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We present a simple and computationally efficient classical atomistic model of silica in which the
silicon and oxygen are simulated as hard spheres with four and two association sites, respectively.
We have performed isobaric-isothermal Monte Carlo simulations to study the mechanical and phase
behavior of this model. We have investigated solid phase structures of the model corresponding to
quartz, cristobalite, and coesite, as well as some zeolite structures. For the model these phases are
mechanically stable and highly incompressible. Ratios of zero-pressure bulk moduli and thermal
expansion coefficients fora quartz,a cristobalite, and coesite are in quite good agreement with
experimental values. The pressure-temperature phase diagram was constructed and shows three
solid phases corresponding to cristobalite, quartz, and coesite, as well as a fluid or glass phase,
behavior qualitatively similar to that seen for silica experimentally. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1797979#

I. INTRODUCTION

Silica is one of the most versatile compounds in modern
materials research, forming nanoporous zeolites,1–4 photonic
crystals,5–7 and a variety of ordered and disordered adsorp-
tion materials.8 Designing materials for advanced applica-
tions often requires a detailed understanding of structure and
performance over several length scales, from angstroms to
microns and beyond. An example of such hierarchical self-
assembly is the synthesis of silicalite-1~an ultralow alumi-
num MFI framework zeolite! from a clear solution of silica
nanoparticles.2,9–13To date, atomistic modeling of such hier-
archical self-assembly has remained challenging. In this pa-
per, we propose a model for silica that is both physically
realistic and computationally efficient.

Previous statistical mechanical models of silica have
been shown to reproduce accurately the structures and physi-
cal properties of selected silica polymorphs.14–18 Some of
these models are able to capture the nontrivial physics of
certain phases, such as the melting ofb cristobalite to a
higher density fluid state,19 the pressure-induced amorphiza-
tion of a quartz,20 and the phase transformation dynamics
betweena cristobalite andb cristobalite.21 Such models are
quite computationally intensive and it is worthwhile to ask
whether a simpler model can be formulated that can never-
theless capture the mechanical properties and phase behavior
of the different polymorphs of silica. In the present work, we
view silica as a material dominated by low coordination and
strong association, inspired by previous models of hydrogen

bonded fluids.22,23 For computational efficiency, these inter-
actions are implemented through hard-sphere repulsions and
directional square-well attractions. By examining the me-
chanical and phase behavior of this Si1O model, we show
that it is in good qualitative agreement with experimental
data on the dense silica phases.

The remainder of this paper is organized as follows: Sec.
II details the model that has been developed, the solid phases
that are of interest in this study, and gives the details of the
Monte Carlo simulations we have used to study the model,
including the methodology used to calculate free energies.
Section III reports our results including the calculation of the
phase diagram and a comparison of the results with those for
real silica. Section IV contains a summary of our findings
and some concluding remarks.

II. MOLECULAR MODEL AND CALCULATION
METHODS

A. Molecular model

Our overall goal is to include the key chemical and
physical properties of silica, while keeping the model com-
putationally tractable. The key chemistry and physics in-
cludes the strong silicon-oxygen bond, the tetrahedral coor-
dination of the oxygen atoms about a given silicon atom, and
strong short-ranged repulsion. A simple way to do this is to
adapt ideas from models of short range association in hydro-
gen bonding fluids. An example of this is the primitive model
of water ~PMW!,23 which has been shown to qualitatively
reproduce aspects of the solid-fluid phase behavior of
water.24a!Electronic mail: monson@ecs.umass.edu
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The present model represents silicon as a hard sphere
core with four bonding sites tetrahedrally arranged on its
surface~Fig. 1!. This enforces the tetrahedral coordination of
oxygen atoms about a single silicon atom. Oxygen is simi-
larly described as a hard sphere with two bonding sites on its
surface~Fig. 1!. The placement of the bonding sites on oxy-
gen is not as straightforward as that for silicon. The low
pressure dense phases of silica have Si-O-Si angles that
range between 140° and 150°, while in zeolitic frameworks
the Si-O-Si bond angle can vary from as low as 130° to as
high as 180°. We have chosen the angle between the bonding
sites on oxygen to be 145.8°. This is the average of the
Si-O-Si angles exhibited ina and b phases of quartz and
cristobalite. Despite this constraint we show below that we
can construct essentially all the phases of silica with four-
coordinate silicon using this model.

