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Calculating free energies for diffusion in tight-fitting zeolite-guest systems:
Local normal-mode Monte Carlo
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We present an efficient Monte Carlo algorithm for simulating diffusion in tight-fitting host–guest
systems, based on using zeolite normal modes. Computational efficiency is gained by sampling
framework distortions using normal-mode coordinates, and by exploiting the fact that zeolite
distortion energies are well approximated by harmonic estimates. Additional savings are obtained by
performing local normal-mode analysis, i.e., only including the motions of zeolite atoms close to the
jumping molecule, hence focusing the calculation on zeolite distortions relevant to guest diffusion.
We performed normal-mode analysis on various silicalite structures to demonstrate the accuracy of
the harmonic approximation. We computed free energy surfaces for benzene in silicalite, finding
excellent agreement with previous theoretical studies. Our method is found to be
orders-of-magnitude faster than comparable Monte Carlo calculations that use conventional
forcefields to quantify zeolite distortion energies. For tight-fitting guests, the efficiency of our new
method allows flexible-lattice simulations to converge in less CPU time than that required for
fixed-lattice simulations, because of the increased likelihood of jumping through a flexible lattice.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1558033#
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I. INTRODUCTION

The transport properties of adsorbed molecules pla
central role in determining selectivities of reactions and se
rations in zeolites, especially when adsorbate sizes appr
zeolite pore dimensions.1,2 In particular, the tight fit of
C6–C8 aromatics in MFI-type zeolites~see Fig. 1! produces
a variety of interesting effects that signal the importance
zeolite framework flexibility. These include framewor
phase transitions induced by guest adsorption,3–5 and anoma-
lously high fluxes of ortho-xylene through zeolite mem
branes with co-adsorbed para-xylene.6,7 Computational stud-
ies have the potential to shed light on these intrigu
phenomena, by elucidating the coupling between guest
tion and zeolite distortion. However, flexible-lattice simul
tions on tight-fitting systems are rare because they are c
putationally demanding, even when exploiting metho
specialized for infrequent events.8 In this article, we develop
an efficient Monte Carlo algorithm for simulating diffusio
in tight-fitting host–guest systems, based on using zeo
normal modes.

Systematic comparisons of fixed- and flexible-latti
molecular dynamics~MD! simulations have been reporte
for a variety ofloose-fittingzeolite-guest systems, includin
methane and light hydrocarbons in silicalite,9–13 methane in
cation-free LTA,14 Lennard-Jones adsorbates in Na-A15 and
in Na-Y,16 benzene and propylene in MCM-22,17 benzene in
Na-Y,18–20and methane in AlPO4-5.21 It is not surprising that
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for these relatively small guests, lattice flexibility does n
influence diffusion. Studies on tighter-fitting systems, such
benzene and propene in MCM-22,17 and iso-butane13 and
benzene8,22 in silicalite, do indeed show that lattice flexibility
strongly influences diffusion. In particular, Snurret al. ap-
plied harmonic transition state theory~TST! to benzene dif-
fusion in silicalite, assuming that benzene and silicalite
main rigid.22 As a consequence of this assumption, th
results underestimate experimental diffusivities by one
two orders of magnitude. Forester and Smith subseque
applied TST to benzene in silicalite using constrain
reaction-coordinate dynamics on both rigid and flexib
lattices.8 Lattice flexibility was found to have a very stron
influence on the jump rates. Diffusivities obtained from the
flexible framework simulations are in excellent agreem
with experiment, overestimating the measured room te
perature diffusivity (2.2310214 m2 s21) by only about 50%.
These studies establish benzene in silicalite as an impo
benchmark system for which including framework flexibili
is crucial for describing guest diffusion.

Despite the importance of modeling diffusion in tigh
fitting zeolite–guest systems, such calculations are rare
cause they are so challenging. To remedy this situation
efficient approach will have to~i! reduce the added expens
of calculating framework distortion energies, and~ii ! sample
cooperative motions of the zeolite, because these are li
to facilitate guest diffusion. The constrained reactio
coordinate dynamics reported by Forester and Smith do
deed produce cooperative zeolite motions. However, thi
il:
2 © 2003 American Institute of Physics
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achieved at significantly greater computational expense
that of fixed-lattice simulations.

