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Abstract

In many situations, the numerical derivative of a function at a poimust be calculated since the function is not defined by a
closed-form expression, but rather by values of the function at grid points at and arolinid typically arises when enforcing
the boundary conditions whikolving a differential equation. Usually, one ploys a 2- or 3-point formla to approximate the
derivative. On the other hand, the use of a higher-order formula, such as a 7- or even a 10-point approximation, based on the
method of undetermined coefficients, can sometimes lead to better accuracy and enhanced computational efficiency. We show
that significant improvements arise from using higher-order formulas for the first derivative in two important problems: the
calculation of quantum mechanical reaction rates using the Miller—Schwartz—Tromp correlation function, and the calculation of
the radioactivity migration in a porous medium.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The need to evaluate the derivative of a function by nucaémeans arises when a closed-form expression for
the function is not available. An example is the particle curdewhich under Fick’s diffusion approximation is
given by—DVn, whereD is the diffusion constant andis the number density, whose value may be available at
selected equidistamqoints. Another instance ioWwes the derivatives needed to enforce the boundary conditions
while solving differential equations.

Usually, one employs a 2- or 3-point formula to approate the boundary derivative. On the other hand, the
use of a higher-order formula, such as a 7- or even pdift approximation, based on the method of undetermined
coefficients, can sometimes lead to better accuracy ahdreed computational efficiency. We show below that
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significant improvements arise from using higher-order formulas for the first derivative in two important problems:
the calculation of the radioactivity migration in a porous medium and the calculation of quantum mechanical
reaction rates using the Miller—Schwartz—Tromp correlation function. For the radioactivity migration, a partial
differential equation has to be solved numerically ardehone of the boundary conditions needs the evaluation

of the first order derivative. It is for the implemetitm of this crucial boundary condition we resort to higher-
order approximation. The concentration of radiodttivn the porous medium depends on the particle current
from the source (waste matrix) into the medium. The expression for the current involves the first derivative. Hence,
the overall accuracy of the whole computation dependshenprecision of this derivative approximation. We
emphasise that we are not concerned about approximdinderivatives that occur in the differential equation.

They are usually approximated by standard difference schemes, whose choice is governed by convergence, stability
and accuracy requirements. Obvioushhigher-order discretisation scheme will result in better accuracy. In the
case of the quantum mechanical reaction rate expression, there is no differential equation involved. We just need
the first-order derivative of a flux vector whose nuroativalues are known. In both the cases, we use as high an
order of approximation as possible till numerical saturation is reached.

2. Themethod of undeter mined coefficients

The first derivative off (x) at the pointx can be expressed by the method of undetermined coeffi¢igras

f') = @/ W)|am f(x —mh) 4+ am-1f (x = (m = Dh) + am—2f (x — (m —2)h) +---
+arf(x—h)+aof(x)+bif(x+h)+baf(x+2h)+ - +b,f(x+nh)]. (1)

The above formula involveén + n + 1) constantsg,,, a,—1, ..., ao, b1, b2, ..., b, which need to be fixed.
For conveniencey is set to zero. Then choosinf(x) as 1 x,x2 x3,..., x”*" successively and then equating
the exactf’(x) to the value off’(x) as determined by the above formula, we get+ n + 1) linear equations
which fix the(m + n + 1) constants. lfn = n, then this amounts to symmetric differencing which in general gives
better accuracy provided the furan has the even symmetry. df,, a,,—1, ..., a1 are all zero, then this implies
forward differencing. Ifb1, ba, . .., b, are all zero, then this corresponds to the backward differencing situation.
For example, the symmetric 4-point approximation for the first derivative can be written as

f(x—2h) —8f(x —h) +8f(x+h) — f(x+2h)
121 '

The error in the above approximation is given @‘é{ﬁ(é). It must be noted that this symmetric differencing
involves 5 points, namely (x — 2h), f(x —h), f(x), f(x+h) and f (x + 2h) but the coefficient off (x) happens to

be zero by symmetry. One can obtain expression for higher-order derivatives too. For example the second derivative
atx can be approximated as

—f(x —2h) +16f(x — h) — 30F (x) + 16 (x + h) — f(x + 2h)
1252

with an error term,% £8(&). Alternatively, we can obtain these derivative approximants by differentiating the
standard Lagrange interpolation formula which alsddgehe errors associated with these approximations. These
coefficients for the first, second, third and derivatives of various orders for the forward and backward difference
cases are tabulated [2].