The silicon-silicon and silicon-oxygen nonbonded inter-
actions are hard sphere potentials with a hard sphere diam-
eters. The oxygen-oxygen interaction is similar; however, it
employs a nonadditive hard sphere interaction. The oxygen-
oxygen interaction length is set to 1.6s. This distance helps
the model to reproduce the O-Si-O bond angle distribution

predicted by molecular dynamics simulations.15 The silicon-
oxygen bonded interaction is modeled as

uSi-O~r Si-O!5H 2e r Si-O<lw

0 r Si-O.lw .
~2.1!

In order for the model to be robust, and simulate as
many phases as possible, we wish to use the largest value of
lw that will allow only one bond to form between any two
bonding sites. We chooselw5@12(A3/2)#s to preserve
this stoichiometry.23 This width also allows for Si-O-Si
angles from'130° up to 180° to be simulated, allowing one
simple model to simulate all phases of interest.

B. Solid phases studied

The solid phases considered in this study are, in the first
instance, the naturally occurring phases:a quartz,b quartz,
a cristobalite,b cristobalite,b tridymite, and coesite. The
zeolite frameworks MFI~silicalite!, SOD ~sodalite!, LTA
~zeolite A!, and FAU~faujasite! were also studied. The struc-
tures ofa quartz,b quartz,a cristobalite, andb tridymite
were obtained from the book of Wyckoff.25 The b cristo-
balite structure reported in Wyckoff has too high a symmetry
and is thought to represent an idealized crystal structure.26–28

Theb cristobalite structure used in this work was taken from
Wright and Leadbetter,26 and is a structure averaged over the
dynamically disordered locations of the oxygen atoms. The
structure of coesite was obtained from an atmospheric pres-
sure refinement by Levienet al.29 The high-pressure stisho-
vite phase is not modeled due to the change in coordination
chemistry of silica at high pressures. At pressures above
8–10 GPa the silicon coordination in silica goes from four-
fold to sixfold. The assumed tetrahedral coordination of oxy-
gen about silicon in our model prohibits the modeling of the
Si(O6)1/2 base units of stishovite. Our solid phase simula-
tions were initialized by placing the silicon and oxygen at-
oms at the fractional coordinates given in the experimentally
determined crystal structures. To obtain the proper orienta-
tional configuration for each atom, a short Monte Carlo
simulation was run using a single unit cell, allowing the at-
oms to rotate in their fixed lattice positions. Once the internal
energy reached that of a fully bound crystal the simulation
was ended and the final orientations were then used in the
initial configuration for future simulations. All silica zeolite
framework structures were obtained from the structural data-
base of the International Zeolite Association.30

C. Monte Carlo simulations

Isobaric-isothermal (N-P-T) Monte Carlo~MC! simula-
tion is the principal tool used for simulating the solid phase
behavior of this model. Canonical Monte Carlo was also
used in the simulation of the fluid phase. To allow for the
noncubic unit cell shape of these phases, we used a method
derived for molecular dynamics by Parrinello and Rahman31

and adapted to Monte Carlo by others.32,33 In this approach,
the simulation box is not described by an edge length, but
rather by a matrix consisting of the three vectors, each of
which is an edge vector of the unit cell. The matrix is de-
noted by

FIG. 1. A visualization of the molecular model of silica. Top: Representa-
tion of a silicon atom. Bottom: Representation of an oxygen atom. Similar to
silicon it includes a hard core short range repulsion, but here there are only
two bonding sites on the surface on the hard sphere. The angle formed by
the two bonding sites is 145.8°, the average Si-O-Si angle exhibited in four
low pressure phases of naturally occurring silica.
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H5@aI bI cI #. ~2.2!

This allows not only for noncubic box shapes, but for the
shape of the simulation cell to change during the simulation
run. The volume of the simulation cell is then defined as

V5det~H!. ~2.3!

A typical simulation consisted of 250 000 cycles for
equilibration and 250 000 cycles for obtaining average statis-
tics. One cycle consisted ofNparticle attempts to perform par-
ticle translation, particle rotation, or a volume shift of the
simulation cell. Volume shifts were attempted 1% of the
time, while the remaining move types were attempted with
equal probability. The volume shifts allow for both isotropic
scaling and for anisotropic volume moves. Anisotropic vol-
ume changes include changing the relative lengths of each
side, or changing the cell shape entirely. The acceptance ratio
for translation and rotation moves was kept near 40%,
whereas the volume change ratio was held closer to 20%.
The typical system size for each phase studied was between
200 and 300 atoms. This corresponds to 8 (23232) or 27
(33333) unit cells depending on the crystal symmetry
used in the initial configuration.

