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We present an efficient Monte Carlo algorithm for simulating diffusion in tight-fitting host—guest
systems, based on using zeolite normal modes. Computational efficiency is gained by sampling
framework distortions using normal-mode coordinates, and by exploiting the fact that zeolite
distortion energies are well approximated by harmonic estimates. Additional savings are obtained by
performing local normal-mode analysis, i.e., only including the motions of zeolite atoms close to the
jumping molecule, hence focusing the calculation on zeolite distortions relevant to guest diffusion.
We performed normal-mode analysis on various silicalite structures to demonstrate the accuracy of
the harmonic approximation. We computed free energy surfaces for benzene in silicalite, finding
excellent agreement with previous theoretical studies. Our method is found to be
orders-of-magnitude faster than comparable Monte Carlo calculations that use conventional
forcefields to quantify zeolite distortion energies. For tight-fitting guests, the efficiency of our new
method allows flexible-lattice simulations to converge in less CPU time than that required for
fixed-lattice simulations, because of the increased likelihood of jumping through a flexible lattice.
© 2003 American Institute of Physic§DOI: 10.1063/1.1558033

I. INTRODUCTION for these relatively small guests, lattice flexibility does not

influence diffusion. Studies on tighter-fitting systems, such as

The transport properties of adsorbed molecules play Benzene and propene in MCM-#2and iso-butarié and
central role in determining selectivities of reactions and sep henzend?in silicalite, do indeed show that lattice flexibility
rations in zeolites, especially when adsorbate sizes approac . L .
zeolite pore dimensions? In particular, the tight fit of strongly influences diffusion. In particular, Snwet al. ap-

Co—C, aromatics in MFI-type zeolitetsee Fig. 1 produces plied harmonic transition state theofyST) to benzene dif-

a variety of interesting effects that signal the importance ofusion in s;|2|cal|te, assuming that benzene and silicalite re-
zeolite framework flexibility. These include framework Main rigid™ As a consequence of this assumption, their
phase transitions induced by guest adsorptidmnd anoma- results underestimate experimental diffusivities by one to
lously high fluxes of ortho-xylene through zeolite mem-two orders of magnitude. Forester and Smith subsequently
branes with co-adsorbed para-xylérfeComputational stud- applied TST to benzene in silicalite using constrained
ies have the potential to shed light on these intriguingreaction-coordinate dynamics on both rigid and flexible

phenomena, by elucidating the coupling between guest maattices® Lattice flexibility was found to have a very strong

tion and zeolite distortion. However, flexible-lattice simula- influence on the jump rates. Diffusivities obtained from these
tions on tight-fitting systems are rare because they are comexible framework simulations are in excellent agreement

putationally demanding, even when exploiting methodsyith experiment, overestimating the measured room tem-
spema'\ll'zed for infrequent everftstn this artlcle, we deyelqp perature diffusivity (2.% 10~ m?s1) by only about 50%.
an efficient Monte Carlo algorithm for simulating diffusion

in tight-fitting host—guest systems, based on using zeolit
normal modes.

These studies establish benzene in silicalite as an important
Benchmark system for which including framework flexibility

Systematic comparisons of fixed- and flexible-lattice™ cruual-for despnbmg guest dlffu5|or1. L
molecular dynamic§MD) simulations have been reported  D€SPité the importance of modeling diffusion in tight-
for a variety ofloose-fittingzeolite-guest systems, including fitting zeolite—guest systems, such calculations are rare be-
methane and light hydrocarbons in silicaflté® methane in  cause they are so challenging. To remedy this situation, an
cation-free LTA!* Lennard-Jones adsorbates in N&and  efficient approach will have t6) reduce the added expense
in Na-Y;*® benzene and propylene in MCM-22penzene in  of calculating framework distortion energies, afiid sample
Na-Y,'¥-2°and methane in AIPQ5.2! It is not surprising that ~ cooperative motions of the zeolite, because these are likely

to facilitate guest diffusion. The constrained reaction-
dAuthor to whom correspondence should be addressed. Electronic maif.'\Oordinate dynamics reported by Forester and Smith do in-
auerbach@chem.umass.edu deed produce cooperative zeolite motions. However, this is
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free energy differences. Here we discuss the base model and
forcefield, the free energy sampling method, and last but not
least, the local normal-mode algorithm.