The usual tendency in approximating derivatives in bompdanditions and in similar scenarios is to use a 2- or
3-term derivative approximation formula. Typically, fasymmetric case, one tends to approximates the derivative
as

[l = )

[0 > (3)

ffx)y=[fx+h) — f(x—h)]/2h. (4)
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However, there are occasions, when a 7- or even a 9-gdeniative approximations can be used instead of just a

2- or 3-point approximation. In the following two examples, we show that the computational gain is substantial if
we use a higher-order formula for the first derivative. In the first example, we consider the transport of radioactivity
in a porous medium which is rock. Here the boundary coodgiof the two coupled partial differential equations
involve expressions involving the first derivative. The second example chosen is the evaluation of the quantum
mechanical expression for the rate constarfior a bimolecular chemical reaction with an Eckart barrier, using the
Miller—Schwartz—Tromp formula. Here the evaluationkofieeds the derivative of the wavefunction with respect

to the reaction coordinate at the transition state, to calculate the reactive flux.

3. Radioactivity migration in a porous medium

The problem of storing radioactive wastes in underground sites is of utmost importance from radiological and
environmental considerations. The long lived high level wastes from the nuclear industry are concentrated and
then embedded in a glass matrix and subsequentlgéttrdepths of around 600 m in containers. The containers
are surrounded by rock. It is of interest to know how an @ewtal leakage of the rasfictive material from the
container will propagate in the rock as a function of time. For modelling[8]isthe rock medium is considered
as porous blocks separated by multiple fractures. The fractures are assumed to be planar, identical, parallel and
equally spacedHig. 1). The fracture has a widt{2b) and the fractures are spaced at a distana@Bj. b and B
are of the order of 16> m and 18 m respectively; = 0~ andz = 0" correspond to the waste matrix and fracture
sides respectively at the waste mefracture interface. Similarlyy = 0 andx = b respectively correspond to the
centre of fracture and the fractureallv The radioactive waste matrix is assumed to send a constant flux which
propagates along the fracture and also diffuses across the fractures. Water flow is assumed to take place only in
the fracture since the hydraulic conductivity of the porous rock matrix is low. However the rock permits molecular
diffusion along the fracturez(direction) and also across the porous matkixdirection). To cast this model into a
one-dimensional problem, the following assumptions are made:
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Fig. 1. Fracture waste—matrix system.
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(1) The width of each fracture is much smaller than its length.

(2) Complete mixing is enabled by transverse diffusiod dispersion across each fracture. Hence concentration
is uniform across each fracture.

(3) Flow of water is laminar in each fracture which allows the use of Darcy’s law.

(4) Molecular diffusion is the only mechanism along thdirection (i.e., from the fracture into the porous matrix
and across the porous matrix) which is much slower than the transpodiiaction along the fracture.

By assuming that the velocity of water is constant, an analytical solution for this model is derived by Chen
and Li[3]. But such an assumption is not necessary for the numerical solution of the governing partial differential
equations. The model also considers the radioactive dmuadithe adsorption onto theafrture walls and within the
porous matrix. More details can be found in Chen an{BLiLet D,, R, andC,, denote the diffusion coefficient,
the matrix retardation factor and the concentration ofoadclide in the porous matrix. Then the partial differential
equation (PDE) foC,,, describing the diffusive transport of radionuclide in the porous matrix is given by

aC, D, d%C,

ot R, dx2

Herex is the decay constant of the radioactive sabse. The PDE for the concentrati®ndescribing the transport
of radionuclide along the fracture is given by

+1C,=0, b<x<B, t>0 (5)

dC v dC D*C q
C LI Pl e+ L —0 ;>0 >0 6
8t+R8z Raz2+ T Rb ‘ ©

HereR is the fracture retardation factdp. andv are the dispersion coefficient and the ground water velocity in
the fracture respectively. The second, third and the faertins of above equation account for advection, diffusion
and decay respectively.represents the molecular diffusive flux crossing the fracture-matrix boundary and is given
by
aC),

ax

Here 6 denotes the matrix porosity. We need to prescrhminitial and boundary conditions for solving these
two coupled PDEs. Initial concentrations in both thacture and the porous matrix are zero which are given
by Egs. (8) and (9)We look for solutions that die down at infinity which is expresseddoy (10) The flux is
continuous across the waste-fracture interface, which is giveBdoy(11) Eq. (12)expresses the fact that the
concentration is continuous atelfracture-matrix interfacezqg. (13)implies that the concentration in the porous
matrix takes a minimum value at the centreline which is a consequence of symmetryiditeetion.

q(z,t):—GDp{ } , z=0,¢t>0. (7
x=b

C(z,00=0, z>0, (8)

Cp(x,2,00=0, b<x<B,z>0, 9)

C(oo,t)=0, =0, (10)
aC

—D{—} +vC(0,1) =vCq, =0, (12)
0z z=0

Cpb,z,t)=C(z,1), z>0,1>0, (12)

oC

—L(B,2,0=0, 2>0,1>0. (13)

X

We define a series of terms below.

