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Abstract 
 

We review the macroscopic variables relevant to single-component mass transfer through fixed 
zeolite particles or membranes.  Through the Fick and Maxwell-Stefan formulations of diffusion, 
we relate these variables to transport coefficients calculable with molecular simulations.  Using the 
Fick formulation, we discuss the diffusion-controlled and desorption-controlled limits of mass 
transfer.  Through the well-known relation between the Fickian and Maxwell-Stefan diffusivities, 
we discuss expected temperature and loading dependencies in the limits of fluid-like and jump-like 
intrazeolite diffusion.  We then review the statistical mechanical foundations of self-diffusion and 
Fickian- or transport-diffusion in terms of mean-square displacements.  We outline how self-
diffusion is influenced by kinetic correlations, geometrical correlations, vacancy correlations, 
single-file motion and disorder.  For host-guest systems where guest motion is dominated by rare 
site-to-site jumps, we outline the use of transition state theory and kinetic Monte Carlo for 
constructing diffusion coefficients. We emphasize the particular difficulty in treating the 
competition between host-guest and guest-guest interactions when modeling rare event dynamics in 
zeolites. 
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1. Introduction 
Knowledge of the mechanisms behind the reactivity and selectivity of zeolites and other 

microporous catalysts (in single-crystal as well as membrane forms) requires a detailed 

understanding of the mobility or the dynamical properties of adsorbed molecules within the 

microporous cavities of such materials.  The separation mechanism exhibited by zeolite nanopores 

may be either: (a) “shape and size selectivity” (where molecular discrimination or screening occurs 

at the pore entrance or window due to the inability of one molecular type to access the porous 

network or transport pathway, e.g., N2-CH4 separation in ETS-4); (b) “interaction selectivity” 

(where separation occurs based on strong sorbate-zeolite interactions inside the pores, e.g., 

benzene-cyclohexane separation by Na-X); or (c) a complex interplay of (a) and (b).  Though 

zeolites offer useful properties such as highly selective adsorption, diffusion and reaction, their 

small pore sizes and complex transport pathways provide significant resistances to molecular 

motion.  One of the important goals in our research field is thus to understand diffusion in zeolites 

to optimize the balance between high selectivity and high flux.  Detailed theoretical studies on two 

important zeolite types – MFI and FAU (Figure 1) have attributed their slow transport behavior to 

jump-like diffusion consisting of sequences of site-to-site jumps that are probabilistically rare [1, 2].  

In this chapter, we explore the macroscopic phenomenologies and the microscopic mechanisms 

underlying jump diffusion in zeolites, with particular focus on revealing the temperature and 

loading dependencies of single-component fluid transport in nanopores. 

The remainder of this chapter is organized as follows: In section II, we review various 

diffusion phenomenologies using language appropriate for membrane permeation.  In section III, 

we discuss typical temperature and loading dependencies of transport coefficients controlling self- 

and transport diffusion, by comparing behaviors exhibited for jump-like and fluid-like motion.  In 

section IV, we describe correlation functions that capture the microscopic bases of diffusion,  
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Figure 1: Two industrially important well-studied zeolite types – Faujasite (FAU) and Mobil–5 
(MFI).

FAU

MFI

FAUFAU

MFIMFI



 4

including kinetic, geometric and vacancy correlation effects.  In section V, we outline transition 

state theory and kinetic Monte Carlo as simulation methods for modeling jump diffusion in 

zeolites.  Finally, in section VI, we summarize the insights gained. 

 

2. Diffusion Phenomenology: 

2.1. Control and Response Variables 

To discuss the phenomenology of diffusion, we consider the construction of the zeolite-guest 

system.  Applications of zeolites typically do not restrict to the use of zeolite single crystals, but 

rather may also employ supported zeolite crystals that are closely inter-grown as a thin film or 

membrane.  Figure 2 shows a 10 µm thick cross-section of a siliceous MFI-type membrane as an 

example.  Zeolite membranes are (nowadays) typically formed from myriad closely assembled  

 

Figure 2: Cross-sectional view of a typical zeolite membrane of thickness L (Inset shows the 
Scanning electron microscope image of an MFI membrane as an example). 
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micro-crystallites [3, 4].  By guest or sorbate diffusion through the membrane, we mean transport 

through the microporous zeolite structure.  Here we explore the macroscopic system parameters 

that control steady-state permeation through such zeolite membranes.  Towards that end, we pose 

the following questions: 

(a) What macroscopic variables do we control? 

(b) What are the responses to those controls? 

(c) How are the controls and responses related? 

Permeation through zeolite membranes is controlled by: the choice of zeolite (host), sorbate 

(guest) and the process conditions under which permeation takes place.  Regarding the zeolite, we 

can choose framework topology, chemical composition of the framework (e.g., the Si:Al ratio), and 

membrane thickness.  Regarding the adsorbed guest phase, we may choose the molecular size, 

shape and polarity.  Process variables include temperature (T) , inflow pressure (Phi) and outflow 

pressure (Plo).  Pressures are typically used to specify external fluid-phase activities because 

adsorption in zeolites is relatively strong; so much so that near-complete pore filling can often be 

achieved by placing zeolites in contact with relatively dilute vapors.   

