
Dynamics of Sorbed Molecules in Zeolites∗

Scott M. Auerbach†
Department of Chemistry and Department of Chemical Engineering,

University of Massachusetts, Amherst, MA 01003

Fabien Jousse‡ and Daniel P. Vercauteren
Computational Chemical Physics Group, Institute for Studies in Interface Science,

Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

Abstract

We explore recent efforts to model the dynamics of sorbed molecules in
zeolites with either atomistic methods or lattice models. We discuss the as-
sumptions underlying modern atomistic and lattice approaches, and detail the
techniques and applications of modeling both rapid dynamics and activated
diffusion. We summarize the major findings discovered over the last several
years, and enumerate future needs for the frontier of modeling dynamics in
zeolites.

∗Submitted as a chapter in “Computer Modelling of Microporous and Mesoporous Materials,”
Editors C. R. A. Catlow, R. A. van Santen and B. Smit.

†Corresponding author; email: auerbach@chem.umass.edu.

‡Email: fjousse@scf.fundp.ac.be.

1



Outline

I. Introduction

II. Atomistic Dynamics in Zeolites

A. Basic Model and Forcefields
1. Zeolite Model
2. Guest-Zeolite Forcefields

B. Equilibrium Molecular Dynamics

1. Ensembles and Parameters
2. Data Analyses
3. Recent Applications

C. Reactive Flux Molecular Dynamics and Transition-State Theory

1. Rare Event Theory
2. Recent Applications

III. Lattice Dynamics in Zeolites

A. Fundamental Assumptions

B. Kinetic Monte Carlo
1. Algorithms and Ensembles
2. Data Analyses
3. Models of Finite Loading
4. Recent Applications

C. Mean Field and Continuum Theories
1. Finite Loading Effects
2. Fickian vs. Maxwell-Stefan Theory
3. Recent Applications

IV. Concluding Remarks

V. Acknowledgments

2



I. INTRODUCTION

Zeolites are nanoporous crystalline aluminosilicates with a rich variety of interesting
properties and industrial applications.1–3 With over 100 zeolite framework topologies4–6

synthetically available—each with its own range of compositions—zeolites offer size-, shape-
and electrostatically-selective adsorption,7 diffusion8,9 and reaction7 up to remarkably high
temperatures. The impressive selectivities produced by these materials result from strong
guest-zeolite interactions; however, these same interactions can severely retard the eventual
permeation of desired products from zeolites. This has led to growing interest in modeling
the transport of molecules in zeolites, to seek an optimal balance between high selectivity
and high flux by identifying the fundamental interaction parameters that determine these
key properties. In this review, we describe recent efforts using atomistic methods and lattice
models to simulate the dynamics of sorbed molecules in zeolites.

Practical applications of zeolites are typically run under steady-state conditions, mak-
ing the relevant transport coefficient the Fickian diffusivity or other related permeability
coefficient. However, modeling such steady-state transport through zeolites with atomistic
models is challenging, prompting many researchers instead to simulate self diffusion, which
is the stochastic motion of tagged particles at equilibrium. Although self diffusivities for
molecular liquids over a wide temperature range typically fall in the range of 10−9–10−8

m2 s−1, self diffusivities for molecules in zeolites cover a much larger range, from 10−19 m2

s−1 for benzene in Ca-Y10 to 10−8 m2 s−1 for methane in silicalite-1.11 Such a wide range
offers the possibility that diffusion in zeolites, probed by both experiment and simulation,
can provide an important characterization tool complementary to diffraction, NMR, IR,
etc., because diffusive trajectories of molecules in zeolites sample all relevant regions of the
guest-zeolite potential energy surface. Below we assess the accuracy with which modern
dynamics simulations can predict self diffusivities of molecules in zeolites, and discuss the
insights gained from such simulations regarding guest-zeolite structure.

The wide range of diffusional time scales encountered by molecules in zeolites presents
unique challenges to the modeler, requiring that various simulation tools, each with its own
range of applicability, be brought to bear on modeling dynamics in zeolites. In particular,
when transport is relatively rapid, the molecular dynamics technique can be used to simulate
both the temperature and loading dependencies of self diffusion.12,13 On the other hand, when
molecular motion is relatively slow because free energy barriers separating sorption sites are
large compared to thermal energies, transition-state theory and related methods must be
used to simulate the temperature dependence of site-to-site jump rate constants. In this
regime, kinetic Monte Carlo and mean field theory can then be used to model the loading
dependence of activated diffusion in zeolites.14,15 In this review we describe the techniques
and applications of these methods, focusing on how the interplay between guest-zeolite
adhesion and guest-guest cohesion controls diffusion in zeolites.

The goal of most diffusion simulations is to predict the temperature and loading depen-
dencies of self diffusion in various zeolites with different framework topologies, and over a
range of Si:Al ratios. One generally expects self diffusivities to exhibit an Arrhenius tem-
perature dependence, with the apparent activation energy controlled by migration through
bottlenecks such as narrow channels or cage windows. In addition, one typically observes
that self diffusivities decrease linearly with loading as site blocking decreases the number of

3



successful jump attempts. While these ideas provide useful rules of thumb, we see below
that guest-zeolite systems provide many fascinating examples that break these long-honored
rules. We also find below that with modern tools of theory and simulation, researchers
have produced remarkably useful insights and accurate predictions regarding the dynamics
of sorbed molecules in zeolites.

II. ATOMISTIC DYNAMICS IN ZEOLITES

The goals of simulating molecular dynamics in zeolites with atomistic detail are two-fold:
to predict the transport coefficients of adsorbed molecules, and to elucidate the mechanisms
of intracrystalline diffusion. Below we discuss the basic assumptions and forcefields un-
derlying such simulations, as well as the dynamics methods used to model both rapid and
activated motion through zeolites.

A. Basic Model and Forcefields

1. Zeolite Model

Ordered Models. Modeling the dynamics of sorbates in zeolites requires an adequate
representation of the zeolite sorbent. Zeolites are crystalline materials, which simplifies
tremendously the modeler’s task as compared to the task of modeling amorphous or dis-
ordered microporous materials such as silica gels or activated carbons. Zeolite framework
structures are well-known from many crystallographic studies and easily accessible from ref-
erence material such as Meier and Olson’s Atlas of Zeolite Structure Types,4 commercial5

or internet databases.6 Moreover, the typical size of a zeolite crystallite is 1 to 100 µm, that
is, much larger than the length scale probed by atomistic molecular dynamics simulations.
Size effects therefore can often be neglected except for single-file systems,16 and an adequate
modeling of the sorbent is obtained with only a few unit cells included in the simulation
cell, with periodic boundary conditions to represent the crystallite’s extent.

However, a zeolite structure presents some heterogeneities at the atomistic scale: the
arrangement of Si and Al atoms in the structure (or Al and P for AlPO4’s) usually does not
present any long-ranged ordering; and in the general case, extra-framework cations also oc-
cupy crystallographic positions without full occupancy or long-range ordering. The simplest
way to tackle this problem is to ignore it completely; indeed, a good 80% of all molecular
dynamics (MD) studies of guest dynamics in zeolites published since 1997 concern aluminum-
free, cation-free, defect-free all-silica zeolite analogs rather than zeolites. These structures
sometimes exist, such as silicalite-1, silicalite-2 and ZDDAY, the respective analogs of ZSM-5
(structure MFI), ZSM-11 (structure MEL) and Na-Y (structure FAU). However, the siliceous
analogs sometimes do not exist but in the modeler’s view, such as LTL, the analog of the
cation-containing zeolite L. Nevertheless, these models can be very useful for studying the
influence of zeolite structure or topology on an adsorbate’s dynamics, irrespective of the
cations,17 or to determine exactly, by comparison, the cations’ influence.18,19 Furthermore,
some zeolites of industrial interest such as ZSM-5 present high Si:Al ratios, so that their
protonated forms have very few protons per unit cell. Heink et al. have shown, for example,
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that the Si:Al ratio of ZSM-5 has very little influence on hydrocarbon diffusivity.20 In these
cases, it is safe to assume that studying diffusion in a completely siliceous zeolite analog will
display most characteristics of the diffusion in the protonated form. This assumption sim-
plifies several factors of the simulation and of the subsequent analysis: fewer parameters for
the guest-zeolite interaction potential are needed, the system does not present any hetero-
geneity, and electrostatic interactions can be neglected when using adequate van der Waals
interaction parameters, therefore decreasing the computational cost of a force evaluation.
Charge Distributions. There are many cases where such a simplified representation is
inadequate: in particular, exchangeable cations create an intense local electric field (amount-
ing to 3 V/Å next to a Ca2+ cation in Na-A, according to induced IR measurements)21 so
that, unless the cation is inaccessible to the sorbate, one cannot neglect its Coulombic in-
teraction with an adsorbed molecule. The number of cations in the frame depends on the
Si:Al ratio: each Al atom brings one negative charge to be compensated by the adequate
number of mono or multivalent cations. Hence the Si:Al ratio strongly influences the ad-
sorptive properties of zeolites, so much that a change in the amount of Al brings a change
in nomenclature: for example, FAU-type zeolites are denoted zeolite X for Si:Al < 1.5 and
zeolite Y for a Si:Al > 1.5. Many groups have investigated the distribution of Al and Si
atoms in zeolites, to determine whether there is any local arrangement of these atoms.22–27