D. Free energy calculations

1. Solid phase

To calculate the solid phase free energies, we imple-
mented the Frenkel-Ladd methodology.34 This method cre-
ates a thermodynamic path between the solid of interest and
a classical Einstein crystal. The Einstein field used in this
work is given by

UEinstein5(
i 51

N F l

s2 ~Ri2Ri
(0)!21lS ca,i

p D 2

1lS cb,i

p D 2G .
~2.4!

wherel is the coupling constant.Ri and Ri
(0) represent the

location of atomi for the current configuration, and in the
reference lattice configuration, respectively. The anglesca

andcb are defined as follows. Letai
(0) andbi

(0) be two per-
pendicular unit vectors in body fixed coordinates assigned to
each atom in the reference lattice~vectorsa andb are shown
in Fig. 2!. Vectors ai and bi are the same vectors in the

current configuration.ca,i is the angle betweenai
(0) andai ,

andcb,i is that betweenbi
(0) andbi .

The free energy of the model solid can be related to that
of an ideal Einstein crystal via

A5AE1DA11DA21DA3 , ~2.5!

whereAE is the free energy of the ideal Einstein crystal and
DA1 is the difference between the free energy of the ideal
Einstein crystal and that of the Einstein crystal with interac-
tions. DA2 gives the difference in free energy between the
solid of interest and that of an Einstein crystal with interac-
tions andDA3 is the difference in free energy between a
system with an unconstrained center of mass and that of a
system with a fixed center of mass.

The free energy of the ideal Einstein crystal is made up
of translational and rotational contributions. Expressions for
these have been derived elsewhere.24,34,35We use a slightly
modified expression for the rotational portion of the free en-
ergy resulting from the orientation dependence of the energy
in our reference Einstein crystal. The orientational contribu-
tion to the free energy of the reference noninteracting Ein-
stein crystal is given by

AE,or

NkbT
52 lnS 1

8p2 E
0

pE
0

2pE
0

2p

expH 2
l

kbT F S ca

p D 2

1S cb

p D 2G J sinadadfdg D , ~2.6!

where a, f, and g are the three Euler angles defining the
orientation of a molecule. By choosing thea(0) vector as
parallel to the body-fixed z axis, we can simplify Eq.~2.6! by
replacingca with the Euler anglea. The anglecb is, in
general, a function of all three Euler angles, however, for
large values ofl the only significant contribution to the in-
tegral arises whena is close to zero. Whena is near zero,
the anglecb can be identified with the Euler angleg. This
leads to a simplified expression for the rotational contribu-
tion to the free energy of the Einstein crystal

AE,or

NkbT
52 lnF 1

2p E
0

p

expH 2
l

kbT S a

p D 2J
3sinadaE

0

p

expH 2
l

kbT S g

p D 2J dgG . ~2.7!

DA1 is given by

DA1

NkBT
52

1

N
lnK expF2

1

kbT (
i , j

u~ i , j !G L , ~2.8!

where the angle brackets denote a canonical ensemble aver-
age over configurations of the noninteracting Einstein crystal
andu( i , j ) is the pair potential of the solid of interest. When

FIG. 2. Body-fixed vectorsa and b used in the solid phase free energy
calculations.
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l is very large the hard core interactions make only a very
small contribution toDA1 compared with the boding inter-
actions.DA2 is given by

DA2

NkBT
5

1

N E
lmax

0 K (
i 51

N F S Ri2Ri
(0)

s D 2

1S ca,i

p D 2

1S cb,i

p D 2G L
l

dl. ~2.9!

The angle brackets again denote a canonical average
over the interacting Einstein crystal with the subscript denot-
ing the value of the coupling constant.DA3 is given by36

DA3

NkBT
52

1

N
ln~V/N!. ~2.10!

Further details of this method as it is applied to non-
spherical molecules can be found elsewhere.24,35,37,38

2. Simplification of thermodynamic property
calculations for fully bonded solid phases

For a fully bonded state of the model, the internal energy
per atom is given byU/N524e/3, independent of the den-
sity. This allows for a significant simplification when com-
puting the solid phase free energy as was first shown for the
PMW.24 This is seen as follows. Starting with the Gibbs-
Helmholtz equation

S ]A/T

]T D
V,N

52
U

T2 , ~2.11!

and taking a volume derivative we obtain

F ]

]V S ]A/T

]T D
V,N

G
T,N

52
1

T2 S ]U

]V D
T,N

. ~2.12!