A. Base model and forcefield

As with our previous simulations of benzene in
silicalite *?° the simulation cell we adopt consists of two
silicalite unit cells along the-axis?® containing a total of
192 silicons and 384 oxygens under three-dimensional peri-
odic boundary conditions. As such, our simulation cell has
the dimensions 20.02 A19.90 Ax 26.77 A. We add to this
model of bulk silicalite one benzene molecule; all 588 par-
ticles interact via Coulombic and short-ranged forces. Cou-
lombic energies are calculated with Ewald summations, and
short-ranged forces are cut-and-shifted at 9.9 A. We utilize
FIG. 1. MFI zeolite topology: S/Z are Straight/Zig—zag channels; | is Inter-the framework  forcefield developed by us for modeling
section. alumino-silicateg! which has also been applied to siliceous

materials as weft*?°We adopt the zeolite—benzene interac-

tion potential reported in our initial work on benzene in
achieved at significantly greater computational expense thaNa-Y.*® For computational simplicity we fix benzene’s inter-
that of fixed-lattice simulations. nal coordinates. This approximation is expected to be a good

A solution satisfying both criteria is suggested by theone, because the relative rigidity of benzene compared to
normal-mode analyses of zeolite vibrations reported by |yeﬁhat of the zeolite makes it unlikely that internal vibrations of
and Singef2 They found that zeolite normal modes often benzene facilitate its diffusion. For future work, we will re-
correspond to breathing motions of rings and channels, SudaX this constraint by considering harmonic guest vibrations
gesting that these coordinates can efficiently sample framedlongside harmonic zeolite distortions.
work distortions during molecular jumps. What's more, a
remarkable speedup can be obtained by exploiting the fact
that zeolite vibrations are nearly harmonic, which we showB: Free energy surface calculations

below. As such, after computing the normal modes, sampling  we partition three-dimensional space in silicalite’s
lattice ﬂeX|b|l|ty COStsessentia”y no CPU timéecause the Straight Channe' by defining a Sequence of p|anes perpen_
zeolite force constants are known. Thus, we use normalgicular to the jump coordinatg, from one intersection site
mode coordinates for natural sampling of zeolite vibrationsig the next. Adjacent planes are typically separated by 0.4 A;
and normal-mode force constants for efficient energy calcuthis distance is chosen to minimize the number of planes
lations. Below we calculate free energy surfaces for benzengynd hence free energy calculatiprvehile maximizing the
jumping in silicalite’s straight channdbee Fig. 1, finding  overlap between adjacent potential energy distributions. The
excellent agreement with the results of Forester and Smithgifference between free energies in adjacent regions A and B
However, in contrast with their calculations, the flexible-jg given by:AF=Fg—F,=—kgT In(Qg/Q,), whereQ; is
lattice simulations reported below convergedl@ss CPU  the canonical partition function in region=A or B. We
time than that required for fixed-lattice simulations. calculate the ratio of partition functions using Voter’s
The remainder of this article is organized as f0”0W33displacement-vector methd8 In this approach, the ratio

Section Il outlines the local normal-mode algorithm, in ad-of partition functions is computed using two Monte Carlo
dition to the forcefields and free energy methods we utilize gyerages as follows:

Section Il provides results and discussion of normal-mode
analyses and free energy surfaces, and Sec. IV offers a sum- % :<MB[VB(r+d)_VA(r)]>A 2
mary of our findings as well as concluding remarks. Qa (My[Va(r—d)=Va(r)]s’