A solution satisfying both criteria is suggested by t
normal-mode analyses of zeolite vibrations reported by I
and Singer.23 They found that zeolite normal modes ofte
correspond to breathing motions of rings and channels, s
gesting that these coordinates can efficiently sample fra
work distortions during molecular jumps. What’s more,
remarkable speedup can be obtained by exploiting the
that zeolite vibrations are nearly harmonic, which we sh
below. As such, after computing the normal modes, samp
lattice flexibility costsessentially no CPU timebecause the
zeolite force constants are known. Thus, we use norm
mode coordinates for natural sampling of zeolite vibratio
and normal-mode force constants for efficient energy ca
lations. Below we calculate free energy surfaces for benz
jumping in silicalite’s straight channel~see Fig. 1!, finding
excellent agreement with the results of Forester and Sm8

However, in contrast with their calculations, the flexibl
lattice simulations reported below converged inless CPU
time than that required for fixed-lattice simulations.

The remainder of this article is organized as follow
Section II outlines the local normal-mode algorithm, in a
dition to the forcefields and free energy methods we utili
Section III provides results and discussion of normal-mo
analyses and free energy surfaces, and Sec. IV offers a
mary of our findings as well as concluding remarks.

II. METHODS

We calculate free energy surfaces~FES! for benzene to
move along silicalite’s straight channel from one intersect
site to the next, using they-component of benzene’s cente
of-mass as a reaction coordinate. The FES is formally
fined by

F~y0![2kBT ln@L^d~y2y0!&T#, ~1!

wherekB is Boltzmann’s constant,T is temperature,̂•••&T

is a canonical average,d(y2y0) is Dirac’s delta function,
andL is a formal length scale that cancels when comput

FIG. 1. MFI zeolite topology: S/Z are Straight/Zig–zag channels; I is Int
section.
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free energy differences. Here we discuss the base mode
forcefield, the free energy sampling method, and last but
least, the local normal-mode algorithm.

A. Base model and forcefield

As with our previous simulations of benzene
silicalite,24,25 the simulation cell we adopt consists of tw
silicalite unit cells along thez-axis,26 containing a total of
192 silicons and 384 oxygens under three-dimensional p
odic boundary conditions. As such, our simulation cell h
the dimensions 20.02 Å319.90 Å326.77 Å. We add to this
model of bulk silicalite one benzene molecule; all 588 p
ticles interact via Coulombic and short-ranged forces. C
lombic energies are calculated with Ewald summations,
short-ranged forces are cut-and-shifted at 9.9 Å. We uti
the framework forcefield developed by us for modeli
alumino-silicates,27 which has also been applied to siliceo
materials as well.24,25 We adopt the zeolite–benzene intera
tion potential reported in our initial work on benzene
Na-Y.28 For computational simplicity we fix benzene’s inte
nal coordinates. This approximation is expected to be a g
one, because the relative rigidity of benzene compared
that of the zeolite makes it unlikely that internal vibrations
benzene facilitate its diffusion. For future work, we will re
lax this constraint by considering harmonic guest vibratio
alongside harmonic zeolite distortions.

B. Free energy surface calculations

We partition three-dimensional space in silicalite
straight channel by defining a sequence of planes perp
dicular to the jump coordinate,y, from one intersection site
to the next. Adjacent planes are typically separated by 0.4
this distance is chosen to minimize the number of pla
~and hence free energy calculations! while maximizing the
overlap between adjacent potential energy distributions.
difference between free energies in adjacent regions A an
is given by:DF5FB2FA52kBT ln(QB /QA), whereQi is
the canonical partition function in regioni 5A or B. We
calculate the ratio of partition functions using Voter
displacement-vector method.29,30 In this approach, the ratio
of partition functions is computed using two Monte Car
averages as follows:

QB

QA
5

^Mb@VB~r1d!2VA~r !#&A

^Mb@VA~r2d!2VB~r !#&B
. ~2!