Since X-ray crystallography does not distinguish Si from Al, this is necessarily determined
from indirect techniques such as Si or Al NMR. Löwenstein’s rule forbids any Al–O–Al
bonds, which brings perfect ordering for Si:Al=1, such as in Na-A. In most other cases, no
local ordering has been found in the studies mentioned above. An exception is zeolite EMT,
where rich Si and Al phases have been found from crystallographic measurements, when
synthesized using crown ethers as templates.28 In zeolite L, aluminum atoms preferentially
occupy T1 rather than T2 sites, as found out by neutron crystallography.29

In the absence of local ordering, a common modeling procedure involves neglecting the
local inhomogeneity of the Si:Al distribution, and replacing all Al or Si by an average
tetrahedral atom T, which is exactly what is observed crystallographically. The Si:Al ratio
then is reflected by the average charge of this T atom, the charges on framework oxygen
atoms, and by the number of charge compensating cations. This T-site model has been
used in many recent modeling studies, and performs very well for reproducing adsorptive
properties of zeolites.30,31 Indeed, few studies of guest adsorption in zeolites consider explicit
Al and Si atoms.32–34

The most important inhomogeneity inside cation-containing zeolites comes from the
cation distribution. Indeed, except for very special values of the Si:Al ratio, the possible
cation sites are not completely or symmetrically filled, and crystallographic measurements
only give average occupancies. A common procedure is to use a simplified model, with just
the right Si:Al ratio that allows complete occupancy of the most probable cation sites and
no cations in other sites. This has been used, e.g., by Santikary and Yashonath in their
modeling of diffusion in zeolite Na-A: instead of Si:Al=1, they used a model Na-A with
Si:Al=2, thus allowing complete occupancy of cation site I, which gives cubic symmetry of
the framework.35 Similarly, Auerbach and coworkers used a model zeolite Na-Y with Si:Al=2
in a series of studies on benzene diffusion, so that the model would contain just the right
number of Na cations to fill sites I′ and II, thereby giving tetrahedral symmetry.18,36,37 In
studying Na-X, which typically involves Si:Al=1.2, they used Si:Al=1 so that Na(III) would
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also be filled.18 This type of procedure is generally used to level off inhomogeneities that
complicate the analysis.

It is instructive to observe the effect of the Si:Al ratio of FAU-type zeolites on the
behavior of benzene diffusion, as determined from modeling.18,36,38 For very high Si:Al ratios
no cations are accessible to sorbed benzene, which only feels a weak interaction with the
framework, and hence diffuses over shallow energetic barriers. These reach only 10 kJ mol−1

between the supercage sites and window sites, where benzene adsorbs in the plane of the 12
T-atom ring (12R) window separating two adjacent supercages.38 As the Si:Al ratio decreases
toward Na-Y, cation sites II begin to fill in as indicated in figure 1. These Na(II) cations
at tetrahedral supercage positions create strong local adsorption sites for benzene (the SII

site), while the window site remains unchanged. As a consequence, the energetic barrier
to diffusion increases to ca. 40 kJ mol−1.36 The spread in measured activation energies for
benzene in Na-Y shown in figure 1 reflects both intracage and cage-to-cage dynamics,39

because both NMR relaxation data (intracage) and diffusion data (cage-to-cage) are shown.
When the Si:Al ratio further decreases toward Na-X, the windows are occupied by strongly
adsorbing site III cations. As a consequence, the window site is replaced by a strong SIII site
where benzene is facially coordinated to the site III cation, so that transport is controlled
by smaller energy barriers reaching only about 15 kJ mol−1.18 Figure 1 (top and middle)
schematically presents this behavior, while on the bottom part we compare the expected
behavior of the activation energy (full line) as a function of Si:Al ratio to the available
experimental observations (points). The correlation between simulation and experiments is
qualitatively reasonable considering the spread of experimental data. Figure 1 shows the
success of using a particular Si:Al ratio to simplify the computation, and furthermore shows
that adding cations in the structure does not necessarily result in an increase of the diffusion
activation energy.
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Figure 1. Activation energies of benzene diffusion in FAU-type zeolites. The top part
shows Si:Al ratios of FAU-type zeolites, with the corresponding occupied cation sites.
The middle part represents schematic benzene adsorption sites, and the energy barriers
between them arising from different cation distributions. C is a benzene supercage site
far from a cation, W is a benzene window site far from a cation, S2 is a cage site close
to an SII cation, S3 is a window site close to an SIII cation. The bottom part gives
diffusion activation energies for various Si:Al ratios. The solid line shows the overall
trend from simulations, symbols are particular experiment or simulation results: 1
Forni et al.,40 2. Bülow et al.,41 3. Lorenz et al.,42 4. Sousa-Gonçalves et al.,43 5.
Isfort et al.,44 6. Jobic et al.,45 7. Burmeister et al.,46 8. Auerbach et al.,36 9. Bull et
al.47 and 10. Auerbach et al.18

Despite the success of treating disordered charge distributions as being ordered, Chen
et al. have suggested that electrostatic traps created by disordered Al and cation distribu-
tions can significantly diminish self diffusivities from their values for corresponding ordered
systems.48 In addition, when modeling the dynamics of exchangeable cations49 or molecules
in acidic zeolites,34 it may be important to develop more sophisticated zeolite models which
completely sample Al and Si heterogeneity, as well as the possible cation distributions.
For example, Newsam and coworkers proposed an iterative strategy allowing the place-
ment of exchangeable cations inside a negatively charged framework,50 implemented within
MSI’s Cerius2 modeling environment. In addition, we have constructed a model zeolite H-Y
(Si:Al=2.43) by randomly placing aluminum atoms in the frame, and distributing protons
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using the following three rules: (i) protons are linked to an oxygen close to an Al atom; (ii)
no two hydroxyl groups can be linked to the same silicon atom; (iii) no proton can be closer
than 4.0 Å from another.34 Although these rules do not completely determine the proton
positions, we found that several different proton distributions were broadly equivalent as
far as sorption of benzene is concerned. It is clear from the above examples that the real
issue in modeling the dynamics of sorbed molecules in zeolites comes from the interaction
potentials, also known as forcefields when computed from empirical functional forms. Be-
fore discussing these forcefields in the context of dynamics, however, we examine a hot topic
among scientist in the field: whether framework vibrations influence the dynamics of guest
molecules in zeolites.
Framework Flexibility. This question has long remained an open one, but many recent
studies have made systematic comparisons between fixed and flexible lattice simulations,
based on several examples: methane and light hydrocarbons in silicalite-1,51–55 methane in
cation-free LTA,56 Lennard-Jones adsorbates in Na-A35 and in Na-Y,57 benzene and propy-
lene in MCM-22,58 benzene in Na-Y,59–61 and methane in AlPO4-5.62 In cation-free zeolites,
these recent studies have found that diffusivities are virtually unchanged when including
lattice vibrations. Fritzsche et al.56 explained earlier discrepancies on methane in cation-free
LTA zeolite by pointing out that inappropriate comparisons were made between rigid and
flexible framework studies. In particular, the rigid studies used crystallographic coordinates
for the framework atoms, while the forcefield used to represent the framework vibrations
gave a larger mean window size than that in the rigid case, thereby resulting in larger dif-
fusivities in the flexible framework. By comparing with a model rigid LTA minimized using
the same forcefield, they found almost no influence on the diffusion coefficient. Similarly,
Demontis et al. have studied the diffusion of methane in silicalite-1, with rigid and flexible
frameworks.53 They conclude that the framework vibrations do not influence the diffusion
coefficient, although they affect local dynamical properties such as the damping of the veloc-
ity autocorrelation function. Following these findings, numerous recent diffusion studies of
guest hydrocarbons or Lennard-Jones adsorbates in cation-free zeolites keep the framework
rigid.17,63–71

There are, however, some counter-examples in cation-free zeolites. In a recent MD study
of benzene and propylene in MCM-22 zeolite, Sastre, Catlow and Corma found differences
between the diffusion coefficients calculated in the rigid and flexible framework cases.58 Bouy-
ermaouen and Bellemans also observe notable differences for i-butane diffusion in silicalite-
1.55 Snurr, Bell and Theodorou used TST to calculate benzene jump rates in a rigid model
of silicalite-1,72 finding diffusivities that are one to two orders of magnitude smaller than
experimental values. Forester and Smith subsequently applied TST to benzene in flexible
silicalite-1,73 finding essentially quantitative agreement with experiment, thus demonstrating
the importance of including framework flexibility when modeling tight-fitting guest-zeolite
systems.