In Eg. (2), the numerator is the average probability of mak-
ing a jump from pointr in region A to pointr +d in region
B, via the displacement vecta. This jump involves both
We calculate free energy surfacd<ES for benzene to translational and rotational motion, the latter generated by
move along silicalite’s straight channel from one intersectiorrandom changes in benzene's Euler angles. The subscript
site to the next, using thg-component of benzene’s center- “A” on the average in the numerator reminds us that these
of-mass as a reaction coordinate. The FES is formally dejumps from A to B are fictitious, i.e., they are never actually
fined by accepted during the sampling of region A. However, the ac-
_ ceptance statistics are accumulated in the numerator. The de-
F(yo)=—kgTIn[L(&(y—Yo))r]. @ hominator is the probability of going in the opposite direc-
wherekg is Boltzmann’s constantl is temperature(---);  tion, from region B to A, via the displacement vecterd.
is a canonical averagei(y—Yg) is Dirac’s delta function, For the denominator, statistics for fictitious jumps are accu-
andL is a formal length scale that cancels when computingnulated during a standard canonical sampling of region B.

IIl. METHODS
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To hasten convergence, we choose displacement vectors
randomly from a Gaussian distribution centereddgn= (0,
0.4, 0 A, with Cartesian widths 0f0.2, 0.2, 0.2 A; these
widths were chosen to optimize the sampling of jumps. Be-
cause of the dispersion in thecomponent of the displace-
ment vector, jumps outside the target region are occasionally
produced. These are wrapped back into the target region by
adding or subtractingl, as appropriate. This procedure in-
troduces no bias into the generation of jumps. In all cases,
the Monte Carlo acceptance probability is modeled using the
Metropolis function M z(AE)=min[1, exp(-BAE)], which
depends on the difference in potential energy between the
points in the two regions. The energies required for this cal-
culation are evaluated using the local normal-mode scheme,
which we now describe.

FIG. 2. Benzenécentej in the straight channel of silicalite. The highlighted
framework atoms produce channel breathing, and are included in “local

C. Normal mode Monte Carlo normal-mode” analysis.

Here we describe the generation of normal modes, the
use of normal-mode coordinates for updating zeolite con-

figurations, and the use of normal-mode force constants fohe mass-weighted displacement iasV=(\m;Ar;,

calculating zeolite distortion energies. We begin by ChOOSi”Q/@AFZ JMzATs, ... JmMyATy). Given these definitions

the zeolite atoms allowed to move. This choice depends Upofe harmonic approximation for the zeolite potential energy
the problem at hand, in particular the host, guest and jumpy given by

under consideration. For the model of silicalite we consider

here, the number of movable zeolite atofh\y satisfiesN R I A AP VA R
<576. When performing normal-mode analysis to test the Vz(rN)%Vz(rB'HE 2 2 Ari-| =—=| -Arj, 3
harmonic approximation, we udé=576. On the other hand, ==L aridry/
when computing the FES, we generally uée 576. NN

For the intersection— straight channel- intersection —V, (PN + } 2 2 AS
jump of benzene in silicalite, we used a cylindrical cut-off to 2000 2 & =1 S
choose movable zeolite atoms. The cylindrical radius is sub-
ject to optimization: too small a radius includes too few at- « 1 V3 1 AL @
oms, leaving the channel too rigid and the method inaccu- \/ﬁ aFiaFj Oﬁ 1

rate; while too large a radius produces too many irrelevant
nolrm.al modes, leaving the_ method inefficient. A!though iNwhere @2Vz/(9Fi0Fj)o is a 3x 3 force constant matrix evalu-
principle one should explicitly converge a FES with respecyieq at the ground-state zeolite geometry. We evaluate these
to the cut-off radius, in practice such explicit convergence issecong derivatives by first calculating first derivatives ana-

computationally demanding. Instead, we increase the radiygyica|ly using the standard force routines in our program
and look for convergence in the distribution of normal-modey,,,y 31 \we then compute second derivatives using two-

force constantg(data not shown When gauging conver- it symmetric finite differences of the forces aloagy-,