SinceU is independent of density for fully bonded states
of the model the right-hand side of this expression is zero.
Using the expressionP52(]A/]V)T,N it follows that

S ]P/T

]T D
V,N

50, ~2.13!

so that we can write that for a given density

P~T!5P~T0!S T

T0
D . ~2.14!

Similarly we can use the Gibbs-Helmholtz equation to
show that for a given density

A~T!5A~T0!S T

T0
D1U~T0!S 12

T

T0
D . ~2.15!

These expressions show that we need to only generate
the free energy and pressure on one isotherm for each phase
of interest. We can obtain isotherms at other temperatures,
where the system remains fully bonded, by using Eqs.~2.14!
and~2.15!. A few short simulations must be run to determine
the temperature range for which Eqs.~2.14! and ~2.15! are
valid. The range of temperature where the solid is fully
bound depends on the pressure and the solid phase geometry.
For higher pressures and denser structures the solid is fully

bound over a wider range of temperatures. The assumption
of full bonding was found to be valid for all solid states
considered in our work.

3. Fluid phase

The fluid phase free energy is typically computed by
relating the system of interest to an ideal gas. The configu-
rational Helmholtz energy of an ideal gas can be written as

AIG

NkBT
5 ln r21. ~2.16!

The Helmholtz free energy can then be determined at
any density using

A~r!

N
5

A~r0!

N
1E

r0

r P

r2 dr. ~2.17!

However, this method requires a reversible path between
the state of interest at densityr and a very low density ideal
gas state. This can be achieved by compressing the system of
interest at low pressure and density to a high pressure, high
density system, and then subsequently expanding back to the
low density, low pressure starting state in order to check that
the states are reversible. In the case of our system we have
encountered difficulty in equilibrating the fluid at low tem-
peratures~typically for values ofT* 5kBT/e less than about
0.12!. This reflects the tendency for the system to form
strongly bound amorphous networks at moderate and high
fluid densities. We have investigated some methods of en-
hancing the sampling in the Monte Carlo simulations, includ-
ing hyperparallel tempering in theN-P-T ensemble39 and
density-of-states Monte Carlo40–42 but these did not signifi-
cantly enhance the equilibration of the systems.

In order to obtain estimates of the low temperature fluid
behavior we have studied the isochoric behavior of the
model in the fluid phase. It was found that isochores of the
internal energy versus temperature are reversible over large
regions of temperature, including lower temperatures for
which theN-P-T simulations are unable to fully equilibrate
the system. Using thermodynamic integration of the Gibbs-
Helmholtz equation, we use isochores of the internal energy
to compute the change in Helmholtz free energy between
two temperatures at a given density. At temperatures well
above the melting point of the model, where the bond
strength is not the dominant factor, we can successfully gen-
erate reversible isotherms between ideal gas and compressed
states, and therefore compute the Helmholtz free energy at a
given temperature for a range of densities~volumes!. A re-
versible isotherm was generated atT* 50.2, well above the
melting temperature of the solid phases. The Helmholtz free
energy was computed for this isotherm through thermody-
namic integration from an ideal gas reference state. Nineteen
densities between the ideal gas state and the density of coes-
ite were then chosen. Isochores of the internal energy at
these densities were computed by progressively heating the
system toT* 50.20, and slowly cooling it back down to a
temperature of 0.06. Free energy differences were then com-
puted by integrating on these isochores. By using all the
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information from each density, we constructed isotherms of
the Helmholtz free energy, and used these to estimate the
P-r behavior of the fluid.