_ (4RD)Y?

v
G=(R,/Dy)Y?% o=G(B-b); o= Fa— (14)



N. Mohankumar, SM. Auerbach / Computer Physics Communications 161 (2004) 109-118 113

&g sinh(oe) — sin(o¢)

®R =T34 coshoe) + cosoe)’ (15)

-y tanes,
Fi(z, o B, €, 3) = ﬂ% exp(— (Z‘Zg)z —E(B2+2) + za>, (17)
Fo(z,a, B, €, A) = ﬂ—lzexp(zw —AE) erfc(ZTﬂ_ + £> (18)
F3(e, e, A) = %; Fy(e, 2,1) = €2/2 + 1cogR2), (19)
Fs(A,t,8) =exg—Ar( —&)]; Fe(e,e1,2) = (62/2) sin(e ) lr=—& — A COLe) |r=r—s- (20)

Let Co denote the concentration of the waste matrix. Then in terms of the above terms, the analytical solution
can be written as

t

2C
C(z,t)= TO/df;'(Fl — Fz)/Fs[F4+ F5Fg] ds. (21)
0

This is an elegant solution, obtained by Laplace transform techrjRjué@’he above two-dimensional integral
can be evaluated for distances up to about 100 m easlyod 100 m, the integrand is highly oscillatory and
also the exponential terms reach high values which taggireclude the possibility of numerical evaluation. For
radiological assessment, one ne€ds, 1) for z values around 500 m and hence we resort to finite differencing the
PDEs.

Let the time and space indices be denotedjbgndi respectively. That if{ denotes the concentration at
z=1i(Az) and at the time= j (Ar). Using a forward differencing for the time derivative we get,

J j+1 j
oc] ¢/ -/ 22)
ar At

This implies a discretisation error of the order aft]. For the space variable we employ symmetric differencing
and the first derivative is given by

el _cla—cl,

~ ! 23
0z 2Az (23)
which has an error of the order hz)?. The second derivative is given by
j J J J
92C/ - Ci1—2C) + Cl.fl. )

972 2(Az)?

The second derivative approximation has an error which is of the ordes9f again. Choosing a maximum
distancezmax, We divide this distance intormumber of equispaced grid points{ and at eachy;, we discretise the
porous matrix in the: direction too. LetC,,j denote the concentration.at= i (Ax) and at the time= j (Ar) fora
givenz. Subjecting both the PDEs to the discretisationessh indicated above, we end up with linear algebraic
equatlonsforthe unknowr{@f} and{C,,’} If the varlablesCf andC,, are known for a given and for alli, then

Cl.’Jrl andC,,l. ! can be evaluated for allusing the discretised version of the PDEs and the boundary conditions.
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Crucially, for the derivatives appearingys. (3) and (7)we apply the same-term derivative approximation
formula given by

) S
{%} = (1/Ax)(a1Cp (b) + azCp (b + Ax) +a3Cp(b +2A%) + -+ anCp (b +n — 1Ax)),  (25)
x=b

{%} ~ (1/A2)(@1C(0) + a2C (A7) +asC(A2) + -+ a,C (1 — 1A2)). (26)
z=0

The various parameters for the solution of the PDEs are given below.
D =1.0(m?/yr); D, =0.01(m?/yr); R=10; R, =10
__log(2)

v=10M/yr;  Tip=214x10° (yr; A= ———  b=00005  ¢=001
1/2

With this choice of parameters, the calculationsaied out with double precision accuracy in FORTRAN which
guarantees a 14 digit accuracy.