gence, we ignore the low-frequency Debye region ( andzdirections for each pair of movable atoms in the sys-
=80 cm *; see Fig. 3 which becomes red-shifted as the tem. We have found that a grid spacing of f0A gives
radius increases. We found that a radifi§ @ is optimal for  ropust convergence of these second derivatives.
this particular problem, which gives 40 movable zeolite at-  |n Eq. (4), the quantity in - - - ] is the “mass-weighted”
oms, as shown in Fig. 2. force constant matrix, which is the central object in normal-
Here we describe our standard implementationmode analysis. We diagonalize this matrix using standard
of normal-mode analysis. For simplicity, the analysis belowdirect methods, such as the Householder meflaghose
explicitly includes only theN movable zeolite atoms. How- memory and time requirements scaleNfsand N2, respec-
ever, each forcefield calculation performed to parametrizgively. The diagonalization routine outputs th&l 2igenval-
normal-mode analysis includes contributions from all 576yes and eigenvectors of the mass-weighted force constant
atoms under periodic boundary conditions, regardless of thgatrix. The eigenvaluesk() have units of force constant/

number of atoms allowed to move. The configuratiofNof mass which yields the square of the vibrational frequency:
movable atoms in three dimensions is denoted by th?(i=wi2=(2wcm)2, wherec is the speed of light and, is

3N-dimensional vector=(ry, r,, I3, ... Iy), wherer;is  the vibrational wave number of thi¢h normal mode, typi-

the three-dimensional Cartesian position of afofrikewise, cally reported in cm®. The eigenvectorsf(-) are automati-
. . . > nd nd ) |

Eh(? grourld(;state Conflguratlon IS denotedrgst (I’(lo), r(ZO)v Ca”y orthonormal, i_e_Di . D] = 5” . In terms of these eigen-

), .. ,r&))-*We denote a displacement from the groundyectors, the normal-mode vibrational coordinat€)(are

state byArN=rN-ri=(Ar,, Ar,, Arg, ... Ary). Finally, expressed as
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SN R able atoms to calculate the zeolite potential using a standard
Qizz (Ui)j(AsN)j. (5) forcefield. On the other hand, using our local normal-mode
=1 approachpizzy requires just 0.005 CPU seconds per evalu-
In terms of these coordinates, the harmonic potential energgtion, independent of the number of movable atoms. This
simplifies to efficiency comes at a small cost—the zeolite normal modes
must be calculated and stored once at the start of the simu-
lation. The computational expense of this step, which de-
pends on the the number of movable atoms, is about 10 CPU
seconds for 40 atoms and about 23 minutes for 576 atoms.

To calculate zeolite—guest potential energies, which argyq ot of calculating normal modes is found to be a tiny
evaluated using Cartesiap coc_>rdinates, we need the iNVerge tion of the total CPU time required for converging the
normal-mode transformation given by FES. Thus, our flexible-lattice algorithm is as efficient, step
3N for step, as a fixed-lattice one. What's more, the flexible-
(AshH);=> (0),Q:. (7)  lattice FES calculations below converged in fewer Monte
=1 Carlo steps than did the fixed-lattice ones, because of the
Equation(7) follows from the orthonormality of the eigen- increased likelihood of jumping through a flexible lattice.

vectorsU; .
We have now introduced the quantities required to sumill. RESULTS AND DISCUSSION
marize our local normal-mode Monte Carlo algorithm. Here

. L . We describe the results of normal-mode calculations on
we describe its application for calculating the average Me- Lo o . :
. o . . bare silicalite, and on silicalite with benzene adsorbed in the
tropolis acceptance probability to jump from slice A to B,

ie., (M 4(AV)), in Eq. (2). First we compute and diagonal- straight channel, to gauge the accuracy of the harmonic ap-

ize the mass-weighted force constant matrix; obviously thi%rommaﬂon. We then discuss free energy calculations for

. L ; enzene in fixed and flexible silicalite, to determine the effi-
step is performed once only. Next we initialize the zeolite at .

oN 2 S >N >N ciency of the new algorithm.

