.2194E-02 8.7305E-02 8.2228E-02 8.2137E-02 8.2137E-02 8.2137E-02 8.2137E-02

50 3.2303E-02 3.5774E-02 3.2360E-02 3.2277E-02 3.2276E-02 3.2276E-02 3.2276E-02

60 1.1193E-02 1.3105E-02 1.1239E-02 1.1185E-02 1.1183E-02 1.1183E-02 1.1183E-02

70 3.4266E-03 4.3054E-03 3.4533E-03 3.4248E-03 3.4238E-03 3.4238E-03 3.4238E-03

80 9.2898E-04 1.2728E-03 9.4110E-04 9.2895E-04 9.2844E-04 9.2842E-04 9.2842E-04

90 2.2357E-04 3.3966E-04 2.2810E-04 2.2375E-04 2.2354E-04 2.2353E-04 2.2353E-04

100 4.7879E-05 8.2081E-05 4.9306E-05 4.7979E-05 4.7908E-05 4.7904E-05 4.7904E-05

200 4.2272E-13 3.4520E-14 2.7019E-14 2.6337E-14 2.6264E-14 2.6256E-14

300 1.1583E-24 2.5828E-27 1.1385E-27 1.0105E-27 9.9241E-28 9.8961E-28



Table 3. Values of Cf (0) as function of the size of the basis set N and for various orders

of the derivative approximation n

N n = 3 n = 5 n = 7 n = 9 n = 11

32 1.1197581 1.4086619 1.4845197 1.5084213 1.5165466

34 1.1510977 1.4239183 1.4887871 1.5069842 1.5121748

36 1.1792996 1.4364824 1.4919758 1.5058309 1.5090691

38 1.2046683 1.4468257 1.4943450 1.5049008 1.5068546

40 1.2274916 1.4553461 1.4960995 1.5041521 1.5052734

42 1.2480391 1.4623755 1.4973966 1.5035521 1.5041432

44 1.2665583 1.4681882 1.4983553 1.5030732 1.5033344

Table 4. The derivative of the first eigen vector at origin for various values of N and n.

All the entries in this table need a multiplier 10−10.

N n=5 n=7 n=9 n=11

40 0.24092001361190 0.31339519020627 0.30772057089543 0.30397992967817

80 0.49607311192342 0.50232136289964 0.50201289240796 0.50198399124454

200 0.48339809124954 0.48354139205768 0.48354022847642 0.48354039641536

300 0.58040190829375 0.58043529224745 0.58043497331359 0.58043486156445
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