III. RESULTS AND DISCUSSION

A. Mechanical behavior of Si ¿O model

We begin by exploring whether our model for silica is
mechanically stable at finite pressures, and whether its me-
chanical properties are qualitatively correct. The phases of
interest in this work are quartz, cristobalite, tridymite, and
coesite. MFI, SOD, FAU, and LTA framework zeolite struc-
tures were also studied to determine if a very low density
structure is also mechanically stable. One should note the
wide variance in Si-O-Si bond angles exhibited in these crys-
tal structures. Quartz and cristobalite both have a single Si-
O-Si angle around 145°, MFI has 17 distinct bond angles
ranging from 130° to 175°, while the idealized form ofb
tridymite has a 180° Si-O-Si angle. The finite square-well
width for Si-O bonds allows this wide range of angles to
occur within our model. Figure 3 shows snapshots of equili-
brated structures generated byN-P-T Monte Carlo simula-
tions of the model at low values of the pressure. It is evident
that the overall coordination and crystal shape are preserved
after equilibration. However, the small displacements of at-
oms result in some loss of the symmetry associated with
respect to the input crystal structure.

Figure 4 is a plot of reduced pressureP* 5Ps3/e versus
reduced densityr* 5rs3 for each of the dense phases stud-
ied. These isotherms were generated from a sequence of
N-P-T simulations where the final configuration from a
simulation at pressurePi was used as the initial configuration
for the simulation at pressurePi 11 . This procedure was then
reversed starting from the highest pressure, to check that the
isotherms are thermodynamically reversible. It is evident that
each phase examined is mechanically stable at a nonzero

pressure. It should be noted that all of the square-well bonds
are saturated at the temperature for which the isotherms were
generated (T* 50.01). Bond breaking is an extremely rare
event for all temperatures belowkBT/e'0.095. Linear
pressure-density equations of state~EOS! were fitted to the
isotherms shown in Fig. 4 according to

P~r,T!5~Ar1B!S T

Tref
D . ~3.1!

As noted above, this allows thePrT behavior of the
fully connected solid to be completely described using only
this one isotherm. The order of densities provides an initial
point of comparison between the model system and real
silica. Our model predicts solid phase densities in the follow-
ing order: cristobalite,quartz,coesite. Experimental data
indicate that cristobalite has a solid density of 2.318 g/cm3,43

quartz a density of 2.646 g/cm3,44 and coesite that of
2.921 g/cm3,29 in qualitative agreement with our model. The
steepness of the isotherms in Fig. 4 suggests a highly incom-
pressible material. This is what one would expect for silica.
In order to quantify the extent of incompressibility, we com-
puted zero-pressure bulk modulus for each phase. The values
obtained from the equations of state were checked by using
fluctuation expressions in theN-P-T ensemble. Results for
both methods were statistically equivalent. Table I shows the
ratios of bulk moduli between pairs of solid phases computed
from the present model and the corresponding ratios using
experimental values. The good agreement between the model
and experiment is a pleasing result given the model’s sim-
plicity. The model results reported in Table I are calculated
from the equations of state for the solid phases. From this

FIG. 3. Visualizations of equilibrated configurations taken fromN-P-T
Monte Carlo simulations atPs3/e50.00 001 andkT/e50.01 initialized
from different crystal structures of silica.~A.! a quartz structure taken from
Wyckoff.25 ~B.! a cristobalite structure taken from Wyckoff25 ~C.! b tridym-
ite structure taken from Wyckoff25 ~D.! Coesite structural data from atmo-
spheric refinement by Levien29 ~E.! Silicalite-1 structure taken from van
Koningsveld.52

FIG. 4. Pressure (Ps3/e) versus density (rs3) for the six different natu-
rally occurring silica solid phases studied in this work. Solid lines are the
equations of state in the form of Eq.~3.1! ~s! a quartz,~d! b quartz,~h!
a cristobalite,~j! b cristobalite,~n! b trydimite, and~.! coesite.

TABLE I. Ratios of bulk moduli between different phases as computed in
the model, compared to corresponding experimental ratios.

Phases Simulation Expt.a

Cristobalite/Quartz 0.4560.07 0.44
Quartz/Coesite 0.4760.10 0.40

aReference 51.
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table we can see that in both experiment and in the model,
the bulk modulus of cristobalite is the lowest, followed by
quartz, and then coesite. To further test the model, thermal
expansion coefficients were calculated from the equation of
state@Eq. ~3.1!# via

aP5S ]V

]TD
P

52S ]P

]T D
V
Y S ]P

]VD
T

. ~3.2!

Table II shows computed thermal expansion coefficient
ratios for pairs of solid phases together with experimental
values. Again, we can see that there is good agreement be-
tween the ratios except for the calculated quartz/coesite ratio.
The amount of uncertainty in the experimental values is not
precisely known. Overall, the data in Tables I and II indicate
that our simple model captures the relative values of com-
pressibilities and expansion coefficients among the different
phases.