In Eq. ~2!, the numerator is the average probability of ma
ing a jump from pointr in region A to pointr1d in region
B, via the displacement vectord. This jump involves both
translational and rotational motion, the latter generated
random changes in benzene’s Euler angles. The subs
‘‘A’’ on the average in the numerator reminds us that the
jumps from A to B are fictitious, i.e., they are never actua
accepted during the sampling of region A. However, the
ceptance statistics are accumulated in the numerator. The
nominator is the probability of going in the opposite dire
tion, from region B to A, via the displacement vector2d.
For the denominator, statistics for fictitious jumps are ac
mulated during a standard canonical sampling of region

-
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To hasten convergence, we choose displacement ve
randomly from a Gaussian distribution centered ond0 5 ~0,
0.4, 0! Å, with Cartesian widths of~0.2, 0.2, 0.2! Å; these
widths were chosen to optimize the sampling of jumps. B
cause of the dispersion in they-component of the displace
ment vector, jumps outside the target region are occasion
produced. These are wrapped back into the target regio
adding or subtractingd0 as appropriate. This procedure in
troduces no bias into the generation of jumps. In all cas
the Monte Carlo acceptance probability is modeled using
Metropolis function Mb(DE)5min@1, exp(2bDE)#, which
depends on the difference in potential energy between
points in the two regions. The energies required for this c
culation are evaluated using the local normal-mode sche
which we now describe.

C. Normal mode Monte Carlo

Here we describe the generation of normal modes,
use of normal-mode coordinates for updating zeolite c
figurations, and the use of normal-mode force constants
calculating zeolite distortion energies. We begin by choos
the zeolite atoms allowed to move. This choice depends u
the problem at hand, in particular the host, guest and ju
under consideration. For the model of silicalite we consi
here, the number of movable zeolite atoms~N! satisfiesN
<576. When performing normal-mode analysis to test
harmonic approximation, we useN5576. On the other hand
when computing the FES, we generally useN,576.

For the intersection→ straight channel→ intersection
jump of benzene in silicalite, we used a cylindrical cut-off
choose movable zeolite atoms. The cylindrical radius is s
ject to optimization: too small a radius includes too few
oms, leaving the channel too rigid and the method inac
rate; while too large a radius produces too many irrelev
normal modes, leaving the method inefficient. Although
principle one should explicitly converge a FES with resp
to the cut-off radius, in practice such explicit convergence
computationally demanding. Instead, we increase the ra
and look for convergence in the distribution of normal-mo
force constants~data not shown!. When gauging conver
gence, we ignore the low-frequency Debye regionn̄
&80 cm21; see Fig. 3!, which becomes red-shifted as th
radius increases. We found that a radius of 6 Å is optimal for
this particular problem, which gives 40 movable zeolite
oms, as shown in Fig. 2.

Here we describe our standard implementat
of normal-mode analysis. For simplicity, the analysis bel
explicitly includes only theN movable zeolite atoms. How
ever, each forcefield calculation performed to paramet
normal-mode analysis includes contributions from all 5
atoms under periodic boundary conditions, regardless of
number of atoms allowed to move. The configuration ofN
movable atoms in three dimensions is denoted by
3N-dimensional vectorr¢N5(r¢1 , r¢2 , r¢3 , . . . ,r¢N), wherer¢i is
the three-dimensional Cartesian position of atomi. Likewise,
the ground-state configuration is denoted byr¢0

N5(r¢1
(0) , r¢2

(0) ,
r¢3

(0) , . . . ,r¢N
(0)). We denote a displacement from the grou

state byDr¢N5r¢N-r¢0
N5(Dr¢1 , Dr¢2 , Dr¢3 , . . . ,Dr¢N). Finally,
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the mass-weighted displacement isDs¢N5(Am1Dr¢1 ,
Am2Dr¢2 , Am3Dr¢3 , . . . ,AmNDr¢N). Given these definitions
the harmonic approximation for the zeolite potential ene
is given by

VZ~r¢N!>VZ~r¢0
N!1

1

2 (
i 51

N

(
j 51

N

Dr¢i•S ]2VZ

]r¢i]r¢ j
D

0

•Dr¢ j , ~3!