I o Qoig @nd the guest in slice A4 can bergy or some _ _ o

equilibrium configuration from a previous Monte Carlo A. Testing the harmonic approximation

S|mglat|on. We then use our forcefield to compute the initial  There are various manifestations of harmonic behavior
zeolite—guest potential/zg(old), and we use Eq(6) 0 that can be used to test the accuracy of this approximation

compute the initial zeolite potential energy,(old). for estimating zeolite distortion energies. We use the follow-
A guest jump is then chosen at random, either a rea{ng| two:

move within slice A, or a fictitious jump from A to B using (1) Spectrum of normal-mode wave numbers is indepen-
the displacement-vector distribution described above. NexXent of configuration:

we cre_ate a zeolite distortion by randomly choosing a normal (2) potential energy, averaged in the canonical ensemble,
mode i [1,3N] and a lengthh e[ —NmaxAmaxls Where s jinear in temperature.

Nmax=2 A(N/576) was found to give efficient Monte Carlo any deviation from these properties signals the importance

3N

VA Q)=V,(0)+} JZl kiQ?. (6)

sampling of lattice vibrations. for various vlalues. Nf Fol-  of anharmonicity. To explore criteriofi), we ran MD simu-
lowing Eq. (7), the mass-weighted Cartesian displacementations at 300 K on bare silicalite, and on silicalite with ben-
vector is updated according to zene adsorbed in the straight channel. From both these simu-
> b > lations, we extracted lattice configurations at 10, 20, 30, and
AS\e=Ashgt AU (8 g

40 ps, totaling eight distinct zeolite configurations. The con-
The new(un-mass-weightadzeolite configurationmew, is  figurations extracted from MD with benzene strain the lattice
trivially obtained fromA%’,}‘ew, allowing forcefield evaluation because of benzene’s .tight fit in silicalite’s straight channel.
of the new zeolite—guest potential,c(new). The zeolite For each of these configurations we calculated the full set of
potential is updated according to: 1728 normal-mode wave numbers; these wave numbers were
then histogrammed using a bin width of 30 th The re-
Vz(new =V (old) + 3{(Qi+ 1)~ Q7], (9 sulting histograms are shown in Fig. 3. All eight histograms

) ) 5 in Fig. 3 are essentially identical. Each histogram shows a
whereQ; is theith element ofQ,4. We thus keep track of . — 1 . .

. . . . : Debye region forv<<100 cm =, roughly five overlapping
zeolite configurations in both Cartesian and normal-mode co- = .
ordinates. The total potential energy changey=AV, bands for 100 cm~<»<<1000 cm -, and two clear overlap-

+AV,s, is then fed into the Metropolis function Ping bands for 1000 ci'<»<1350 cni. The fact that

(M g(AV)) for determining whether to accept the move. If this histogram shape is conserved when loading benzene into

the move is accepted, thep, is replaced withQ;+ X\, all  silicalite’s straight channel lends much credence to the har-

“new” labels are replaced with “old,” and so forth millions Monic approximation advocated herein.

of times. To explore criterion2), we performed MD on bare sili-
Here we give some timings characteristic of our algo-calite at temperatures of 100-600 K, using our Coulomb—

rithm applied to benzene in silicalite. On a 1.7 GHz XeonBuckingham forcefield. During these simulations, we aver-

processorpizzy requires about 0.08 CPU seconds with 40aged the potential energy of distorting silicalite, i.e., we

movable zeolite atoms and 0.6 CPU seconds with 576 moveomputed(VZ—VZ(Fg))NVT. For comparison, we computed
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FIG. 5. Free energy surfaces for benzene motion through silicalite’s straight