In addition to these standard control variables, we note that recent progress has been made in 

controlling the microstructures of zeolite membranes[4].  For example, by modifying membrane 

synthesis conditions, Tsapatsis and coworkers have fabricated both b-oriented and c-oriented MFI 

membranes[5].  The crucial point is – In order to comprehend complete insight in diffusion in 

zeolites, it is not enough to know the zeolite type, composition and particle size; one must also have 

a sense how the zeolite was actually synthesized.   
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Here we address the macroscopic responses to the control variables discussed above.  In 

general, experimentalists monitor either the transient uptake rate or the steady-state flux.  We focus 

on the latter, being more relevant to membrane permeation measurements (Figure 3A).  The flux is 

defined by: 

Flux through the membrane  = Mass/Time/Area 

     = Density * Velocity 

     ≡ J (moles/s/m2 or kg/hr/m2)    (1) 

By defining the flux on a ‘per area’ basis, the flux becomes independent of area in analogy with 

pressure (force per area).  Two other variables that are often used to report permeation data are the 

permeance and the permeability coefficient, defined according to:  

Permeance through the membrane = Flux/Pressure drop 

     = J/(Phi - Plo)       (2) 

Permeability Coefficient  = Permeance * Membrane thickness 

     = J*L/(Phi - Plo)      (3) 

The permeance becomes useful in the “Henry’s law” adsorption regime, i.e., at low pressures where 

loadings are low, because in this regime the permeance is independent of pressure drop.  The 

permeability coefficient becomes useful in the “diffusion-limited” transport regime, i.e., for 

relatively thick membranes (vide infra), because in this regime the permeability coefficient is 

independent of membrane thickness. 
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Figure 3A: Schematic of a permeation experiment through a zeolite membrane of thickness L 
(Diffusion driving force expressed in three different forms, i.e, −∇P, −∇c and −∇µ. 

 

Figure 3B: Schematic of an equimolar counter-diffusion experiment through a zeolite membrane. 
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 If these considerations hold, we have that: 

Constant  = J*L/(Phi - Plo)        (4a) 

⇒ J ∝ ∇P (If linear pressure-drop is considered)     (4b) 

⇒ J = − P∇P + O(∇P2).        (4c) 

Here ∇P is a “driving force” in the sense that if ∇P were zero, the flux would vanish.  J is the 

response to the driving force ∇P, and P (the permeability coefficient) is the constant of 

proportionality.  If terms of order ∇P2 can be ignored, the system is in the “linear response” regime.  

Otherwise, we ought to consider explicitly such higher-order terms.  Instead, most transport 

formulations eschew explicit reference to higher-order driving forces, preferring to sweep these 

effects into a “loading dependence” of the transport coefficient P.  As such, our first diffusion 

phenomenology, i.e., a mathematical equation connecting control and response variables, takes the 

form: 

J = − P∇P.           (5) 

Other more useful phenomenologies exist for diffusion, based on concentration gradients 

and chemical potential gradients, the pros and cons of which are discussed below.  In terms of the 

concentration gradient∇c across the membrane, we have Fick’s law that takes the form: 

J = − D∇c + O(∇c2),          (6) 

where D is the Fickian or transport diffusion constant, with units of length squared per time.  

Folding higher-order effects into D produces the Fickian diffusion coefficient D(c) (i.e., no longer 

constant), which depends on the local sorbate concentration in the membrane.  As such, Fick’s law 

takes the form: 
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J = − D(c)∇c           (7) 

The great value of Fick’s law is its connection with the continuity equation, which expresses the 

conservation of mass according to: 

J
dt
dc

⋅−∇=            (8) 

Plugging Fick’s flux into the equation above gives the “diffusion equation” also know as Fick’s 

second law: 

( )( )ccD
dt
dc

∇⋅∇=           (9) 

Note that in general, D(c) depends implicitly on space through its concentration dependence, 

requiring it to remain sandwiched between the two gradient operators.  Solving this and related 

differential equations for various physically-motivated boundary conditions has been the focus of 

attention for many years.   

In principle, Fick’s law can be generalized for multi-component systems according to: 

∑ ∇−= j jiji cDJ           (10) 

However, when equation (10) is used to interpret experimental data for complex transport systems, 

one finds the possibility that Dij can become negative [6], suggesting that other formulations of 

multi-component transport are required.  Nevertheless, equation (10) becomes useful for 

interpreting a very special kind of multi-component system, involving equimolar counter-

permeation of identical but labeled particles, also known as “tracer counter-permeation” and more 

generally as self-diffusion[7].  This situation, shown in Figure 3B, is characterized by the following 

diffusion phenomenologies: 
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J1 = − Ds∇c1 + O(∇c1
2)         (11a) 

J2 = − Ds∇c2 + O(∇c2
2).          (11b) 

Here Ds is the self-diffusion constant, also with units of length squared per time.  Again, folding 

higher-order effects into Ds gives the self-diffusion coefficient, which we expect to be lower than 

the single-component Fickian D(c), because self-diffusion involves counter-flow and hence greater 

transport resistance.  Taking into account the equal and opposite fluxes in self-diffusion suggests 

adding equations (11a) and (11b) to yield: 

J1 + J2 = 0 ⇒ ∇c1+ ∇c2 = 0 =∇ctotal.        (12) 

Therefore, in self-diffusion the total concentration of both components is constant through the 

membrane, suggesting that Ds depends upon ctotal, the total concentration of both components.  As 

such, self-diffusion is an equilibrium property of the system.  Combining self-diffusive flux with 

the law of conservation of mass, i.e., equation (8), we get the self-diffusion equation: 

cD
dt
dc

s
2∇=            (13) 

where, c(r,t) is the position and time dependent concentration of labeled molecule(s).  Solving 

equation (13) with a “Delta-function” initial condition, c(r,t) is found to be proportional to the 

“propagator” or the probability distribution of molecular displacements at (r,t), i.e.,  

( ) tD
r

setrc 4

2
−

∝,           (14) 

The mean-square displacement is obtained as the second moment of this probability distribution; 

this yields the “Einstein equation:”  

tDtr s6)(2 = .          (15) 
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In what follows, we omit explicit references to higher-order driving-force terms, understanding that 

these are folded into concentration dependencies of transport coefficients. 

The obvious importance of understanding multicomponent diffusion in zeolites, coupled 

with the challenge this phenomenon poses to the Fickian formulation, warrants the development of 

new diffusion formulations.  Most of these replace the concentration-based driving force with 

chemical potential gradients (∇µ).  Such a replacement is physically attractive for several reasons.  