5VZ~r¢0
N!1

1

2 (
i 51

N

(
j 51

N

Ds¢i

3F 1

Ami
S ]2VZ

]r¢i]r¢ j
D

0

1

Amj
G •Ds¢j , ~4!

where (]2VZ /]r¢i]r¢ j )0 is a 333 force constant matrix evalu
ated at the ground-state zeolite geometry. We evaluate t
second derivatives by first calculating first derivatives a
lytically using the standard force routines in our program
DIZZY.31 We then compute second derivatives using tw
point, symmetric finite differences of the forces alongx-, y-,
and z-directions for each pair of movable atoms in the sy
tem. We have found that a grid spacing of 1024 Å gives
robust convergence of these second derivatives.

In Eq. ~4!, the quantity in@•••# is the ‘‘mass-weighted’’
force constant matrix, which is the central object in norm
mode analysis. We diagonalize this matrix using stand
direct methods, such as the Householder method,32 whose
memory and time requirements scale asN2 andN3, respec-
tively. The diagonalization routine outputs the 3N eigenval-
ues and eigenvectors of the mass-weighted force cons
matrix. The eigenvalues (ki) have units of force constant
mass which yields the square of the vibrational frequen
ki5v i

25(2pcn̄ i)
2, wherec is the speed of light andn̄ i is

the vibrational wave number of thei th normal mode, typi-
cally reported in cm21. The eigenvectors (U¢ i) are automati-
cally orthonormal, i.e.,U¢ i•U¢ j5d i j . In terms of these eigen
vectors, the normal-mode vibrational coordinates (Qi) are
expressed as

FIG. 2. Benzene~center! in the straight channel of silicalite. The highlighte
framework atoms produce channel breathing, and are included in ‘‘lo
normal-mode’’ analysis.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Qi5(
j 51

3N

~U¢ i ! j~Ds¢N! j . ~5!

In terms of these coordinates, the harmonic potential ene
simplifies to

VZ~Q¢ !>VZ~0¢!1 1
2 (

j 51

3N

kiQi
2 . ~6!

To calculate zeolite–guest potential energies, which
evaluated using Cartesian coordinates, we need the inv
normal-mode transformation given by

~Ds¢N! j5(
i 51

3N

~U¢ i ! jQi . ~7!

Equation~7! follows from the orthonormality of the eigen
vectorsU¢ i .

We have now introduced the quantities required to su
marize our local normal-mode Monte Carlo algorithm. He
we describe its application for calculating the average M
tropolis acceptance probability to jump from slice A to
i.e., ^Mb(DV)&A in Eq. ~2!. First we compute and diagona
ize the mass-weighted force constant matrix; obviously
step is performed once only. Next we initialize the zeolite
r¢old

N ↔Q¢ old and the guest in slice A;r¢old
N can ber¢0

N or some
equilibrium configuration from a previous Monte Car
simulation. We then use our forcefield to compute the ini
zeolite–guest potential,VZG(old), and we use Eq.~6! to
compute the initial zeolite potential energy,VZ(old).

A guest jump is then chosen at random, either a r
move within slice A, or a fictitious jump from A to B using
the displacement-vector distribution described above. N
we create a zeolite distortion by randomly choosing a nor
mode i P@1,3N# and a lengthlP@2lmax,lmax#, where
lmax52 Å(N/576) was found to give efficient Monte Carl
sampling of lattice vibrations for various values ofN. Fol-
lowing Eq. ~7!, the mass-weighted Cartesian displacem
vector is updated according to

Ds¢new
N 5Ds¢old

N 1lU¢ i . ~8!

The new~un-mass-weighted! zeolite configuration,r¢new
N , is

trivially obtained fromDs¢new
N , allowing forcefield evaluation

of the new zeolite–guest potential,VZG(new). The zeolite
potential is updated according to:

VZ~new!5VZ~old!1 1
2@~Qi1l!22Qi

2#, ~9!

whereQi is the i th element ofQ¢ old . We thus keep track o
zeolite configurations in both Cartesian and normal-mode
ordinates. The total potential energy change,DV5DVZ

1DVZG, is then fed into the Metropolis function
^Mb(DV)&A for determining whether to accept the move.
the move is accepted, thenQi is replaced withQi1l, all
‘‘new’’ labels are replaced with ‘‘old,’’ and so forth millions
of times.