Strong framework flexibility effects might also be expected for molecules in cation-
containing zeolites, where cation vibrations strongly couple to the adsorbate’s motions, and
where diffusion is mostly an activated process. However, where a comparison between flex-
ible and fixed framework calculations has been performed, surprisingly little influence has
been found. This has been shown by Santikary and Yashonath for the diffusion of Lennard-
Jones adsorbates of varying size in Na-A. They found a notable difference on the adsorbate

8



density distribution and external frequencies, but not on diffusion coefficients.35 Mosell et
al. found that the potential of mean force for the diffusion of benzene in Na-Y remains
essentially unchanged when framework vibrations are included.59 Jousse et al. also found
that the site-to-site jump probabilities for benzene in Na-Y do not change when including
framework flexibility, in spite of very strong coupling between benzene’s external vibrations
and the Na(II) cation.61 The reasons behind this behavior remain unclear, and it is also
doubtful whether these findings can be extended to other systems. Nevertheless, the direct
examination of the influence of zeolite vibrations on guest dynamics suggests the following: a
strong influence on local static and dynamical properties of the guest, such as low-frequency
spectra, correlation functions and density distributions; a strong influence on the activated
diffusion of tight-fitting guest-zeolite systems; but a small influence on diffusion of smaller
molecules such as unbranched alkanes.

The preceding discussion on framework flexibility, and its impact on molecular dynamics,
has the merit of pointing out the two important aspects for modeling zeolites: structural and
dynamical. On the structural side, the zeolite cation distribution, channel diameters and
window sizes must be well represented. On the dynamical side, for tight-fitting host-guest
systems, the framework vibrations must allow for an accurate treatment of the activation
energy for molecular jumps through flexing channels and/or windows. Existing zeolite frame-
work forcefields are numerous and take many different forms, but they are generally designed
for only one of these purposes. It is beyond the scope of this article to review zeolite frame-
work forcefields;13 we simply wish to emphasize that one should be very cautious in choosing
the appropriate forcefield designed for the properties to be studied.

2. Guest-Zeolite Forcefields

The guest-framework forcefield is the most important ingredient for atomistic dynamical
models of sorbed molecules in zeolites. Forcefields for guest-zeolite interactions are at least
as diverse as those for the zeolite framework: even more so, in fact, as most studies of guest
molecules involve a re-parameterization of potential energy functions to reproduce some
typical thermodynamical property of the system, such as adsorption energies or adsorption
isotherms. Since forcefields are but an analytical approximation of the real potential energy
surface, it is essential that the underlying physics is correctly captured by the analytical
form. Every researcher working in the field has a different opinion on what the correct form
should be; therefore the following discussion must necessarily remain subjective, and we
refer the reader to the original articles to sample different opinions.

Physical contributions to the interaction energy between host and guest are numerous:
most important are the short range dispersive and repulsive interactions, and the electro-
static multipolar and inductive interactions. Nicholson and coworkers developed precise
potentials for the adsorption of rare gases in silicalite-1, including high-order dispersive
terms,74 and have shown that all terms contribute significantly to the potential energy
surface,75 the largest contributions coming from the two and three body dispersion terms.
Cohen de Lara and coworkers developed and applied a potential function including inductive
terms for the adsorption of diatomic homonuclear molecules in A-type zeolites.76,77 Here also
the induction term makes a large contribution to the total interaction energy. A general
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forcefield would have to account for all these different contributions, but most forcefields
completely neglect these terms for the sake of simplicity. Simplified expressions include only
a dispersive-repulsive short-ranged potential, often represented by a Lennard Jones 6-12 or
a Buckingham 6-exp. potential, possibly combined with electrostatic interactions between
partial charges on the zeolite and guest atoms, according to:

UZG =
∑
I

∑
j

{
qIqj

rIj

− AIj

r6
Ij

+
BIj

r12
Ij

}
. (2.1)

In general, the parameters A and B are determined by some type of combination rule from
“atomic” parameters, and adjusted to reproduce equilibrium properties such as adsorption
energies or adsorption isotherms. It is unlikely, however, that such a potential is transferable
between different guest molecules or zeolite structures. As such, the first step of any study
utilizing such a simple forcefield on a new type of host or guest should be the computation
of some reference experimental data, such as the heat of adsorption, and eventually the
re-parametrization of forcefield terms. Indeed, general purpose forcefields such as CVFF do
not give generally adequate results for adsorption in zeolites.78,79

The simplification of the forcefield terms can proceed further: in all-silica zeolite analogs
with small channels, the electric field does not vary much across the channel and as a con-
sequence the Coulombic term in equation 2.1 can often be neglected. This is of course not
true for cation-containing zeolites, where the cations create an intense and local electric field
that generally gives rise to strong adsorption sites. Since evaluating electrostatic energies is
so computationally demanding, neglecting such terms allows for much longer dynamics sim-
ulations. Another common simplification is to represent CH2 and CH3 groups in saturated
hydrocarbons as united atoms with their own effective potentials. These are very frequently
used to model hydrocarbons in all-silica zeolites.56,64,65,67,80 There is, however, active de-
bate in the literature whether such a simplified model can account for enough properties of
adsorbed hydrocarbons.81–83

The standard method for evaluating Coulombic energies in guest zeolite systems is the
Ewald method,84,85 which scales as n ln n with increasing number of atoms n. In 1987
Greengard and Rokhlin86 presented the alternative “Fast Multipole Method” (FMM) which
only scales as n, and therefore offers the possibility of simulating larger systems. In general
FMM only competes with the Ewald method for systems with many thousand atoms,87 and
therefore is of little use in zeolitic systems where the simulation cell can usually be reduced
to a few hundreds or a few thousand atoms. However, in the special case where the zeolite
lattice is kept rigid, most of the terms in FMM can be precomputed and stored; in this case
we have shown that FMM becomes faster than Ewald summation for benzene in Na-Y.37

This section would not be complete without mentioning the possibility of performing
atomistic simulations in zeolites without forcefields,88 using ab initio molecular dynamics
(AIMD).89,90 Following the original work of Car and Parrinello, most such studies use density
functional theory and plane wave basis sets.91 This technique has been applied recently to
adsorbate dynamics in zeolites.92–100 Beside the obvious interest of being free of systematic
errors due to the forcefield, this technique also allows the direct study of zeolite catalytic
activity.92–94 However, AIMD remains so time consuming that a dynamical simulation of a
zeolite unit cell with an adsorbed guest only reaches a few ps at most. This time scale is too
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short to follow diffusion in zeolites, so that current simulations are mostly limited to studying
vibrational behavior.92–97 Similarly, catalytic activity is limited to reactions with activation
energies on the order of thermal energies.92,94,98 However, the potential of AIMD to simulate
transport coefficients has been demonstrated for simpler systems,101,102 and will likely extend
to guest-zeolite systems in the near future as computers and algorithms improve.

B. Equilibrium Molecular Dynamics

Since the first application of equilibrium MD to guest molecules adsorbed in zeolites
in 1986,103 the subject has attracted growing interest.13,15 Indeed, MD simulations provide
an invaluable tool for studying the dynamical behavior of adsorbed molecules over times
ranging from ps to ns, thus correlating atomistic interactions to experiments that probe
molecular dynamics, including: solid state NMR, pulsed field gradient NMR (PFG NMR),
inelastic neutron spectroscopy (INS), quasi-elastic neutron scattering (QENS), IR and Ra-
man spectroscopy.