Given the wide range of angles reported in the crystal
structures of different silica phases, it is interesting to com-
pute the equilibrium distributions of angles that arise from
our model. Figure 5 gives the distribution of bond angles
generated from a low-pressure simulation ofa quartz. The
solid line is the O-Si-O bond angle distribution, while the
dashed line is for Si-O-Si angles. There is a 13.5° full width
at half maximum~FWHM! for the O-Si-O angle distribution,
centered about 109°. From molecular dynamics simulations
of amorphous silica, Vashishtaet al.15 reported a FWHM of
10° in the O-Si-O bond angle. We are unaware of data or
calculations for the bond angle distribution for the crystalline

phases. For the Si-O-Si bond angle, our simulations give a
FWHM of 35° centered at 145°. Fitting29Si-NMR data of
tridymite and amorphous SiO2 , Pettiferet al. reported a 30°
variation in the Si-O-Si angle.45 Simulations of other phases
showed very similar behavior. However, the silicalite-1
phase shows a higher average Si-O-Si angle, but the width of
the histogram is similar to that ofa quartz.

B. Phase behavior of Si ¿O model

Figure 6 shows theP* 2T* phase diagram computed
from our model of silica. The phase diagram shows the
cristobalite-quartz and quartz-coesite solid-solid phase
boundaries. A quartz-cristobalite-fluid triple point is found at
kBT/e50.081 and Ps3/e50.002. A second triple point,
among coesite, quartz, and the fluid is found atkBT/e
50.107 and aPs3/e50.078. When compared with the ex-
perimental pressure-temperature phase diagram~Fig. 7!, it is
evident that our model qualitatively describes the phase be-
havior of silica. In our model, the pressure dependence of the
stable phase is properly captured, with cristobalite being
stable at low pressures, quartz the stable phase at intermedi-

TABLE II. Ratios of thermal expansion coefficients between two phases,
compared with corresponding experimental ratios. Simulations were per-
formed at a reduced pressure of zero. Experimental data are for expansion
coefficients at 1 atm and 273 K.

Phases Simulation Expt.a

Cristobalite/Quartz 2.6360.77 2.276
Quartz/Coesite 2.4360.96 4.7

aReference 51.

FIG. 5. Three-body angle distributions calculated fora quartz at reduced
pressurePs3/e50.0 001, and a reduced temperature ofkBT/e50.01. The
solid line is the O-Si-O bond angle distribution centered at about 110°, the
dashed line is the Si-O-Si angle distribution, centered at about 149°.

FIG. 6. Pressure (Ps3/e) versus temperature (kT/e) phase diagram. The
dashed line denotes our estimate of the phase equilibrium for states where
the fluid phase could not be equilibrated.

FIG. 7. Semischematic experimental pressure versus temperature phase dia-
gram of silica. Based on data reported by Swamy51 and references cited
therein.
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ate pressures, and coesite stable at the highest pressures stud-
ied. We note again that stishovite was not considered in this
model due to the change in oxygen coordination about the
silicon atoms under extremely high pressures,

In addition to the three crystalline phases, the current
model finds a fluid phase that is in equilibrium with each
solid phase. Figure 6 shows that slope of the melting line is
relatively insensitive to different crystal phases, and that the
model melts at a temperature range betweenT* 50.09 and
0.10. The dashed lines in Figs. 6 and 8 denote our estimates
of the fluid-solid equilibrium for states where we were un-
able to equilibrate the fluid phase to the extent necessary for
a reliable estimate of the free energy. At lower temperatures
we have estimated the fluid phase free energy using the ideal
gas approximation. At these lower temperatures it is shown
in Fig. 6 that cristobalite can be in equilibrium with a low
density vapor-like~ideal gas! phase as well as with quartz.
We now turn our attention to the nature of the fluid phase
with which the solids are in equilibrium.