Here we give some timings characteristic of our alg
rithm applied to benzene in silicalite. On a 1.7 GHz Xe
processor,DIZZY requires about 0.08 CPU seconds with
movable zeolite atoms and 0.6 CPU seconds with 576 m
Downloaded 04 Apr 2003 to 128.119.39.33. Redistribution subject to A
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able atoms to calculate the zeolite potential using a stand
forcefield. On the other hand, using our local normal-mo
approach,DIZZY requires just 0.005 CPU seconds per eva
ation, independent of the number of movable atoms. T
efficiency comes at a small cost—the zeolite normal mo
must be calculated and stored once at the start of the s
lation. The computational expense of this step, which
pends on the the number of movable atoms, is about 10 C
seconds for 40 atoms and about 23 minutes for 576 ato
The cost of calculating normal modes is found to be a t
fraction of the total CPU time required for converging th
FES. Thus, our flexible-lattice algorithm is as efficient, st
for step, as a fixed-lattice one. What’s more, the flexib
lattice FES calculations below converged in fewer Mon
Carlo steps than did the fixed-lattice ones, because of
increased likelihood of jumping through a flexible lattice.

III. RESULTS AND DISCUSSION

We describe the results of normal-mode calculations
bare silicalite, and on silicalite with benzene adsorbed in
straight channel, to gauge the accuracy of the harmonic
proximation. We then discuss free energy calculations
benzene in fixed and flexible silicalite, to determine the e
ciency of the new algorithm.

A. Testing the harmonic approximation

There are various manifestations of harmonic behav
that can be used to test the accuracy of this approxima
for estimating zeolite distortion energies. We use the follo
ing two:

~1! Spectrum of normal-mode wave numbers is indep
dent of configuration;

~2! potential energy, averaged in the canonical ensem
is linear in temperature.
Any deviation from these properties signals the importan
of anharmonicity. To explore criterion~1!, we ran MD simu-
lations at 300 K on bare silicalite, and on silicalite with be
zene adsorbed in the straight channel. From both these s
lations, we extracted lattice configurations at 10, 20, 30,
40 ps, totaling eight distinct zeolite configurations. The co
figurations extracted from MD with benzene strain the latt
because of benzene’s tight fit in silicalite’s straight chann
For each of these configurations we calculated the full se
1728 normal-mode wave numbers; these wave numbers w
then histogrammed using a bin width of 30 cm21. The re-
sulting histograms are shown in Fig. 3. All eight histogram
in Fig. 3 are essentially identical. Each histogram show
Debye region forn̄,100 cm21, roughly five overlapping
bands for 100 cm21, n̄,1000 cm21, and two clear overlap-
ping bands for 1000 cm21, n̄,1350 cm21. The fact that
this histogram shape is conserved when loading benzene
silicalite’s straight channel lends much credence to the h
monic approximation advocated herein.

To explore criterion~2!, we performed MD on bare sili-
calite at temperatures of 100–600 K, using our Coulom
Buckingham forcefield. During these simulations, we av
aged the potential energy of distorting silicalite, i.e., w
computed̂ VZ2VZ(r¢0

N)&NVT . For comparison, we compute
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the same quantity using Metropolis Monte Carlo imp
mented with harmonic distortion energies. These results
shown in Fig. 4. The average distortion energy obtained fr
the forcefield is essentially identical to the harmonic Mon
Carlo result, both linear with temperature. Also plotted is
harmonic result from classical statistical mechanics:3

2NkBT,
which agrees very well with both MD and Monte Carlo. Th
differences from MD at 600 K are only about 1%. The
results lend further credence to the notion of making a h
monic approximation to zeolite distortion energies.

B. Benzene free energies in silicalite

The free energy landscape for benzene in silicalite
now reasonably well known,8,22with relatively flat minima at
intersection sites and corrugated regions of high free ene
in channels. This landscape arises from a balance betw
the host-guest potential energy, host distortion energy
guest configurational entropy. Using the methods outlin
above, we calculated benzene’s FES along the crysta
graphic y-axis describing the jump between intersecti
sites, which are separated by about 10 Å. In Fig. 5 we co

FIG. 3. Histograms of normal-mode wave numbers for silicalite: four h
tograms constructed from normal-mode analysis applied to silicalite st
tures extracted at 10, 20, 30, and 40 ps of 300 K molecular dynamics of
silicalite ~lines!; 4 more histograms obtained in the same way, except w
benzene in silicalite’s straight channel~dots!.