First, the chemical potential gradient can be regarded as an actual force (energy/length), albeit a 

thermodynamic one, facilitating its use in force-balance equations (vide infra).  Second, chemical 

potential gradients are recognized as the true drivers of diffusive mass transport.  Indeed, 

experimental data confirms that diffusion ceases when chemical potential gradients vanish, even if 

concentration gradients persist [8]. 

Here we discuss the Onsager and Maxwell-Stefan formulations of diffusion.  The Onsager 

approach resembles the Fickian formulation, except for the ∇c → ∇µ substitution.  The 

multicomponent version takes the form: 

∑ ∇−= j jiji LJ µ           (16) 

where Lij and ∇µj are concentration-dependent Onsager transport coefficients and local chemical 

potential gradients, respectively.  The coefficients Lij have units of flux/force, and are related to 

important statistical mechanical correlation functions.  Recent molecular dynamics (MD) 

simulations of these correlation functions suggest that all these Lij’s are positive, which already 

represents progress from the Fickian approach [9].  A disadvantage of the Onsager approach is that 

the coefficient Lij is influenced by both guest(i)-guest(i) and guest(i)-guest(j) interactions, making 

its physical interpretation more complicated.  In practice, simulators calculate Onsager coefficients 
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directly from MD or kinetic Monte Carlo (KMC) simulations; these parameters are then 

transformed to Fickian diffusivities for use in reaction-diffusion equations [9]. 

 An alternative approach based on chemical potential gradients succeeds in disentangling the 

guest(i)-guest(i) and guest(i)-guest(j) interactions.  This is the Maxwell-Stefan formulation, which 

was originally developed for multi-component diffusion in bulk fluids.  This approach has since 

been generalized by Krishna to multi-component surface diffusion [6], and has been applied  with 

great skill to diffusion in zeolites by Krishna and coworkers [10].  While Fick and Onsager postulate 

phenomenological flux expressions, Maxwell and Stefan balance diffusive and drag forces.  For 

single-component transport driven by a chemical potential gradient across a membrane (Figure 

3A), the Maxwell-Stefan equation takes the form:   

MSD
RT νµ =∇−           (17) 

where MSD = ( )cD MS  is the concentration-dependent Maxwell-Stefan (MS) surface diffusion 

coefficient, ν is the macroscopic velocity of the permeating phase, and RT/DMS is a friction 

coefficient representing the effective drag experienced as the adsorbed phase permeates through the 

zeolite membrane.  Here, the diffusion driving force is the negative of the chemical potential 

gradient.  This phenomenology can be generalized for multi-component systems by adding a drag 

term for each additional component to the drag exerted by single-component zeolite-guest systems.  

For example, the transport of a binary mixture of permeating components (1 and 2) is described by: 

MSMS D
RTx

D
RT

12

21
2

1

1
1

)( ννν
µ

−
+=∇−         (18) 
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where )(cDD MSMS
1212 =  denotes the loading-dependent binary MS diffusivity corresponding to the 

interaction between components 1 and 2; )(cD MS
1  remains the MS surface diffusivity of component 

1 relative to the zeolite membrane.  In principle, )(cD MS
1  for the multi-component mixture may be 

different from that for the single-component case.  In practice, though, it is found that the behavior, 

e.g., loading dependence, of )(cD MS
1  is largely unchanged when adding additional sorbed phases.  

This is one of the great advantages of the Maxwell-Stefan approach to multi-component transport 

problems.  The Maxwell-Stefan approach also provides an elegant formulation of self-diffusion, 

which is a multi-component process from a macroscopic standpoint. 

Although the Maxwell-Stefan approach succeeds at formally disentangling i-i and i-j 

interactions by defining )(cD MS
1  and )(12 cD MS , a direct statistical mechanical calculation of 

)(12 cD MS  remains elusive, in contrast to Onsager’s Lij.  An empirical approach for determining 

)(12 cD MS , adapted by Krishna from bulk-fluid applications, involves logarithmic interpolation of 

single-component Maxwell-Stefan surface diffusivities [6].  This Maxwell-Stefan-Krishna approach 

has been shown to reproduce multi-component sorption kinetics with only single component 

diffusion data, augmented with multi-component adsorption isotherm data [10].   

 

2.2. Relationship between Fick and Maxwell-Stefan Diffusivities 

Here we show how to connect the Fickian and Maxwell-Stefan approaches, i.e., how to 

relate the single-component diffusivities, by equating fluxes from the two formulations.  Beginning 

with the ansatz of Fick and Maxwell-Stefan, i.e.: 

MS

MS

D
vRT=∇− µ  and cDcvJ FickFick ∇−==  , we find that: 
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MSFick JJ =            (19a) 

cDcRT
RT
Dc

RT
DcD MS

MSMS

Fick ∇−=∇−=∇−=∇− ΓΓµ      (19b) 

ΓMS
Fick DD =             (19c) 

Here, the term Γ is referred to as the thermodynamic correction factor expressed as: 

Tc
f







∂
∂

=
ln
ln

Γ            (19d) 

where f is the fugacity of the bulk fluid phase and c is the loading in the sorbent.  Hence, Γ can be 

evaluated from equilibrium sorption isotherm data for the sorbate.  The Fick diffusivity is therefore 

a composite of diffusive effects (DMS) and thermodynamic effects (Γ).  This perspective is buoyed 

from the diffusive properties of bulk fluids, which tend to show Maxwell-Stefan diffusivities with 

mild loading dependences [6].  Therefore, much of the loading dependence of the Fick diffusivity 

actually arises from the loading dependence of Γ.  This understanding has been extended to systems 

that exhibit weak zeolite-guest interactions (e.g. methane in silicalite [11]).  The MS diffusivity has 

also been called the “corrected diffusivity.”  This becomes a particularly useful designation when 

both DFick and Γ are experimentally measured, and DFick/Γ is found to have a much weaker loading 

dependence than does DFick.  Hence, the “correction” means that the thermodynamically induced 

loading dependence in DFick has been removed. 