Experimental data suggest that the liquid~or glass-like
phase! has a density lower than that of the crystalline phase.
The one exception to this isb cristobalite, which is a few
percent less dense46 than the liquid. Figure 8 shows the com-
puted density (rs3) versus temperature (kT/e) phase dia-
gram of the system. We can see that above moderate pressure
quartz and coesite are in equilibrium with a fluid that is
slightly less dense than the crystal phase. However, at lower
pressures, it is shown that quartz and cristobalite are in equi-
librium with a much lower density fluid state. This is not in
agreement with experimental data on the fluid phase, which
show that the fluid phase is only a few percent less dense
than the solid in question. At very low densities, relative to
close packed arrangements, a transition to an ideal gas state
is shown for a wide range of temperatures. The phase behav-
ior of the current work is similar to that of the PMW.24 In the
case of the PMW, estimation of the low temperature, low
pressure solid-fluid equilibrium was aided by the use of a
thermodynamic perturbation theory,24,47–49which is unavail-
able for the present model. The PMW shows a metastable
liquid1vapor equilibrium that lies entirely inside the low
density solid1fluid region of the phase diagram. It is pos-

sible that this behavior is present in the current model as
well.

While the model is able to describe phases that differ by
pressure, it does not appear to distinguish between thea and
b phases of a given polymorph. Thea and b phases of a
polymorph have very similar crystal structures. The differ-
ence lies in that theb or high-temperature phase has a higher
symmetry associated with its crystal structure. In the present
model when all bonds are saturated, as they are at low tem-
peratures, changing temperature does not significantly influ-
ence bonding or structure. To better understand the equilib-
rium structure ofa andb phases in our model, we examined
the Si-Si radial distribution function~Figs. 9 and 10!. As
simulations ofa quartz are equilibrated, we see that the sec-
ond, third, fourth, and fifth crystal peaks of the Si-Si radial
distribution functions merge into two peaks atr 53.0s and
r 53.3s. This shows thata quartz equilibrates into a ‘‘quart-
zlike’’ structure, but does not have the symmetry associated
with the perfect crystal. Similar behavior is observed withb
quartz: as the simulation proceeds towards equilibrium, the
crystal peaks in the radial distribution function again merge
into two peaks atr 53.0s and r 53.3s. Figure 9 gives a
comparison of thegSi-Si(r ) for both a ~line! and b ~dots!

FIG. 8. Temperature (kT/e) versus density (rs3) phase diagram for the
model of silica.

FIG. 9. Si-Si radial distribution functions ofa andb quartz phases from the
model. The solid line is fora quartz and the dots are forb quartz.

FIG. 10. Si-Si radial distribution function of quartz and cristobalite. The
solid line gives the results for quartz and the dashed line for cristobalite.
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quartz and indicates that both quartzes have the same order-
ing in our model. In Fig. 10, we also compare thegSi-Si(r ) of
quartz~solid line! and cristobalite~dashed line!, showing that
these phases have noticeably different equilibrium structures
in the model.

IV. CONCLUSIONS

We have developed a simple molecular model of silica
materials, which gives good qualitative agreement with ex-
perimental data on mechanical and phase equilibrium prop-
erties. The model consists of silicon, represented as a hard
sphere with four bonding sites in tetrahedral locations on its
surface and oxygen, represented as a hard sphere with two
bonding sites fixed on its surface. Isobaric-isothermal and
isochoric Monte Carlo simulations were applied to this
model. Density, isotherms, bulk moduli, thermal expansion
coefficients, three body angle distributions, and radial distri-
bution functions were computed and found to be in good
qualitative agreement with known experimental data. Free
energy calculations were made to construct a phase diagram
for the model. This represents one of the first instances
where the phase behavior of an atomistic model of silica has
been calculated~we are aware of only one other study of this
type,50 which was done recently using a modified BKS
potential17!.

The model clearly distinguishes among cristobalite,
quartz, and coesite, showing both quartz-cristobalite and
quartz-coesite phase coexistence lines. A fluid phase was also
found to be in equilibrium with each of the three solid
phases. At low pressures and densities, a low density gas
phase was found to be the thermodynamically stable phase.
The temperature-density phase behavior is similar to that of
the primitive model of water.24 We find that coesite is in
equilibrium with a fluid that is a few percent less dense,
while quartz and cristobalite are in equilibrium with a fluid
phase that is much less dense than the respective crystal
structures. Given the similarity with the PMW, it is possible
that a metastable vapor1 liquid region exists within the
cristobalite1fluid phase region.

These results show that a simple model can capture the
qualitative phase and mechanical equilibrium behavior of
silica-based materials. This model allows relatively large
systems to be simulated in a reasonable time, in contrast to
other more sophisticated models of silica. With suitable gen-
eralizations of this model, to account for the type of silica
species present in basic aqueous solutions, it may become
feasible to simulate self-assembly of silica nanostructures
with atomistic detail.
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