FIG. 4. Average potential energy of silicalite vs temperature for all 5
zeolite atoms, relative to the ground-state potential energy. Computed
forcefield-based molecular dyanmics~squares!, normal-mode Monte Carlo
~dots!, and harmonic statistical mechanics~dashed line!.
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pare results for flexible and rigid lattices. Both curves sh
the qualitative features indicated above. However, the rig
lattice barrier is much higher than the flexible-lattice on
because the zeolite is allowed to distort during the la
simulations. Our flexible-lattice FES is in excellent agre
ment with results of Forester and Smith.8 In agreement with
their results, we find three shallow free-energy minima in
channel. Our barrier, 20 kJ mol21, is in very good agree-
ment with their result, 25 kJ mol21, considering that slightly
different forcefields were used. These results confirm that
local normal-mode Monte Carlo approach can faithfully re
resent molecular motion in tight-fitting zeolite–guest sy
tems.

For each flexible-lattice free energy in Fig. 5, we pe
formed two Monte Carlo runs of length 106 steps~attempted
moves!. On the other hand, for each rigid-lattice free ener
we performed two Monte Carlo runs of length 93106 steps.
We note that the rigid-lattice FES does not reflect silicalit
symmetry along the reaction coordinate, while the flexib
lattice FES does. This indicates that, despite the lon
Monte Carlo runs, the rigid-lattice FES remains more poo
converged than the flexible-lattice FES. This slow conv
gence occurs because of the decreased likelihood of jum
through a rigid lattice. A more efficient window samplin
method might speed up the rigid-lattice FES convergenc33

Nonetheless, because the normal-mode algorithm ma
rigid- and flexible-lattice calculations equally fast step f
step, and our flexible calculations converged in fewer ste
we have shown that flexible-lattice calculations can actua
be faster than rigid-lattice ones.

IV. SUMMARY AND CONCLUDING REMARKS

We have developed and applied an efficient Monte Ca
algorithm for simulating diffusion in tight-fitting host–gues
systems, based on using zeolite normal modes. We ga
computational efficiency by sampling framework distortio
using normal-mode coordinates, and by exploiting the f
that zeolite distortion energies are well approximated by h
monic estimates. We obtained additional savings by perfo
ing local normal-mode analysis, i.e., only including the m
tions of zeolite atoms close to the jumping molecule, hen
focusing the calculation on zeolite distortions relevant

-
c-
re

h

m

FIG. 5. Free energy surfaces for benzene motion through silicalite’s stra
channel, from one intersection to the next. Results from flexible and r
frameworks are compared.
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guest diffusion. We performed normal-mode analysis
various silicalite structures to demonstrate the accuracy
the harmonic approximation. We computed free energy
faces for benzene in silicalite, finding excellent agreem
with previous theoretical studies. Our method was found
be orders-of-magnitude faster than comparable Monte C
calculations that use conventional forcefields to quantify z
lite distortion energies. For tight-fitting guests, the efficien
of our new method allows flexible-lattice simulations to co
verge in less CPU time than that required for fixed-latt
simulations, because of the increased likelihood of jump
through a flexible lattice.

This algorithm will facilitate simulations of adsorptio
and diffusion in tight-fitting host–guest systems for ho
that behave as multidimensional harmonic oscillators dur
guest diffusion. This class of hosts includes most silice
zeolites, many carbon nanotubes, and possibly the select
filters of biological ion channels. Exceptions include zeoli
that undergo phase transitions upon guest adsorption, zeo
with exchangeable cations that diffuse alongside guests,
logical ion pumps, and any host that executes large am
tude motion during guest diffusion.

A possible solution for modeling guest diffusion
cation-containing zeolites is to partition the system into h
monic and anharmonic degrees of freedom. The alum
silicate framework remains largely harmonic, while the gu
and cation motions are rather anharmonic. Our local norm
mode Monte Carlo algorithm provides significant speed-
only if the number of harmonic coordinates greatly exce
the number of anharmonic ones. In the future we plan
apply this approach to model diffusion of guests that
tightly in cation-containing zeolites, to gauge the metho
efficiency under these more demanding circumstances.
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