MD of guest molecules in zeolites is conceptually no different from MD simulations of any
other nanosized system. Classical MD involves numerically integrating classical equations
of motion for a many-body system. For example, when using Cartesian coordinates, one
can integrate Newton’s second law: Fi = miai where mi is the mass of the ith particle, ai

= d2ri/dt2 is its acceleration, and Fi = −∇ri
V is the force on particle i. The crucial inputs

to MD are the initial positions and velocities of all particles, as well as the system potential
energy function V (r1, r2, . . . , rn). The output of MD is the dynamical trajectory [ri(t),vi(t)]
for each particle. All modern techniques arising in the field can be applied to the simula-
tion of zeolites, including multiple time scale techniques, thermostats and constraints. The
interested reader is referred to textbooks on the method,85,104 and to modern reviews.105,106

In this section we shall describe only those aspects of MD that are especially pertinent to
molecules in zeolites. A comprehensive review on MD of guest molecules in zeolites was
published in 1997 by Demontis and Suffritti.13 Because the review by Demontis and Suffritti
discusses virtually all applications of the method up to 1996, we will limit our examples to
the most recent MD studies.

1. Parameters and Ensembles

Parameters. Equilibrium MD is generally composed of two stages: an equilibration run,
allowing the system to relax to equilibrium, and a production run, during which data are
gathered for later analysis. Typically the equilibration is initiated from some initial con-
figuration of the adsorbate (randomly chosen or from an energy minimum) with initial
velocities assigned from a Maxwell-Boltzmann distribution. The duration required to reach
equilibrium depends on the relaxation time of the system: in general larger systems present-
ing strong correlations, e.g. at high loading, require much longer equilibration times than
do smaller systems. For example, Gergidis and Theodorou have used equilibration times
ranging from 0.5 to 2 ns for low to high loading of mixtures of methane and n-butane in
silicalite-1.70 Other groups, however, used much shorter equilibration runs: Clark et al.64

or Schuring et al.67 used equilibration runs of 50 to 125 ps for long alkanes in silicalite-1,
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while Sastre and coworkers, who used a much more complex and computationally demanding
forcefield with a flexible framework, limited the equilibration runs to 25 ps.58,82,83 Schrimpf
et al. have directly studied the relaxation of adsorbed xenon and one-center methane in a
model Na-Y, using non-equilibrium molecular dynamics.57 We have recently investigated the
relaxation of benzene in Na-Y at infinite dilution.61 Both these studies show that relaxation
is influenced by framework vibrations, lateral interactions between guest molecules and cou-
pling with the internal degrees of freedom. However, in all cases relaxation remains quite
fast, decaying exponentially with a time constant of ca. 5 ps for benzene at 100 K,61 11 ps for
methane and 25 ps for xenon at 300 K. The equilibration run is generally performed in the
canonical ensemble to achieve a desired temperature;13 since the dynamics is not monitored,
any method of temperature control can be used.

Equilibrium MD calculations are mostly performed to generate trajectories for studying
adsorbate self diffusion. Special care should be taken to ensure that the trajectories are
indeed long enough to compute a statiscally converged self-diffusion coefficient. We estimate
that the current limiting diffusivity, below which adsorbate motion is too slow for equilibrium
MD, is around Dmin ≈ 5×10−10 m2 s−1, obtained by supposing that a molecule travels over 10
unit cells of 10 Å during a 20 ns MD run. This value of Dmin is higher than most measured
diffusivities in cation-containing zeolites,8 explaining why so many MD studies focus on
hydrocarbons in all-silica zeolite analogs. Even then, the simplifications discussed above are
required in order to perform MD runs of several ns in a manageable time: simple Lennard-
Jones forcefields on united atom interaction centers without Coulombic interactions, bond
constraints on C–C bonds allowing for longer time steps, and the use of fixed frameworks.
Ensembles. A flexible zeolite framework typically provides an excellent thermostat for
the sorbate molecules. The framework temperature exhibits minimal variations around its
average value, while the sorbate energy fluctuates in a way consistent with the canonical
ensemble. This is valid either for a microcanonical (NV E) ensemble run, or a canonical
(NV T ) ensemble run involving mild coupling to an external thermostat. We caution that
coupling the system too strongly to an external bath will almost surely contaminate the
actual sorbate dynamics.

The problem is clearly more complex when the zeolite framework is kept rigid. Ideally,
one should run the dynamics in the canonical ensemble, with just the right coupling constant
to reproduce the fluctuations arising from a flexible framework. When these fluctuations are
unknown, however, it is not obvious whether a canonical or microcanonical run is better. In
the NV E ensemble, the sorbate does not exchange energy with a bath, which may lead to
incorrect energy statistics. This is particularly true at low loading, but may remain true for
higher loadings as well. Indeed, in a direct study of the kinetic energy relaxation of Lennard-
Jones particles in Na-Y, Schrimpf et al. found that the thermalization due to interactions
with the framework is considerably faster than the thermalization due to mutual interactions
between the adsorbates.57 Therefore, it is probably better to run the dynamics in the NV T
ensemble, with sufficiently weak coupling to an external thermostat to leave the dynamics
uncontaminated. On the other hand, we have shown that for non-rigid benzene in Na-Y,
there is very rapid energy redistribution from translational kinetic energy into benzene’s
internal vibrational degrees of freedom,61 which proceeds on a time scale comparable to the
thermalization due to interactions with the flexible frame. This suggests that for sufficiently
large, flexible guest molecules, the transport behavior can be adequately modeled in the
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NV E ensemble even at infinite dilution.
Although this section focuses on equilibrium MD, we note growing interest in performing

non-equilibrium MD (NEMD) simulations on guest zeolites systems. As an aside, we note
that MD experts would classify thermostatted MD, and any non-Newtonian MD for that
matter, as NEMD.107,108 We shall be much more restrictive and limit the non-equilibrium
behavior to studies involving an explicit gradient along the system, resulting in a net flow
of particles. This is especially interesting in zeolite science, because most applications of
zeolites are run under non-equilibrium conditions, and also because of recent progress in
the synthesis of continuous zeolite membranes.109,110 In this case we seek the Fickian or
“transport” diffusivity, defined by Fick’s law: J = −D∇θ, where J is the net particle flux,
D is the transport diffusivity, and ∇θ is the local concentration gradient. These concepts
are discussed more thoroughly in section IIIC 2; here we only wish to discuss ensembles
relevant to this NEMD.

A seminal study was reported in 1993 by Maginn, Bell and Theodorou, reporting NEMD
calculations of methane transport diffusion through silicalite-1.111 They applied gradient
relaxation MD as well as color field MD, simulating the equilibration of a macroscopic
concentration gradient and the steady-state flow driven by an external field, respectively.
They found that the color field MD technique provides a more reliable method for simulating
the linear response regime. Since then, NEMD methods in the grand canonical ensemble
have been reported. Of particular interest is the “dual volume control grand canonical
molecular dynamics” (DVC-GCMD) method, presented by Heffelfinger and van Swol.112 In
this approach the system is divided in three parts, a central and two boundary regions. In
the central region, regular molecular dynamics is performed, while in the boundary regions
creation and annihilation of molecules are allowed to equilibrate the system with a given
chemical potential, following the grand canonical Monte Carlo procedure. This or similar
methods have been applied to the simulation of fluid-like behavior in slit pores of very small
dimensions (down to a few σ).113–118 To our knowledge, however, no such simulation has
been applied to Fickian diffusion in structured zeolite pores, presumably because it would
depend on details of zeolite crystallite surface structure. Nonetheless, this is likely to be an
important area of future research.

2. Data Analyses

Most equilibrium MD studies aim to determine the self-diffusion coefficient of the ad-
sorbed molecules within the zeolite pores. The self-diffusivity is defined by Einstein’s rela-
tion:

Ds = lim
t→∞

1

6t

〈
|r(t) − r(0)|2

〉
, (2.2)

that is, it is proportional to the long-time limiting slope of the mean-square displacement
(MSD). This expression assumes that for t → ∞, the guest diffusion becomes Fickian, so that
the MSD becomes linear with t. This is valid whenever the motions of the adsorbates are not
too strongly correlated. An extreme case of correlation between molecular motions is single-
file diffusion, where molecules diffusing in unidirectional narrow channels must necessarily
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diffuse all together or not at all. This type of behavior has recently been experimentally
observed for the diffusion of tetrafluoromethane in AlPO4-5.119,120 In that case, correlations
extend to infinity and the behavior of the MSD as a function of t at long time depends on
the boundaries of the model:121 linear for open boundaries, plateau for closed boundaries
and

√
t for an infinite system.