 We close this section with some final comments on equation (19c).  When the sorbate 

loading is low the thermodynamic factor is nearly unity, indicating that for nearly ideal systems the 

Fickian and Maxwell-Stefan diffusivities agree.  They differ at higher sorbate loadings because of 

the different ways that the loading-dependencies of the Fick and Maxwell-Stefan diffusivities fold 
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higher-order effects into pseudo-linear-response relations.  Several researchers approximate 

equation (19c) by replacing the Maxwell-Stefan diffusivity with the self-diffusion coefficient, 

because the latter can be obtained under purely equilibrium conditions.  Equation (19c) under such 

an approximation is often called the Darken equation.  Unfortunately, some authors also call 

equation (19c) itself the Darken equation.  Beware!  

 

2.2. Diffusion- vs. Desorption-limited Flux 

 Having discussed macroscopic phenomenologies of diffusion, we now address the 

following microscopic questions: 

(a) What microscopic processes control fluxes? 

(b) How do diffusion and desorption rates combine to produce overall flux? 

(c) What experimental methods exist to determine which process controls the flux? 

Answering these questions requires a microscopic model of membrane permeation.  For 

pedagogical purposes, we choose the simplest possible model that embodies the spirit of diffusion 

in zeolites, which often involves cage-to-cage and site-to-site jump motions.  In particular, we 

choose a two-dimensional square lattice of identical adsorption sites, i.e., a Langmuirian host-guest 

system [12] as shown in Figure 4A.  Variants of this model have been developed that produce 

accurate simulations of diffusion in zeolites, when parameterized by transition state theory 

calculations and evolved using kinetic Monte Carlo simulations (vide infra) [1].  Adsorption sites 

are represented in Figure 4A as squares, molecule A as dark-shaded circles and molecule B as 

light-shaded circles.  A schematic energy diagram for adsorbed guests is shown in Figure 4B, as a 

function of position along the membrane thickness.   
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Figure 4A: Langmuirian host-guest model representation of a membrane permeation system: 
Two-dimensional square lattice showing cross-diffusion phenomena. 

 

Figure 4B: Langmuirian host-guest model representation of a membrane permeation system: 
Potential energy diagram for lattice sites along the depth of membrane. 
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Figure 4C: Langmuirian host-guest model representation of a membrane permeation system: 
Lattice model showing steady-state flux into vacuum. 

 

The model is defined by the following parameters: (a) the potential energy decrease for a molecule 

to change its position from outside the lattice to an adsorption site is Ed (energy of adsorption); (b) 

rate at which A molecules attempt to enter the lattice from the fluid phase is given by the frequency 

ν; (c) rate of desorption is kd; (d) rates of molecular hops from one adsorption site to another in the 

x and y directions are kx and ky, respectively; and (e) the site-to-site distance is a.   

The basic model assumptions are: (a) the differential heat of sorption is independent of sorbate 

loading, i.e., sites are energetically uncoupled from each other; (b) molecular jumps from an 

occupied site to an adjacent vacant site are temporally uncorrelated and require surmounting an 

energy barrier; and (c) guest-guest interactions are ignored with the exception that attempted jumps 

to occupied sites are unsuccessful, as dual occupancy is not permitted.   
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This model incorporates both host-guest and guest-guest potential interactions through rare site-

to-site jumps and site blocking, respectively.  Studies on single-file diffusion in zeolite membranes 

can be carried out using this model by considering the special case: 0→
x

y

k
k

 [13].  And, of course, 

this model reveals the competition between rates of diffusion and desorption.   

On the other hand, the Langmuirian model ignores a variety of specialized phenomena.  The 

model in its simplest form does not include guest-guest attractions or associations, although we 

have augmented it to treat these effects [14].  The model ignores cooperative motion [15], and is 

rather inconvenient for studying temperature- and loading-dependent lattice motion.   

We now explore three consequences of the Langmuirian host-guest model pertaining to (i) 

fractional loading, (ii) adsorption isotherms and (iii) transport diffusion.  First, partitioning intra-

membrane volume into discrete sites suggests a new concept of concentration called the fractional 

loading, θ.  In particular, the concentration, c (number of adsorbates/volume adsorbent) takes the 

form: 

c  = (Number of adsorbates n)/(Total number of sites nsites × volume per site vsite) 

 = (n/nsites) × (1/ vsite) 

 ≡    (θ)      ×   (cmax) ⇒ θθ ∇−=∇−=∇−= DDccDJ max  (if vsite ≡ 1)    (20) 

Second, the Langmuir adsorption isotherm can be derived by equating adsorption and desorption 

fluxes, according to: 

desorptionadsorption JJ =           (21a) 

i.e., ( ) θθν dk=−1 ; where ν ∝ p/√T        (21b) 
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⇒ 

p
bkk dd

eq

+
=

+
=

+
=

1

1

1

1

ν
ν
νθ  where b ∝ kd√T      (21c) 

Third, the simple Fickian diffusion phenomenology implied by equation (6), i.e., where D is 

independent of concentration, arises for Langmuirian systems without higher-order terms even at 

maximal loadings [16].  The single-component Fickian diffusivity for Langmuirian systems takes the 

form: D0 = khopa2.  As a consequence, the concentration profile is linear in the direction of motion 

at steady state.   

For the special case of steady-state membrane flux from a high-pressure side to vacuum 

(Figure 4C), we obtain a formula for the flux by equating the fluxes from the left edge, right edge, 

and membrane interior according to: 

Left edge flux (JL) = Middle flux (JM) = Right edge flux (JR)  

( ) LdLL kJ θθν −−= 1           (22a) 

( )
L

DJ LR
M

θθ −
−= 0  as ∇θ = constant        (22b) 

RdR kJ θ=            (22c) 

Solving for the 2 unknowns (θL and θR) from 2 steady state equations, we have  

( )eqd

eqd

DLk
Dk

J
θ

θ
−+

−=
20

0          (22d) 

Two important limiting conditions can be identified, keeping in mind that (2−θeq) remains of order 

unity.  These limits are: 
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(a) For kdL » D0, L
D

J eq 0θ
=  ⇒ diffusion-controlled process    (22e) 

(b) For kdL « D0, eqdkJ θ=    ⇒ desorption-controlled process    (22f) 

By testing the L-dependence of flux across membranes of various known thicknesses, we can 

determine if steady-state permeation is diffusion- or desorption-controlled. 