Table 1gives the results of the numerical solution. These values correspond to a step size of 0.2 mxin both
andz directionszmax is chosen as 500 m. The number of grid points indtaad.x directions are 2500 and 5000
respectively. The time step is 0.018 yr and the computation is carried out for a 1000 yr period. The second column
gives the exact values computed by the 2-D analytical solution for distances up to 100 m. The values obtained by
the finite difference scheme for various orders of defresapproximation are given in the remaining columns. We
observe about 3 digit accuracy for the calculated valuedifiances up to 50 meters. Also it is noticed that even
a 4-point derivative formula does not give better accyreompared to a 5- or 6- or 7-point derivative formula.
Beyond 7-point expansion, due to numerical saturation, the improvements become lesscfeases, we see
that the use of 7-point formula gives better results than a 5- or a 6-point formula. This is illustrated by the values
corresponding ta = 200 m. For thig value, there are no reported referemakies. As we have discussed earlier,
the analytical solution cannot be evaluated since thetisolintegral is highly oscillatory and also the values of
integrand exceed the bound set by commonly used FQ®RIBompilers for double presion computation. The
value reported here, namely 2.9E4 is the converged value. The 2-point derivative scheme yields a value 43E
which has a discrepancy of two units in the exponent when compared with the converged value. Also, the 2 digit
convergence is observed only for the 7-point derivative. The superiority of the higher-order derivative scheme is
thus clear for large. In fact, but for the higher-order derivative, the estimation at distances beyond 200 m will be
beset with uncertainties due to lack of convergence. This is understandable since the concentration at any distance
is governed by the diffusion that takes place in theirection. In addition, it is dependent on the diffusion that
takes place in the direction and hence an accurate calculatiod@dbr largez needs a precise evaluation of the
diffusion in bothz andx directions which call for a careful evaluation of the derivatives of the concentrations. We
have employed a scheme which is only firstardccurate in time with an error of the order/f and second order
accurate in space having an error of the ordeiof)?. Hence the overall accuracyiliimprove significantly with
higher-order finite difference schemes.

Table 1

ConcentrationC alongz direction after 1000 years for various valug, the order of derivative approximationis in meters

Z Exact n=2 n=3 n=4 n=>5 n==6 n=17
10 062931 0633338 0629071 0629192 0629203 0629203 0629203
30 018410 0195723 0184272 0184020 0184029 0184030 0184030
50 32303E-2 3.9363E-2 3.2639E-2 3.2323E-2 3.2311E-2 3.2311E-2 32311E-2
70 34266E-2 5.3032E-3 35505E-3 3.4442E-3 3.4369E-3 34364E-3 3.4364E-3

100 47879E-5 1.3231E-04 53970E-5 4.9065E-5 4.8567E-5 4.8515E-5 4.8501E-5

200 430E-12 754E-14 358E-14 307E-14 299E-14 298E-14
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In a series of papers Smith and his coworkig:$] have worked out solution methodology for very general
advection—diffusion equations in one and more dimensions. The starting point of their approach can be viewed
as modifications of the Crank—Nicholson method. The terms of the partial differential equation other than the
time derivative term and the inhomogeneous terms are given optimal weights. For example th€ tduming
discretisation is chosen a$61C(t) + (1 — 61)C(t + Ar)}. Similarly, the first and second partial derivative terms
involving the space variable are weighted with parameigi@ndods. Finally, the weight®;, i =1,2,3,..., are
chosen optimally to improve accuracy. In the Crank—Nicholson like schemehosen as /2, giving equal weight
to quantities at successive time steps. The spirit of tlke@bBpproach is to improve the overall accuracy by giving
optimal weights to quantities at consecutive time steps whereas in the present work, we improve the accuracy just
by using a higher-order approximatidor a crucial boundary derivative hE possibility of ajidicious mix of the
optimal weighting and higher-order boundary deti@approximation is to be explored in future.

4. Application to quantum ratetheory

Here one considers a bimolecular chemical reaction of the type

A+BC— AB +C.
The rate of formation of the molecule AB is governed by the following equation,

VL ks, 21)

1

k is the reaction rate constant which is a functiorfgfthe temperature. Given the potential energy surface, it is
desirable to calculate from first principles. For gas phase reactiohg teaction can be considered as a scattering
event and in principlé& can be calculated quantum mechanically from the scattering m&trbtowever, the
computational complexities are prohibitive for realistic cases. These complications can be minimised to a large
extent by considering the reaction dynamics in the vigiof the reaction barrier. king this approach, Miller,
Schwartz and Tromf6] (MST) gave a quantum mechanically exact expression for the rate constant in terms of
time correlation functions. In terms of the flux—flux autocorrelation funatig(y), the MST formula can be written

as

kQ = / dr Cr(1) (28)
0

whereQ is the partition function for reactantS.s (¢) is given in terms of the Hamiltoniaf and the symmetrised
flux operatorF by
Cy(t)=tr[FexpiHts/h)F exp(—iH1i/h)]. (29)