Although MD becomes inefficient for modeling activated diffusion, MD can provide use-
ful information about such transport when barriers are comparable to kBT . In this case, MD
can be used to define a coarse-grained model of diffusion.122,123 This coarse-graining requires
two inputs: the lattice of sites on which diffusion takes place, and the kinetic law governing
the motions between those sites. The analysis of MD trajectories as a jump diffusion pro-
cess allows one to determine the adsorption sites, by monitoring the positions of maximum
probability of the adsorbate during the dynamics,123 as well as the details of the kinetic law.
It has generally been found that residence time distributions follow a simple exponential
dependence, characteristic of random site-to-site jumps. In figure 2, we present such a resi-
dence time distribution for the example of benzene diffusing in zeolite LTL, clearly showing
this signature. These observations support the usual assumption of Poisson dynamics, cen-
tral to many lattice models of guest diffusion in zeolites (see section IIIA). However, one
often finds correlations between jumps that complicate the coarse-grained representation of
diffusion.123–125
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Figure 2. Cage residence time distribution of benzene in zeolite LTL showing agree-
ment with Poisson statistics, computed from a 1 ns molecular dynamics simulation at
800 K with a single benzene molecule in the simulation cell.

Jump diffusion analyses of MD are particularly useful for comparing with quasi-elastic
neutron scattering (QENS) experiments. QENS experiments measure the scattering function
F (Q, ω), which is the space-time Fourier transform of the van Hove correlation function:

G(r, t) =
1

N

N∑
i=1

〈
δ(r + ri(t) − ri(0))

〉
. (2.3)

For an adsorbate containing hydrogen atoms, the largest part of the incoherent scattering
comes from these atoms.126 A model of their microscopic motions is required to determine
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the mobility of the adsorbed molecule.127 MD simulations can be used to provide a direct
analysis of the microscopic motions, and therefore to guide the interpretation of experiments.
For example, Gaub et al. derived a simplified analytical formula for the van Hove correlation
function of an adsorbate diffusing in a periodic zeolite structure.63 Recently, Gergidis, Jobic
and Theodorou analyzed QENS experiments of mixtures of methane and butane in silicalite-
1 using a jump diffusion model, with the distribution of jumps extracted from their MD
simulations.80

When kBT is comparable to or greater than barriers between sites, the self-diffusion
coefficient can also be determined from the velocity autocorrelation function, according to:

Ds =
1

3

∫ ∞

0
dt
〈
v(t) · v(0)

〉
, (2.4)

where v(t) indicates the instantaneous velocity of the adsorbate’s center-of-mass. This
equation shows that the self-diffusion coefficient is proportional to the the zero-frequency
component of the power spectrum G(ω) of the adsorbed molecule:

G(ω) =
1

2πc

∫
dt

〈v(t) · v(0)〉
〈v(0) · v(0)〉e

iωt. (2.5)

This spectrum, as well as spectra coming from other correlation functions, give particu-
larly useful information about structure and dynamics, thereby providing additional ways
to assess the validity of forcefields used in dynamics simulations.79 The interested reader
is referred to classical textbooks on MD simulations for more details on obtaining these
spectra.85,104 Some recent applications include the computation of low-frequency IR and
Raman spectra of cationic exchanged EMT zeolites by Bougeard et al.,128 and our study of
the external vibrations and rotations of benzene adsorbed in faujasite, with comparison to
inelastic neutron scattering experiments.79

3. Recent Applications

Dynamics of Hydrocarbons in Silicalite-1 and 10R Zeolites. Zeolite ZSM-5 is used in
petroleum cracking, which explains the early interest in modeling the diffusion of alkanes in
silicalite-1, the all-silica analog of ZSM-5.51–53,122,129–131 This early work has been reviewed
by Demontis and Suffritti in 1997,13 and therefore we only wish to outline recent studies.

As pointed out earlier, the relatively rapid diffusivity of alkanes in the channels of all-
silica zeolites, at room temperature or above, makes these systems perfect candidates for MD
simulations. In general, very good agreement is found between MD self-diffusivities and those
of microscopic types of experiments, such as PFG NMR or QENS. Figure 3 gives an example
of this agreement, for methane and butane in silicalite-1 at 300 K (MD data slightly spread
for clarity). This good agreement, in spite of the crudeness of the potentials used, shows that
the diffusivity of light alkanes in silicalite-1 depends on the forcefield properly representing
the host-guest steric interactions, i.e. on the size and topology of the pores. Recognizing this,
many recent studies focus on comparing diffusion coefficients for different alkanes in many
different zeolite topologies, in an effort to rationalize different observed catalytic behaviors.
Jousse et al. studied the diffusion of butene isomers at infinite dilution in 10R zeolites
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with various topologies: TON, MTT, MEL, MFI, FER and HEU. They observed in all
cases except for the structure TON, that trans-2-butene diffuses more rapidly than all other
isomers.132 Webb and Grest studied the diffusion of linear decanes and n-methylnonanes
in seven 10R zeolites: AEL, EUO, FER, MEL, MFI, MTT and TON.17 For MEL, MTT
and MFI, they observe that the self-diffusion coefficient decreases monotonically as the
branch position is moved toward the center (and the isomer becomes bulkier), while for the
four other structures, Ds presents a minimum for another branch position, suggesting that
product shape selectivity might play some role in determining the zeolite selectivity. More
recently, Webb et al. studied linear and branched alkanes in the range n = 7 − 30 in TON,
EUO and MFI.68 Again they observe lattice effects for branched molecules, where Ds presents
a minimum as a function of branch position dependent upon the structure. They note also
some “resonant diffusion effect” as a function of carbon number, noted earlier by Runnebaum
and Maginn:133 the diffusivity becomes a periodic function of carbon number, due to the
preferential localization of molecules along one channel and their increased diffusion in this
channel. Schuring et al. studied the diffusion of C1 to C12 in MFI, MOR, FER and TON for
different loadings.67 They also find some indication of a resonant diffusion mechanism as a
function of chain length. Their study also indicates that the diffusion of branched alkanes is
significantly slower than that of their linear counterparts, but only for structures with small
pores where there is a tight fit between the adsorbates and the pores.
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Figure 3. Self-diffusion isotherms of methane and butane in silicalite-1 at 300K, from
PFG NMR, QENS and MD simulations, showing good agreement with the (1 − θ)
loading dependence predicted by mean field theory. Crosses are NMR data from
Caro et al.11 for methane and Heink et al.20 for butane, while the star shows QENS
butane data from Jobic et al.134 In all cases, error bars represent an estimated 50%
uncertainty. Letters are MD results (slightly spread for clarity): a–l for methane and
m–s for butane, from the following references: (a) June et al.,129 (b) Demontis et
al.,51 (c) Catlow et al.,52 (e) Goodbody et al.,131 (f) Demontis et al.,53 (g) Nicholas
et al.,135 (h) Smirnov,54 (i) Jost et al.,71 (j) Ermoshin and Engel,136 (k) Schuring et
al.,67 (l) Gergidis and Theodorou,70 (m) June et al.,122 (n) Hernández and Catlow,137

(o) Maginn et al.,138 (p) Bouyermaouen and Bellemans,55 (q) Goodbody et al.,131 (r)
Gergidis and Theodorou70 and (s) Schuring et al.67
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Another current direction of research concerns the diffusion of mixtures of adsorbates.
Although the currently preferred atomistic simulation method applied to the adsorption of
mixtures is grand canonical Monte Carlo,139–143 MD simulations are also used to determine
how the dynamics of one component affects the diffusion of the other.70,71,80,144 Sholl and
Fichthorn investigated how a binary mixture of adsorbates diffuses in unidirectional pores,144

finding a dual mode of diffusion for certain mixtures, wherein one component undergoes
normal unidirectional diffusion while the other performs single-file diffusion. Jost et al.
studied the diffusion of mixtures of methane and xenon in silicalite-1.71 They find that the
diffusivity of methane decreases strongly as the loading of Xe increases, while the diffusivity
of Xe is nearly independent of the loading of methane, which they attribute to the larger
mass and heat of adsorption of Xe. On the other hand, Gergidis and Theodorou in their
study of mixtures of methane and n-butane in silicalite-1,70 found that the diffusivity of
both molecules decreases monotonically with increasing loading of the other. Both groups
report good agreement with PFG NMR71 and QENS experiments.80

Single-File Diffusion. Single-file diffusion designates the particular collective motion of
particles diffusing along a one-dimensional channel, and unable to pass each other. As al-
ready mentioned, in that case the long-time motions of the particles are completely cor-
related, so that the limit of the MSD depends on the boundaries of the system. Ex-
act treatments using lattice models show that the MSD has three limiting dependencies
with time:121,145 plateau for fixed boundaries, linear with t for periodic boundaries or open
boundaries,16 and

√
t for infinite pore length. Experimental evidence for the existence of

single-file behavior in unidimensional zeolites119,120,146,147 has prompted renewed interest in
the subject during the last few years.16,65,66,148–152 In particular, several molecular dynam-
ics simulations of more or less realistic single-file systems have been performed, in order to
determine whether the single file

√
t regime is not an artifact of the simple lattice model

on which it is based.65,66,69,150,151 Since the long-time motions of the particles in the MD
simulations are necessarily correlated, great care must be taken to adequately consider the
system boundaries. In particular, when using periodic boundary conditions, the system size
along the channel axis must be sufficiently large to avoid the linear behavior due to the
diffusion of the complete set of molecules.