Because zeolite membranes are typically few tenths of a micron thick, it is usually assumed 

that zeolite permeation is diffusion-controlled.  Equation (22e) can thus be used to predict the 

temperature-dependence of flux for a given pressure, by knowing the temperature-dependencies of 

θeq and D0.  This is shown in Figure 5 from model studies on single-component permeation through 

Langmuirian membranes [17].  Figure 5 shows that the flux increases with temperature at relatively  

 

Figure 5: Temperature dependence of membrane flux and equilibrium fractional occupancy for 
single-component permeation through Langmuirian membranes.
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low temperatures, because of increasing the likelihood of surmounting site-to-site barriers.  At 

higher temperatures, though, the flux decreases with temperature (at fixed pressure) because adding 

heat decreases the fractional loading, hence decreasing the density factor in equation (1), i.e., “flux 

= density × velocity.”  A third regime of flux vs. temperature has been reported in zeolite 

membrane permeation measurements, which became the focus of discussion at the NATO-ASI.  In 

particular, at very high temperatures the flux is seen to increase again with temperature, albeit very 

weakly [18-20].  This may be attributed to populating high-energy, non-zeolitic permeation pathways 

(cf. dusty gas model [21-23]), or to the onset of flow within zeolite pores.  Both are possible, although 

the latter hypothesis stretches credulity a bit. 

 

3. Temperature and Loading Dependencies of Diffusion Coefficients:  

In section 2 we developed the phenomenologies underlying the Fickian, self and Maxwell-

Stefan diffusion coefficients.  In what follows, we assume diffusion-limited transport.  We now 

discuss useful “rules of thumb” for how these diffusivities depend on temperature and loading.  To 

understand how jump-like motion influences these dependencies, we also discuss the T- and θ- 

dependencies arising from fluid-like intrapore motion, for comparison purposes.  We begin by 

discussing temperature dependencies for fixed loading. 

3.1. Temperature Dependence 

Temperature has a strong influence on the jump diffusion process because of the increased 

likelihood of surmounting large energy barriers.  This is usually expressed through the Arrhenius-

type temperature dependence: 
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Tk
E

s
B

act

eD
−

∝           (23) 

which arises from transition state theory (TST) for the site-to-site jump rate, according to: 

( ) ( ) ( )
Tk

TE
k

TS
TST
hop

BB eeTk
∆∆ −









= .

π
ω
2

       (24) 

where T is temperature, kB is Boltzmann’s constant, ω(T) is the temperature-dependent site 

vibrational frequency, ∆S(T) is the temperature-dependent activation entropy, and ∆E(T) is the 

temperature-dependent activation energy.  Temperature ranges for which ∆E(T)/kBT » 1 give jump-

like motion, rendering the pre-exponential factor in square brackets relatively weakly varying with 

temperature.  The same qualitative form holds for the Fickian and Maxwell-Stefan diffusivities, 

although the apparent activation energy for these is not necessarily the same as in self diffusion [24].   

Alternatively, temperature ranges for which ∆E(T)/kBT « 1 may deviate from the Arrhenius 

temperature dependence.  When energy barriers are small, which is typical of fluid-like intrapore 

motion, the temperature dependence is usually weaker, arising from the quantities in square 

brackets in equation (24).  In this case non-monotonic temperature dependencies are possible.  Such 

a situation has been predicted for ethane in (not-yet-synthesized) siliceous Linde type A zeolite 

(LTA), whose schematic structure is shown in Figure 6A.  There exists a predicted temperature 

window (150-300 K) in which Dself actually decreases with temperature, as shown in Figure 6B [25].  

This was explained by noting that increasing temperature moves ethane away from window sites, 

which are potential minima, hence decreasing the rate of cage-to-cage motion and thus slowing 

diffusion.   
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Figure 6A: Framework structure of siliceous LTA zeolite. 

 

Figure 6B: Temperature dependence of the self-diffusivity of ethane at a loading of one molecule 
per cage.
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3.2. Loading Dependence 

Diffusion in zeolites is strongly influenced by guest-host and guest-guest interactions.  The 

latter become manifest through loading dependencies of diffusion.  NMR measurements have 

revealed five qualitatively different loading dependencies for intra-crystalline self diffusion [26].  

The simplest of these, denoted type I, is monotonically decreasing and is characteristic of 

Langmuirian host-guest systems.  Here, we explore Langmuirian loading dependencies of Self-, 

Maxwell-Stefan and Fickian diffusion coefficients for comparison with results arising from fluid-

like motion.  In our succeeding chapter in these Proceedings, we discuss systems that exhibit the 

other loading dependencies.  The comparison is shown below in Table 1. 

 

CRITERION JUMP DIFFUSION FLUID-LIKE MOTION[11] 

Isotherm (Langmuir) 
θ−

=
1

1
Γ  

θ−
≈Γ

1
1  

Self-diffusivity ( ) ( )θθ fDDs −= 10 ; f < 1 ( )θ−≈ 10DDs  

Maxwell-Stefan diffusivity ( )θ−= 10DD MS  0DD MS ≈  

Fick diffusivity constant== 0DDFick  
( )θ−=
1

0D
DFick  

 

Table 1: Comparison of loading dependencies of the Self-, Maxwell-Stefan and Fickian 
diffusivities for jump and fluid-like diffusive motion for Langmuirian host-guest systems. 