Here trace denotes the quantum mechanical tracekgnid the Boltzmann constant. The symmetrised flux
operatorF and the complex time are given by

F = (1/2)[8(s)(p/m) + (p/m)8(s)], (30)
te=t—ihp/2; B =1/(ksT). (31)

Here s is the reaction coordinate angl is its conjugate momentum operater. is the mass of the particle.
We assume for simplicity that the totedactive system is one-dimensional.{#f,(s)} is a finite set of square
integrable basis functions, diagonalising the matrixfoin this basis functions produces the eigenvalues and



116 N. Mohankumar, SM. Auerbach / Computer Physics Communications 161 (2004) 109-118

eigenfunctiongy; (s)}. In this matrix representation the correlation funct©p(t) is given by
Cr()=" exq—p(E; + E;)/2] cof (E; — Ejyi/n]|(i|F|j)[?

ij

(32)

where

[E1F 1) = (1/2m)2[ ] Oy (0) — ¥+ (O (0)]. (33)

Numerical integration o€ /(1) over a set of values of timeyields the quantityk Q).

We have chosen the problem of one-dimensional Eckaridvavith the parameter values indicated in Park and
Light [7]. The potential barrier is given by (s) = Vo Secl(s) whereVy has a value of 0.0114 and we use atomic
units throughout. To construct the Hamiltonian matrix, We tigeDiscrete Variable Representation (DVR) basis
(Colbert and Miller{8]). For a one-dimensional problem, withrestricted to the intervdk, b), the grid pointgs; }
and the basis function(®; (s)} are given by

si:a—i-(b—a)lﬁ, i=1..,(N=1), ¢y

jm(s —a)
b—a

In this representation, the potential energy operator is diagonal. That is

¢j(s)=[2/(b—a)]l/25in< ) j=1,...,(N—1). (35)

Vij =V (si)di;. (36)
The grid points are distributed ovér5, 5). The kinetic energy matrix is given by
12 (=1 72 1 1
Tii=— - — , 1#], 37
ST 2mb—a)? 2 (sinz[n(i —)/@N) sl + j)/(ZN)]> 7 57)
m? (=1)i—J n2< ) 1 )
= —(@N*+1)/)3— ——. 38
2m (b —a)? 2 (@N“+1/ Sire(i /N) (38)

Diagonalising the Hamiltonian in ih basis gives the eigenfunctiofi; (s)} and the eigenvalud€:;} from which
Cy (1) is evaluated as given 0. (32) To calculate the derivatives q. (33) we use the higher-order derivative
formula. Here we use symmetric derivative formulae up to 10th order.
There are two quantities of interest. First is the valuk,dfie guantum mechanical rate constaii.is given by
the area under the curve, the timeersus flux auto correlation functiafy (r) plot. The second quantity S, (0).
For T = 500, the correct values &fQ andC(0) are 9.8 and 1.51 respectively (Wy§#). Table 2gives the
values of both these quantities for various values of the order of the Hamiltdhidimese calculations are done
with just a 2-point derivative. Each value is followed by its absolute relative percentage error, indicated within the

Table 2

Values of(k Q) andC y(0) for various values o, the order of the Hamiltonian using a 2-point derivative

N kQ Cy(0) CPU time
60 95168(2.89%) 1.3641(9.66%) 1.203
80 9.6530(1.50%) 1.4207(5.91%) 2.203

100 97147(0.87% 1.4486(4.06%) 3.531

120 97478(0.53%) 1.4643(3.03%) 5.141

140 97676(0.33%) 1.4739(2.39%) 7.062

160 97804(0.20%) 1.4802(1.97%) 9.297

180 97892(0.11% 1.4846(1.68%) 11.891

200 97954(0.05%) 1.4877(1.48%) 14.797
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bracket. FolN = 60, we get a value of 9.5168 féQ which is having an error of 2.89%. A% increases, the error
decreases and fof = 200, we get a value of 9.7954 which has an error of just 0.05%. This is to be contrasted with
the values calculated by a 10-point derivative appr@tion using a Hamiltonian of order not exceeding 44. For

N = 38,40, 42 and 44 with 10-point derivative evaluatigh Q) value has errors 0.16%, 0.11%, 0.10% and 0.12%

as indicated in the last column d&ble 3 To achieve a relative percentage error of 0.11% with a 2-point derivative,
we need to have a Hamiltonian of order 180 whereas with a 10-point derivative, a Hamiltonian of order 40 suffices.
For N =38, 40 and 42, thék Q) values are 9.816, 9.8106 and 9.8101, indicating a converged value of 9.81.