Hahn and Kärger studied the diffusion of Lennard-Jones particles along a straight tube
in three cases: (i) without external forces acting on the particles from the tube, (ii) with
random forces, and (iii) with a periodic potential from the tube.151 They find for the no-force
case that the MSD is proportional to t, whereas for random forces and a periodic potential
it is proportional to

√
t, in agreement with the random walk model. Keffer et al. performed

MD simulations of Lennard-Jones methane and ethane in an atomistic model of AlPO4-
5.150 The methane molecules, which are able to pass each other, display undirectional but
otherwise normal diffusion with the MSD linear with t; while ethane molecules, which have a
smaller probability to pass each other, display single-file behavior with an MSD proportional
to

√
t. For longer times, however, the nonzero probability to pass each other destroys the

single-file behavior for ethane. Similar behavior was found by Tepper et al.69 Sholl and
coworkers investigated the diffusion of Lennard-Jones particles in a model AlPO4-5,65,66,152

and found that diffusion along the pores can occur via concerted diffusion of weakly bound
molecular clusters, composed of several adsorbates. These clusters can jump with much
smaller activation energies than that of a single molecule. However, the MSD retains its
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single-file
√

t signature because all the adsorbates in a file do not collapse to form a single
supramolecular cluster.

These MD simulations of unidirectional and single-file systems confirm the lattice gas
prediction, that the MSD is proportional to

√
t. They also show that whenever a certain

crossing probability exists, this single-file behavior disappears at long times, to be replaced
by normal diffusion. Similar “anomalous” diffusion regimes, with the MSD proportional
to t at long times and to tα with α < 1 at short times, have also been found in other
systems that do not satisfy the single-file criteria, such as n-butane in silicalite-1 at high
loadings.70 Therefore, one should be very careful to define exactly the time scale of interest
when working with single-file or other highly correlated systems.

C. Reactive Flux Molecular Dynamics and Transition-State Theory

As discussed above in section IIB 1, the smallest diffusivity that can be simulated by MD
methods is well above most measured values in cation-containing zeolites,8 explaining why
so many MD studies focus on hydrocarbons in all-silica zeolite analogs. This issue has been
addressed by several groups within the last 10 years,153 by applying reactive flux molecular
dynamics154,155 (RFMD) and transition-state theory156 (TST) to model the dynamics of rare
events in zeolites. This subject has been reviewed very recently by Auerbach;15 as a result,
we give below only a brief outline of the theory.

1. Rare Event Theory

The standard ansatz in TST is to replace the dynamically converged, net reactive flux
from reactants to products with the instantaneous flux through the transition state dividing
surface. TST is inspired by the fact that, although a dynamical rate calculation is rigorously
independent of the surface through which fluxes are computed,157 the duration of dynamics
required to converge the net reactive flux is usually shortest when using the transition state
dividing surface. The TST approximation can be formulated for gas phase or condensed
phase systems,154,155,158 using classical or quantum mechanics.159 The rate coefficient for the
jump from site i to site j can be expressed classically as:154,155

ki→j = kTST
i→j × fij, (2.6)

where kTST
i→j is the TST rate constant, and fij is the dynamical correction factor also known

as the classical transmission coefficient. The TST rate constant is given by:

kTST
i→j =

1

2

(
2kBT

πm

)1/2
Q‡

Qi

, (2.7)

where m is the reduced mass associated with the reaction coordinate, Q‡ is the configu-
rational partition function on the dividing surface and Qi is the configurational partition
function in the reactant state i. The last expression can be evaluated without recourse to
dynamics, either by Monte Carlo simulation160 or in the harmonic approximation by normal
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mode analysis.161 The dynamical correction factor is usually evaluated from short molecular
dynamics simulations originating on the dividing surface. For classical systems, fij always
takes a value between zero and one, and gives the temperature-dependent fraction of initial
conditions on the dividing surface that initially point to products and eventually give rise
to reaction.

When one has an educated guess regarding the reaction coordinate, but no knowledge of
the transition state or the dividing surface, a reliable but computationally expensive solution
is to calculate the free energy surface along a prescribed path from one free energy minimum
to another. The free energy surface, F (x0), which is also known as the potential of mean
force and as the reversible work surface, is given by:

F (x0) = −kBT ln [L〈δ(x − x0)〉] = −kBT ln Q(x0), (2.8)

where x is the assumed reaction coordinate, x0 is the clamped value of x during the en-
semble average over all other coordinates, the length L is a formal normalization constant
that cancels when computing free energy differences, and Q(x0) is the partition function
associated with the free energy at x0. In terms of the free energy surface, the TST rate
constant is given by:

kTST
i→j =

1

2

(
2kBT

πm

)1/2
e−βF (x‡)∫

i
dx e−βF (x)

, (2.9)

where the integral over x is restricted to the reactant region of configuration space. Com-
puting TST rate constants is therefore equivalent to calculating free energy differences.
Numerous methods have been developed over the years for computing e−βF (x), many of
which fall under the name umbrella sampling or histogram window sampling.104,155,162

While equations 2.6–2.9 are standard expressions of rare event theory, the exact way in
which they are implemented depends strongly upon the actual system of interest. Indeed,
if the transition state dividing surface is precisely known (as for the case of an adatom),
then kTST

i→j provides a good first approximation to the rate coefficient, and the dynamical
correction factor accounts for the possibility that the particle does not thermalize in the
state it has first reached, but instead goes on to a different final state. This process is called
“dynamical recrossing” if the final state is identical to the original state, and otherwise is
called “multisite jumping.” The importance of dynamical recrossing or multisite jumping
depends on a number of factors, of which the height of the energy barriers and the mechanism
of energy dissipation are essential.

For example, the minimum energy path for benzene to jump from a cation site to a
window site in Na-Y is shown in figure 4, alongside the corresponding energy plot.36 Despite
benzene’s anisotropy, a reasonable model for the cation ↔ window dividing surface turns
out to be the plane perpendicular to the three-dimensional vector connecting the two sites.
This simple approach yields dynamical correction factors mostly above 0.5.37
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Figure 4. Cation ↔ window path for benzene in Na-Y (transition state indicated in
bold), with a calculated barrier of 41 kJ mol−1.36

In a complex system with many degrees of freedom it might be difficult, or even impos-
sible, to define rigorously the dividing surface between the states. In this case the transition
state approximation may fail, requring the calculation of fij . Indeed, TST assumes that
all trajectories initially crossing the dividing surface in the direction of the product state
will eventually relax in this state. This statement will be qualitatively false if the supposed
surface does not coincide with the actual dividing surface. In this case, the dynamical
correction factor corrects TST for an inaccurately defined dividing surface, even when dy-
namical recrossings through the actual dividing surface are rare. The problem of locating
complex dividing surfaces has recently been addressed using topology,163 statistics164 and
dynamics.165,166

2. Recent Applications

Siliceous Zeolites. June, Bell and Theodorou reported the first application of TST dy-
namically corrected with RFMD for a zeolite-guest system in 1991,153 modeling the diffusion
of Xe and “spherical SF6” in silicalite-1. This system is sufficiently weakly binding that rea-
sonably converged MD simulations could be performed for comparison with the rare event
dynamics, showing excellent quantitative agreement in the diffusivities obtained. The dy-
namical correction factors obtained by June et al. show that recrossings can diminish rate
coefficients by as much as a factor of ca. 3, and that multisite jumps along straight channels
in silicalite-1124 contribute to the well known diffusion anisotropy in MFI-type zeolites.167