 

In all cases the three diffusivities are equal to each other at the low-loading limit, i.e., at 

infinite dilution.  The quantity f(θ) is called the vacancy correlation factor, is between 0 and 1 in all 
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cases, is equal to 1 at infinite dilution, and is discussed in more detail below.  We note that mean-

field theory of self diffusion is tantamount to setting f(θ)  = 1, which ends up giving the Maxwell-

Stefan diffusivity for jump motion.  This quantity is sometimes called the “jump diffusion 

coefficient,” which seems less susceptible to vacancy correlations as compared to the self 

diffusivity.  In all cases we see the relative trend DFick ≥ DMS ≥ Ds, where equality holds at infinite 

dilution.  The loading dependencies for fluid-like motion were extracted from the seminal MD 

study by Maginn et al. on methane in silicalite [11].  Here we clearly see why the Maxwell-Stefan 

diffusivity is also called the “corrected diffusivity” [27], as the Fickian loading dependence is 

removed (corrected) by dividing DFick by Γ. 

 

4. Correlations and Correlation Functions: 

4.1. Kinetic Correlations 

We now discuss the correlations and correlation functions that form the language with which 

we understand diffusion in zeolites.  We discuss here three different classes of correlations: kinetic, 

geometric and vacancy correlations.  Kinetic correlations arise from slow thermalization of a 

molecule to its post-jump state.  Kinetic correlations can be expressed through Newton’s first law 

of motion applied to nanopore diffusion, given as: “A guest molecule in motion tends to remain in 

motion (until it bangs into a wall).”  Consequences of kinetic correlations include: site-to-site 

jumps that are not nearest-neighbor jumps, i.e., multi-site jumps; and in the extreme case, mean-

square displacements proportional to t2 resulting in flow, i.e., ballistic-type of motion [28].  Kinetic 

correlations are more important at lower loadings and in channel-type zeolites rather than in cage-

type zeolites.   
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4.2. Geometric Correlations 

Geometric correlations arise from the anisotropic nature of many zeolite framework topologies.  

In the language of jump-diffusion, geometrical correlations arise when the sum of the jump vectors 

at a site does not vanish.  Therefore, as observed for cation containing zeolites such as FAU (Figure 

1) [29], molecules adsorbed at cation sites can jump away from cations but not into them, thereby 

producing geometric correlations that reduce the diffusion rate.  However, when a molecule reaches 

a window site, these correlations are lost as the mean probability of jumping into the original cage 

or to the adjacent cage is the same.  For channel-type zeolites such as ZSM-5 (Figure 1), geometric 

correlations arise for jumps from intersection sites but not from channel sites [30].  In such a 

situation, the channel geometry enables displacement in the z-direction only by sequential channel 

motions along the x- and y-directions.   Based on this topology, a correlation rule has been 

proposed [30], which takes the following form when ignoring kinetic correlations (i.e., ignoring 

memory effects): 

z
s

y
s

x
s D

c
D
b

D
a 222

=+           (25) 

where a, b, c and x
sD , y

sD , z
sD are the unit cell dimensions and self diffusivities in the x-, y- and z-

directions, respectively.  Some practical difficulties exist in testing this relation from experimental 

measurements due to the requirement of growing sufficiently large crystallites (in all directions) to 

obtain diffusivities in individual directions with reasonably good accuracy.   

4.3. Vacancy Correlations   

Vacancy correlations arise when the fractional loading is significantly greater than zero.  

Vacancy correlations can be expressed through Newton’s second law of motion applied to 
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nanopore diffusion, given as: “A guest molecule in motion tends to return to its original site.”  In 

terms of jump-diffusion, a jump leaves behind a vacancy; thus, a molecule has a greater probability 

of returning to its original site (i.e., the vacancy) than it does to jump onward, thereby creating the 

opposite effect of kinetic correlations and decreasing diffusion coefficients.  This effect is more 

important for lattices with low coordination [31] and at higher loadings.   

Here we provide a more quantitative description of vacancy correlations, beginning with the 

Langmuirian model as described above.  From Table 1 we recall the formula that defines the 

vacancy correlation factor: 

( ) ( ) ( )θθθ fDDs −= 10          (26a) 

A jump analysis of f(θ) shows that [2]: 

( )θf  
( )
( )φ

φ
cos
cos

−

+
=

1
1

          (26b) 

where φ is the angle between consecutive jumps.  The molecular motion becomes clear by 

analyzing the extreme limits possible for φcos .  In particular, when φcos  = −1, the motion is 

purely vibrational, and the self diffusivity vanishes (Ds = 0); while when φcos  = +1, the motion 

is purely ballistic (i.e., flow) and the self-diffusivity blows up (Ds = ∞).  Diffusion in zeolites is 

characterized by vacancy correlations in between these two extremes. 

Single-file diffusion signifies motion where molecules diffuse in one-dimensional channels 

that are so narrow that larger molecules cannot pass each other, i.e., the ordering of molecules is 

preserved.  Such strong confinement introduces particularly strong vacancy correlations.  At short 

times (t < L2/D0, where L is membrane thickness), these correlations qualitatively change the 
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behavior of mean-square displacements (MSD, see equation (15)), from t to t1/2 dependence.  Such 

is an example of “anomalous” diffusion.  At longer times, the linear time-dependence re-emerges, 

but with an anomalous self-diffusivity [13, 32].  This can be expressed through the vacancy 

correlation factor, which for single-file diffusion takes the form: 

( )
θ

θ
L

f 1
=            (26c) 

Equation (26c) presents a rare example where a transport coefficient depends on macroscopic 

systems size.  While we expect flux to depend on system size, especially for diffusion-limited 

transport, we usually expect the self diffusivity to be intensive, i.e., independent of system size.  

The long-time anomaly of single-file diffusion is thus manifested by a non-intensive diffusivity. 