FIG. 3. Histograms of normal-mode wave num_bers fqr sﬂlcall_t_e: f_our his- channel, from one intersection to the next. Results from flexible and rigid
tograms constructed from normal-mode analysis applied to silicalite Strucs - neworks are compared
tures extracted at 10, 20, 30, and 40 ps of 300 K molecular dynamics of bare ’

silicalite (lines); 4 more histograms obtained in the same way, except with
benzene in silicalite’s straight chann(elots. . o )
pare results for flexible and rigid lattices. Both curves show

the qualitative features indicated above. However, the rigid-
the same quantity using Metropolis Monte Carlo imple-lattice barrier is much higher than the flexible-lattice one,
mented with harmonic distortion energies. These results areecause the zeolite is allowed to distort during the latter
shown in Fig. 4. The average distortion energy obtained fronsimulations. Our flexible-lattice FES is in excellent agree-
the forcefield is essentially identical to the harmonic Montement with results of Forester and Smftin agreement with
Carlo result, both linear with temperature. Also plotted is thetheir results, we find three shallow free-energy minima in the
harmonic result from classical statistical mechangdéksT, channel. Our barrier, 20 kJ mol, is in very good agree-
which agrees very well with both MD and Monte Carlo. The ment with their result, 25 kJ mot, considering that slightly
differences from MD at 600 K are only about 1%. Thesedifferent forcefields were used. These results confirm that our
results lend further credence to the notion of making a harlocal normal-mode Monte Carlo approach can faithfully rep-

monic approximation to zeolite distortion energies. resent molecular motion in tight-fitting zeolite—guest sys-
tems.
B. Benzene free energies in silicalite For each flexible-lattice free energy in Fig. 5, we per-

~ formed two Monte Carlo runs of length 48teps(attempted

The free energy landscape for benzene in silicalite isyoyeg. On the other hand, for each rigid-lattice free energy
now reasonably well knowh? with relatively flat minima at e performed two Monte Carlo runs of lengthkacf steps.
intersection sites and corrugated regions of high free energye note that the rigid-lattice FES does not reflect silicalite’s
in channels. This landscape arises from a balance betwe%@/mmetry along the reaction coordinate, while the flexible-
the host-guest potential energy, host distortion energy anfttice FES does. This indicates that, despite the longer
guest configurational entropy. Using the methods outlineqonte Carlo runs, the rigid-lattice FES remains more poorly
above, we calculated benzene’s FES along the crystallgsgnyerged than the flexible-lattice FES. This slow conver-
graphic y-axis describing the jump between intersectiongence occurs because of the decreased likelinood of jumping
sites, which are separated by about 10 A. In Fig. 5 we comgnrough a rigid lattice. A more efficient window sampling
method might speed up the rigid-lattice FES convergéhce.
Nonetheless, because the normal-mode algorithm makes
rigid- and flexible-lattice calculations equally fast step for
step, and our flexible calculations converged in fewer steps,
we have shown that flexible-lattice calculations can actually
be fasterthan rigid-lattice ones.

5 T T T T T T T T T T T T

+ -—0o Forcefield Molecular Dynamic _
4L Harmonic Theory P
| — Harmonic Monte Carlo __#

IV. SUMMARY AND CONCLUDING REMARKS

We have developed and applied an efficient Monte Carlo
algorithm for simulating diffusion in tight-fitting host—guest
systems, based on using zeolite normal modes. We gained
computational efficiency by sampling framework distortions
oo 100 200 300 400 500 600 700 using normal-mode coordinates, and by exploiting the fact

Temperature (K) that zeolite distortion energies are well approximated by har-
monic estimates. We obtained additional savings by perform-
FIG. 4. Average potential energy of silicalite vs temperature for all 576;

zeolite atoms, relative to the ground-state potential energy. Computed frorlnng local normal-mode analysis, i.e., only including the mo-

forcefield-based molecular dyanmitsquare normal-mode Monte Carlo  11ONS _Of zeolite atoms_ close to the_ jum_ping _m0|eCU|ea hence
(dots, and harmonic statistical mechanigashed ling focusing the calculation on zeolite distortions relevant to

MFI <Potential> (10° kd/mol)
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