Jousse and coworkers reported a series of MD studies on butene isomers in all-silica channel
zeolites MEL and TON.123,168 Because the site-to-site energy barriers in these systems are
comparable to the thermal energies studied in the MD simulations, rare event dynamics
need not apply. Nonetheless, Jousse and coworkers showed that even for these relatively
low-barrier systems, the magnitudes and loading dependencies of the MD diffusivities could
be well explained within a jump diffusion model, with residence times extracted from the
MD simulations.
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As discussed in section IIA 1, Snurr, Bell and Theodorou applied harmonic transition
state theory (TST) to benzene diffusion in silicalite-1, assuming that benzene and silicalite-
1 remain rigid, by using normal mode analysis for the 6 remaining benzene degrees of
freedom.72 Their results underestimate experimental diffusivities by one to two orders of
magnitude, probably more from assuming a rigid zeolite than from using harmonic TST.
Forester and Smith subsequently applied TST to benzene in silicalite-1 using constrained re-
action coordinate dynamics on both rigid and flexible lattices.73 Lattice flexibility was found
to have a very strong influence on the jump rates. Diffusivities obtained from the flexible
framework simulations are in excellent agreement with experiment, overestimating the mea-
sured room temperature diffusivity (2.2×10−14 m2 s−1) by only about 50%. These studies
suggest that including framework flexibility is very important for bulkier guest molecules,
which may require framework distortions to move along zeolite channels or through windows
separating zeolite cages.
Cation-containing Zeolites. Mosell, Schrimpf and Brickmann reported a series of TST
and RFMD calculations on Xe in Na-Y169,170 in 1996, and benzene and p-xylene in Na-Y59,60

in 1997. They calculated the reversible work of dragging a guest specie along the cage-to-
cage [111] axis of Na-Y, and augmented this version of TST with dynamical corrections.
In addition to computing the rate coefficient for cage-to-cage motion through Na-Y, Mosell
et al. confirmed that benzene window sites are free energy local minima, while p-xylene
window sites are free energy maxima, i.e. cage-to-cage transition states.59,60 Mosell et al.
also found relatively small dynamical correction factors, ranging from 0.08–0.39 for benzene
and 0.24–0.47 for p-xylene.

At about the same time in 1997, Jousse and Auerbach reported TST and RFMD calcu-
lations of specific site-to-site rate coefficients for benzene in Na-Y,37 using equation 2.6 with
jump-dependent dividing surfaces. As with Mosell et al., we found that benzene jumps to
window sites could be defined for all temperatures studied. We were unable to use TST to
model the window → window jump because we could not visualize simply the anisotropy
of the window → window dividing surface. For jumps other than window → window, we
found dynamical correction factors mostly above 0.5, suggesting that these jump-dependent
dividing surfaces coincide closely with the actual ones. Although the flavors of the two
approaches for modeling benzene in Na-Y differed, the final results were remarkably sim-
ilar considering that different forcefields were used. In particular, Mosell et al. used MD
to sample dividing surface configurations, while we applied the Voter displacement-vector
Monte Carlo method160 for sampling dividing surfaces. The apparent activation energy for
cage-to-cage motion in our study is 44 kJ mol−1, in very reasonable agreement with 49 kJ
mol−1 obtained by Mosell et al.
Finite Loadings. Tunca and Ford reported TST rate coefficients for Xe cage-to-cage
jumps at high loadings in ZK-4 zeolite, the siliceous analog of Na-A (structure LTA).171

These calculations deserve several remarks. First, because this study treats multiple Xe
atoms simultaneously, defining the reaction coordinate and dividing surface can become
quite complex. Tunca and Ford addressed this problem by considering averaged cage sites,
instead of specific intracage sorption sites, which is valid because their system involves rela-
tively weak zeolite-guest interactions. They further assume a one-body reaction coordinate
and dividing surface regardless of loading, which is tantamount to assuming that the window
separating adjacent α-cages in ZK-4 can only hold one Xe at a time, and that cooperative
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many-Xe cage-to-cage motions are unlikely. Second, Tunca and Ford advocate separate cal-
culations of Q‡ and Qi for use in equation 2.7, as opposed to the conventional approach of
calculating ratios of partition functions viz. free energies.160 It is not yet obvious whether
separating these calculations is worth the effort. Third, Tunca and Ford developed a re-
cursive algorithm for building up (N + 1)-body partition functions from N -body partition
functions, using a “test particle” method developed for modeling the thermodynamics of
liquids. Although the approach of Tunca and Ford has a restricted regime of applicability,
it nonetheless seems promising in its direct treatment of many-body diffusion effects.
Free Energy Surfaces. Maginn, Bell and Theodorou performed reversible work calcu-
lations with a TST flavor on long chain alkanes in silicalite-1,138 finding that diffusivities
monotonically decrease with chain length until about n-C8, after which diffusivities plateau
and become nearly constant with chain length. Bigot and Peuch calculated free energy
surfaces for the penetration of n-hexane and isooctane into a model of H-mordenite zeolite
with an organometallic specie, Sn(CH3)3, grafted to the pore edge.172 Bigot and Peuch found
that Sn(CH3)3 has little effect on the penetration barrier of n-hexane, but they predict that
the organometallic increases the penetration barrier of isooctane by 60 kJ mol−1. Sholl
computed the free energy surface associated with particle exchange of Ar, Xe, methane and
ethane in AlPO4-5, a one-dimensional channel zeolite,173 suggesting time scales over which
anomalous single-file diffusion is expected in such systems.

Jousse, Auerbach and Vercauteren modeled benzene site-to-site jumps in H-Y zeolite
(Si:Al=2.43), using a forcefield that explicitly distinguishes Si and Al, as well as oxygens
in Si-O-Si, Si-O-Al and Si-OH-Al environments.34 Such heterogeneity creates many distinct
adsorption sites for benzene in H-Y. Multiple paths from site to site open as the temperature
increases. To simplify the picture, we computed the free energy surface for benzene motion
along the [111] axis in H-Y, which produces cage-to-cage migration. Due to the multiplicity of
possible cage-to-cage paths, the temperature dependence of the cage-to-cage rate constant as
computed by umbrella sampling exhibits strong non-Arrhenius behavior. These calculations
may help to explain intriguing NMR correlations times for benzene in H-Y, which also
exhibit striking non-Arrhenius temperature dependencies.43

Quantum Dynamics. Of all the dynamics studies performed on zeolites, very few have
explored the potentially quantum mechanical nature of nuclear motion in micropores.174–177

Quantum modeling of proton transfer in zeolites175,177,178 seems especially important be-
cause of its relevance in catalytic applications. Such modeling will become more preva-
lent in the near future, partially because of recent improvements in quantum dynamics
approaches,177 but mostly because of novel electronic structure methods developed by Sauer
and coworkers,179,180 which can accurately compute transition state parameters for proton
transfer in zeolites by embedding a quantum cluster in a corresponding classical forcefield.

To facilitate calculating quantum rates for proton transfer in zeolites, Fermann and
Auerbach developed a novel semiclassical transition state theory (SC-TST) for truncated
parabolic barriers,177 based on the formulation of Hernandez and Miller.181 Our SC-TST
rate coefficient is stable to arbitrarily low temperatures as opposed to purely harmonic SC-
TST, and has the form kSC-TST = kTST · Γ where the quantum transmission coefficient, Γ,
depends on the zero-point corrected barrier and the barrier curvature. To parameterize
this calculation, Fermann, Blanco and Auerbach performed high level cluster calculations178

yielding an O(1) → O(4) zero-point corrected barrier height of 86.1 kJ mol−1, which be-
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comes 97.1 kJ mol−1 when including long range effects from the work of Sauer et al.179

Using this new approach, Fermann and Auerbach calculated rate coefficients and crossover
temperatures for the O(1) → O(4) jump in H-Y and D-Y zeolites, yielding crossover tem-
peratures of 368 K and 264 K, respectively. These results suggest that tunneling dominates
proton transfer in H-Y up to and slightly above room temperature, and that true proton
transfer barriers are being underestimated by neglecting tunneling in the interpretation of
experimental mobility data.

III. LATTICE DYNAMICS IN ZEOLITES

When modeling strongly-binding or tight-fitting guest-zeolite systems, theoretical meth-
ods specialized for rare event dynamics such as TST and kinetic Monte Carlo (KMC) are
required. These methods are applied by coarse-graining the molecular motions, keeping only
their diffusive character. In zeolites, the well-defined cage and channel structure naturally
orients this coarse-graining toward lattice models, which are the focus of this section.

The simplest such model was proposed by Ising in 1925.182 Many variants of the Ising
model have since been applied to study activated surface diffusion.183 Although in principle
a lattice can be regarded simply as a numerical grid for computing configurational integrals
required by statistical mechanics,184 the grid points can have important physical meaning
for dynamics in zeolites, as shown schematically in figure 5. Applying lattice models to
diffusion in zeolites rests on several (often implicit) assumptions on the diffusion mechanism;
here we recall those assumptions and analyze their validity for modeling dynamics of sorbed
molecules in zeolites.

Window

SII

W

Benzene in Na-YGeneric Cage-type Lattice

Cage

Figure 5. Schematic lattice model for molecules in cage-type zeolites, showing cages,
intracage sites and window sites (left), as well as the specific lattice geometry for
benzene in Na-Y zeolite (right).