4.4. Correlation Functions 

Having discussed the qualitative nature of correlations in jump diffusion, we now quantify 

them through statistical mechanical correlation functions.  Under equilibrium conditions, i.e., 

without a chemical potential gradient, random sorbate motion is described by the self-diffusivity as 

defined in the Einstein equation: 

( ) ( ) tDrtrtr s60 22 →−≡)(         (27a) 

⇒ 
t

tr
Ds 6

2 )(
=           (27b) 

At a microscopic level, the self-diffusion coefficient is controlled by the motion of a tagged 

sorbate, possibly in the midst of identical untagged molecules.  Equation (27b) can be recast in the 

form of a more traditional correlation function, a so-called Green-Kubo relation, which gives the 

diffusivity as the long-time integral of the velocity auto-correlation function: 
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3
0 )().( tvv

dtDs ∫=           (28) 

Equations (27b) and (28) thus provide two formally equivalent means for calculating Ds, which 

turn out to have different regimes of practical application.  Equation (27b) is useful for both jump 

diffusion and fluid-like motion, evaluated with kinetic Monte Carlo or molecular dynamics (MD), 

respectively.  Alternatively, equation (28) is only useful for treating fluid-like motion, which is 

typically modeled using MD.  This is because in fluid-like motion, velocity correlations decay on 

time scales comparable to those that control diffusion.  On the other hand, in jump diffusion, 

velocity correlations typically decay well before rare jumps occur, making equation (28) less useful 

for diffusion, but still useful for revealing low-frequency vibrational motion at adsorption sites. 

 By studying mean-square displacements we can reveal the origin of the linear time 

dependence expected for diffusion.  This is most conveniently expressed as motion on a lattice of 

sites.  After n hops, the MSD takes the form:  

( ) 22 ∑=
i ilnr           (29a) 

∑∑ +=
ji jii i lll

,

2         (29b) 

2an=      +  kinetic/geometric/vacancy correlations.    (29c) 

The second term in equation (29c) contains all the correlations discussed above, and indeed, takes 

the form of a jump-vector auto-correlation function.  For a single random walker on a Langmuirian 

lattice, this second term identically vanishes.  Expressing this ideal case in the language of an 

average jump time: τ = t/n and thus n = t/τ, we find that:  



 30

( ) tDatnr s622 ≡




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



=

τ
         (29d) 

2
2

6
ak

a
D hops ==⇒

τ
         (29e) 

Equation (29d) shows that the MSD is linear in time when the first term in equation (29b) 

dominates over the second term, even when the second term does not vanish.  And equation (29e) 

shows how the self-diffusivity can be related to fundamental length and time scales.  For more 

complex host-guest systems, such a transparent relationship between the self-diffusivity and 

fundamental system parameters may not be possible. 

 In Figure 7 we show a schematic MSD characteristic of diffusion in cage-type zeolites.   

 

Figure 7: Typical mean-square displacement (MSD) plot for molecular motion in cage-type 
zeolites. 
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Two important transitions warrant comment in Figure 7.  First, at short times, the MSD changes 

from ballistic (t2) to diffusive (t) motion, as host-guest and guest-guest collisions randomize 

molecular motion.  This transition usually occurs at very short times, on the order of picoseconds or 

less.  At longer times, the MSD changes from intrapore motion (diffusive with larger slope) to 

cage-to-cage motion (diffusive but with smaller slope).  Modelers must be careful to ensure that 

MSD slopes actually represent cage-to-cage motion; otherwise, self-diffusivities so obtained are not 

comparable with results from, e.g., pulsed field gradient NMR data.  

While self-diffusion probes motion of individual, tagged particles, correlation functions relevant to 

Fickan and Maxwell-Stefan diffusivities involve cooperative motion, i.e., correlations between 

different sorbates and even components in the system.  The relevant correlation functions are 

shown below in Table 2 for single-component diffusion systems.  In Table 2 below, we see clearly 

that the Maxwell-Stefan diffusivity augments the self-diffusivity with correlations between 

different sorbate molecules.  This is ironic because from analysis above, we found that the  
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Table 2: Correlation functional relations for the Self- and Maxwell-Stefan diffusivities for 
single component diffusive motion. 
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Maxwell-Stefan diffusivity is less susceptible to vacancy correlations than is the self-diffusivity.  

Thus, the additional i-j correlations present in the Maxwell-Stefan diffusivity must somehow wash 

out vacancy correlations.  Similar expressions can be written for multi-component systems as well 

[33, 34]. 

 

5. Interactions and Rare-Event Simulations: 

5.1. Potential Energy  

Underlying these correlation functions is the total potential energy of the host-guest system, 

V, which consists of the following terms: 

V = VH + VG + VHG + VGG,         (30) 

where VH and VG are the host and guest distortion energies, respectively; and VHG and VGG are the 

host-guest and guest-guest interaction energies, respectively.  Detailed forms for each of these 

terms are offered by Snurr in his chapter in these Proceedings.  Each of these terms can play an 

important role for modeling jump diffusion in zeolites.  Due to computational complexity, most 

such simulations have been performed at infinite dilution, where VGG = 0.  Furthermore, many 

jump diffusion simulations have assumed that the zeolite remains rigid (VH ≡ 0), and some even 

assume that the guest remains rigid (VG ≡ 0), leaving only the host-guest interaction.  To be sure, 

this is the most important starting point for modeling diffusion in zeolites, but future studies must 

reckon with these other interactions.  In particular, in the succeeding chapter to this one, we touch 

on recent studies that include VH and VGG for modeling framework flexibility and many-sorbate 

effects, respectively. 