Asimilar trend is indicated fo€ ¢ (0). Using a 2-point derivative we get the values 1.3641 and 1.487V o160
and N = 200 respectively, with corresponding errors 9.66% and 1.48%l¢é 2. Using a 10-point derivative, the
corresponding errors fa¥ = 32, 34 and 36 are 0.43%, 0.14% and 0.06% which are indicated in the last column of
Table 4 The advantage of the higher-order derivative soh@&@wnce again demonstrated. Compared to the porous
flow considered earlier, the computational gain is more impressive, which is partly due to the symmetry of the
potential. Finally,Fig. 2 gives a plot of the flux—flux auto correlation function as a function of time for a 36 by
36 Hamiltonian for the Eckart barrier. @dt, data2, data3 and data4 of legendrigf. 2 correspond to derivative
approximation orders 2, 4, 6 and 10 respectively.

We also give a comparison of the CPU times for generating@the) values for a time interval of 35 fs. These
CPU times are indicated in the last columrilable 2where we use a 2-point derivative. For a Hamiltonian of order
180 with a 2-point derivative, &Q value 9.7892 with a relative absolve error of 0.11% is obtained. This evaluation
needs a CPU time of 11.891 units. This to be contrastitldl the corresponding values using a Hamiltonian of
order 40 employing a 10-point derivative scheme. For itasniltonian, the relative absolute error is 0.11% and
the CPU time is just 0.516 units indicating a reduction by a factor of 23. The CPU times for a Hamiltonian of order
40 alone are indicated ifable 3for different orders of derivative approximation. We also note that witfixed,
the increase in CPU time is marginal as the order of the derivative increases from 2 to 10. These calculations were
performed under MATLAB.

Table 3
Values of(k Q) for various orders of the Hamiltonial and for various orders of the derivative approximatiori-or N = 40, the third row of
entries give the CPU time

N n=2 n=4 n==6 n=2=8 n=10

32 86646(11.59%) 10.5974(8.14%) 10.5358(7.51%) 10.2205(4.29%) 9.9625(1.66%)

34 88076(10.13%) 10.4665(6.80%) 10.3397(5.51%) 10.0645(2.70%) 9.8734(0.75%)

36 89254(8.92%) 10.3589(5.70%) 10.2007(4.09%) 9.9699(1.73%) 9.8325(0.33%)

38 90238(7.92%) 10.2712(4.81%) 10.1021 308% 99129 115% 98160(0.16%)

40 91068(7.07%) 10.1996(4.08%) 10.0314(2.36%) 9.8783(0.80%) 9.8106(0.11%)
0.484 Q500 Q500 Q515 Q516

42 91774(6.35%) 10.1411(3.48%) 9.9802(1.84%) 9.8571(0.58%) 9.8101(0.10%)

44 92380(5.73%) 10.0930(2.99%) 9.9428(1.46%) 9.8440(0.45%) 9.8114(0.12%)

Table 4

Values ofC ¢ (0) for various orders of the Hamiltoniai and for various orders of the derivative approximation

N n=2 n=4 n==6 n==8 n=10

32 11198(25.84%) 1.4087(6.71%) 1.4845(1.6874% 1.5084(0.10%) 1.5165(0.43%)

34 11511(23.77%) 1.4239(5.70%) 1.4888(1.40%) 1.5070(0.20%) 1.5122(0.14%)

36 11793(21.90%) 1.4365(4.87%) 1.4920(1.19%) 1.5058(0.28%) 1.5091(0.06%)

38 12047(20.22%) 1.4468(4.18%) 1.4943(1.04%) 1.5049(0.34%) 1.5069(0.21%)

40 12275(18.71%) 1.4553(3.62%) 1.4961(0.92%) 1.5042(0.39%) 1.5053(0.31%)

42 12480(17.35%) 1.4624(3.15%) 1.4974(0.83%) 1.5036(0.43%) 1.5041(0.39%)

44 12666(16.12%) 1.4682(2.77%) 1.4984(0.77%) 1.5031(0.46%) 1.5033(0.44%)
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Fig. 2. Time versus flux—flux auto correlation function plot for a 36 by 36 Hamiltonian.
5. Conclusion

The two examples illustrate the point that one need not stop with a 2-point derivative approximation. One can
use a higher-order derivative apprartion for implementing boundary conditis of differential equations and in
similar situations which will result in significant computational economy.
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