                                                                                                                                                                                                
Ψ Here, i and j represent different molecules of the same component 
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5.2. Transition State Theory 

Having formulated the potential energy function, transition state theory (TST) calculations 

can be performed to predict site-to-site jump rate coefficients for a given host-guest system.  The 

TST approximation can be formulated for gas phase as well as condensed phase systems using 

classical or quantum mechanics.  In general, one considers a jump from a “reactant” state (A) to a 

“product” state B through a transition state (TS), which is the first-order saddle point connecting 

states A and B.  Figure 8A shows a well-studied example: benzene in Na-Y jumping from a cation 

site (A) to a window site (B).  The general potential energy map associated with such a jump is 

shown in Figure 8B.  The standard procedure in TST is to replace the net flux from reactants to 

products with the instantaneous flux through the transition-state dividing surface.  Using this idea, 

the TST rate constant is given by [1]: 

A

TSBTST
BA Q

Q
m

Tkk ×≈→ π2
         (31) 

where m is the reduced mass associated with the reaction coordinate; and QA and QTS are the 

configurational partition functions for the reactant and transition state, respectively.  These partition 

functions are usually calculated using specialized Monte Carlo methods [1].  The great challenge in 

all TST calculations is locating the transition state and mathematically formulating the dividing 

surface.  When one has an educated guess regarding the reaction coordinate x, but no knowledge of 

the transition state or the dividing surface, a reliable but computationally expensive solution is to  
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Figure 8A: Transition state theory approximation for jump-diffusion in cage-type zeolites: Example 
of a site-to-site jump in a FAU supercage. 

Figure 8B: Transition state theory approximation for jump-diffusion in cage-type zeolites: Potential 
energy diagram illustrating that the jump in Figure 8A progresses with an activation energy barrier 

across the transition state. 
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calculate the free energy surface F(x), also known as the potential of mean force or the reversible 

work surface.  Here exp[−F(x)/kBT] is proportional to the probability that the reaction coordinate 

takes the value x, while all other coordinates are Boltzmann-averaged at temperature T.  The TST 

rate constant can then be rewritten as: 

( )

( )

∫
−

−

→ ×≈

A

Tk
xF

Tk
TSF

BTST
BA

dxe

e
m

Tkk
B

B

π2
         (32) 

The free energy surface can often be calculated from the same specialized Monte Carlo methods 

used to compute partition functions. 

 The basic TST approach works well when the correct dynamical bottleneck(s) can be 

located.  However, transition state searches are often launched by intuition; what can we do when 

our intuition fails?  Two important methods come to the rescue, both pioneered by Chandler and 

coworkers [1, 35].  When a reasonable estimate of the transition state is available, but little 

knowledge of the dividing surface is at hand, we recommend performing reaction flux correlation 

function calculations [36].  This approach involves running a swarm of very short MD trajectories 

from a putative dividing surface to calculate the fraction that actually react, the so-called 

transmission coefficient, κ.  If κ is of order unity, the putative transition state and the dividing 

surface are close to the actual ones.  Alternatively, if κ is much less than unity, then either the 

transition state and/or the dividing surface are in error, indicating that mechanistic knowledge about 

the jump process is lacking.  Unfortunately, the reactive flux correlation function approach will not 

provide such understanding. 
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To obtain better mechanistic knowledge, we recommend performing transition path 

sampling calculations [37, 38].  This approach is the cadillac of reaction dynamics methods, requiring 

no knowledge of a transition state or dividing surface.  The transition path approach involves a 

Monte Carlo sampling of paths that connect reactant and product in time t, and using this 

information to build a statistical ensemble of transition states, which is tantamount to the dividing 

surface.  This should be the last resort, because it is rather computationally demanding. 

5.3. Kinetic Monte Carlo 

 Armed with the rate coefficients for site-to-site jumps in a zeolite, we have much 

information about motion, but still no diffusion coefficient.  The link between the two is provided 

by kinetic Monte Carlo (KMC) simulations [1], which can be thought of as spatially discrete MD 

calculations that evolve the lattice model in time.  KMC can be used to compute ensemble 

averages, correlation functions, and most important to us, mean-square displacements.  Input to 

KMC includes the lattice connectivity, initial site occupancies, and all the site-to-site rate 

coefficients.  While this list seems short, imagining and simulating all possible jumps can still be 

daunting.  KMC can account for complex lattices with many site types; adsorption/desorption and 

reactive events; kinetic, geometric and vacancy correlations; single-file diffusion; and guest-guest 

attractions.  On the other hand, KMC fails to account for processes we did not think of, off-lattice 

motion (i.e., fluid-like motion), and complex cooperative dynamics such as polymer relaxation. 

 Descriptions for how to implement KMC can be found in the recent literature [1, 2].  In 

general, one can use fixed for variable time steps.  The fixed time-step method is simple, easy to 

implement, and convenient for calculating time correlation functions.  However, it becomes 

inefficient for systems with many time scales, i.e., when rate coefficients span many orders of 

magnitude.  In this case, the variable time-step method becomes useful.  Although it is more 
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complicated to use this approach for computing time correlation functions, it remains relatively 

simple to evaluate mean-square displacements using the variable time-step approach.  In this case 

the probability to make a jump is proportional to the rate coefficient for that jump, and the system 

time elapsed prior to the jump is the inverse of the sum of rates for all available jump processes for 

that configuration. 

 

V. Concluding Remarks 

We have reviewed the basic principles and methodologies involved in understanding jump 

diffusion in zeolites.  We focused on single-component diffusion, and explored the Fickian and 

Maxwell-Stefan approaches for modeling this phenomenon.  We emphasize that while the Fickian 

approach is more convenient for Langmuirian systems, the Maxwell-Stefan approach is clearly 

advantageous for realistic modeling of multi-component adsorbed phase diffusion, hands down!  

We discussed expected temperature and loading dependencies of diffusion, and how these are 

influenced by various correlations in the system.  Finally, we touched on modern methods for 

simulating jump diffusion in zeolites; these methods will be brought to life in our succeeding 

chapter dealing with applications of these ideas.  Overall, we hope that our main point has gotten 

across − that diffusion in zeolites can be elucidated by thinking in terms of sites, lattices, jumps and 

in general, rare events.  Thank you.  Applause. 
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