23



A. Fundamental Assumptions

Temperature-independent Lattice. Lattice models of transport in zeolites begin by
assuming that diffusion proceeds by activated jumps over free energy barriers between well-
defined adsorption sites, i.e., that site residence times are much longer than travel times
between sites. These adsorption sites are positions of high probability, constructed either
from energy minima, for example next to cations in cation-containing zeolites, and/or from
high volume, for example channel intersections in silicalite-1. Silicalite-1 provides a partic-
ularly illustrative example:72 its usual description in terms of adsorption sites involves two
distinct channel sites, where the adsorbate is stabilized by favorable energy contacts with
the walls of the 10R channels; and an intersection site at the crossing between the two chan-
nel systems, where the large accessible volume compensates entropically for less favorable
contacts (see figure 6). Depending on the temperature, one or both types of sites can be
populated simultaneously.

The silicalite-1 example points to the breakdown of the first assumption inherent in
lattice models, namely, that adsorption and diffusion of guests in zeolites proceeds on a
fixed lattice of sites, independent of external thermodynamic variables such as temperature.
Clearly this is not the case. Indeed, when kBT becomes comparable with the activation
energy for a jump from site i to site f , a new lattice that subsumes site i into site f may be
more appropriate.124 Alternatively, one may retain site i with modifications to the lattice
model discussed below, taking into account so-called kinetic correlations that arise from the
relatively short residence times in site i.123–125
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Figure 6. Channel and site structure of silicalite-1 showing intersection sites (I),
straight channel sites (S) and zig-zag channel sites (Z).

Poisson Statistics. The second assumption inherent in most lattice models of diffusion,
which is related to the first, is that subsequent jumps of a given molecule are uncorrelated
from each other, i.e., that a particular site-to-site jump has the same probability to occur
at any time. This assumption results in a site residence time distribution that follows the
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exponential law associated with Poisson statistics.185 In figure 2 we have seen that such a law
can indeed result from the analysis of MD trajectories. As a result, lattice models can often
be mapped onto master rate equations such as those in the chemical kinetics of first-order
reactions.185,186 This fact highlights the close connection between reaction and diffusion in
zeolites, when modeled with lattice dynamics.

This second assumption obtains from the following physical observations. Time-
independent jump probabilities arise when the mechanism of activation involves simple
energy transfer from the heat bath, which is usually very rapid compared to site-to-site
jumping. Subsequent jumps are uncorrelated when center-of-mass velocity correlations of
the jumping guest decay well before the next jump occurs. Both of these criteria are typi-
cally satisfied when free energy minima are very deep compared to kBT . However, when kBT
becomes comparable to barriers separating sites, multisite jumps become important,187–191

requiring either the definition of a more coarse-grained lattice,124 the calculation of multisite
jump rates,192 or a statistical model that estimates the kinetic correlations between subse-
quent jumps.123,125,193 We have found that ignoring multisite jumps yields accurate results
for diffusion through cage-type zeolites such as Na-Y,37 but that such an approximation can
cause noticeable errors for transport through channel zeolites such as silicalite-1 (MFI) and
silicalite-2 (MEL).123,125

Deviations from Poisson statistics would also arise if a molecule were most likely to jump
in phase with a low frequency zeolite framework vibration, such as a window breathing
mode,194 or if a molecule were most likely to jump in concert with another guest molecule.
An extreme case of this latter effect was predicted by Sholl and Fichthorn,65,152 wherein
strong adsorbate-adsorbate interactions in single-file zeolites generated transport dominated
by correlated cluster dynamics instead of single molecule jumps. In this case, a consequence
of Poisson statistics applied to diffusion in zeolites at finite loadings ceases to hold, namely,
there no longer exists a time interval sufficiently short so that only one molecule can jump
at a time.
Loading-independent Lattice. The final assumption, which is typically invoked by lat-
tice models of diffusion at finite loadings, is that the sites do not qualitatively change their
nature with increasing adsorbate loading. This assumption holds when adsorption sites are
separated by barriers such as windows between large cages,171 and also when host-guest in-
teractions dominate guest-guest interactions. This loading-independent lattice model breaks
down when the effective diameter of guest molecules significantly exceeds the distance be-
tween adjacent adsorption sites, as high loadings create unfavorable excluded-volume inter-
actions between adjacent guests. This effect does not arise for benzene in Na-Y,195 which
involves site-to-site distances and guest diameters both around 5 Å, but is predicted for Xe
in Na-A by classical density functional theory calculations.196

Despite these many caveats, lattice models have proven extremely useful for elucidating
qualitatively and even semi-quantitatively the following physical effects regarding: (i) host
structure: pore topology,197–199 diffusion anisotropy,167,200 pore blockage,201 percolation,202

and open system effects;16,200 (ii) host-guest structure: site heterogeneity203,204 and re-
active systems;205 and (iii) guest-guest structure: attractive interactions,168,198,199 phase
transitions,206,207 concerted cluster dynamics,65,152 single-file diffusion,16,208 and diffusion of
mixtures.144,209,210 In what follows, we outline the theory and simulation methods used to
address these issues.
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B. Kinetic Monte Carlo

In section IIC we outlined dynamical methods for computing site-to-site jump rate coef-
ficients for molecules in zeolites. In order to make contact with measurements of transport
through zeolites,8,9 we must relate these site-to-site rate coefficients with quantities such as
the self diffusivity and transport diffusivity, which arise from molecular translation; or we
can model NMR correlation times, which are controlled by molecular rotation. At infinite
dilution on an M-dimensional hypercubic lattice, i.e. 1-d, 2-d square, 3-d cubic, etc., both
the self and transport diffusivity are given by D0 = khopa

2 = 1
2M

ka2, where khop is the fun-
damental rate coefficient for jumps between nearest neighbor sites, a is the distance between
such sites, and 1/k is the mean site residence time.183 This result neglects multisite hops,
which have jump distances greater than a. An alternative formula exists that accounts for
such jumps in terms of multisite jump rates.

Unfortunately, site lattices in zeolites are usually much more complicated than hypercu-
bic, apparently defying such simple analytical formulas. To address this complexity, many
researchers have applied kinetic Monte Carlo (KMC) to model diffusion in zeolites, pa-
rameterized either by ad hoc jump frequencies or by atomistically calculated jump rate
coefficients. KMC models diffusion on a lattice as a random walk composed of uncorrelated,
single molecule jumps as discussed above, thereby providing a stochastic solution to the
master equation associated with the lattice model. Although KMC models transport as
sequences of uncorrelated events in the sense that jump times are extracted from Poisson
distributions, KMC does account for spatial correlations at finite loadings. Indeed, when
a molecule executes a jump at higher loadings, it leaves behind a vacancy that is likely to
be occupied by a successive jump, thereby diminishing the diffusivity from the mean field
theory estimate discussed in section IIIC.

KMC is isomorphic to the more conventional Monte Carlo algorithms,85 except that in
a KMC simulation random numbers are compared to ratios of rate coefficients, instead of
ratios of Boltzmann factors. However, if the pre-exponential factors cancel in a ratio of rate
coefficients, then a ratio of Boltzmann factors does arise, where the relevant energies are
activation energies. KMC formally obeys detailed balance, meaning that all thermodynamic
properties associated with the underlying lattice Hamiltonian can be simulated with KMC.
In addition to modeling transport in zeolites, KMC has been used to model adsorption
kinetics on surfaces,211 and even surface growth itself.212

1. Algorithms and Ensembles

Algorithms. KMC can be implemented with either constant time-step or variable time-
step algorithms. Variable time-step methods are efficient for sampling jumps with widely
varying time scales, while fixed time-step methods are convenient for calculating ensemble
averaged correlation functions. In the constant time-step technique, jumps are accepted or
rejected based on the kinetic Metropolis prescription, in which a ratio of rate coefficients,
khop/kref , is compared to a random number.39,213 Here kref is a reference rate that controls
the temporal resolution of the calculation according to ∆tbin = 1/kref . The probability to
make a particular hop is proportional to khop/kref , which is independent of time, leading
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natually to a Poisson distribution of jump times in the simulation. In the fixed time-step
algorithm, all molecules in the simulation attempt a jump during the time ∆tbin. In order
to accurately resolve the fastest molecular jumps, kref should be greater than or equal to the
largest rate constant in the system, in analogy with choosing time steps for MD simulations.
However, if there exists a large separation in time scales between the most rapid jumps, e.g.
intracage motion, and the dynamics of interest, e.g. cage-to-cage migration, then one may
vary kref to improve efficiency. The cost of this modification is detailed balance; indeed,
tuning kref to the dynamics of interest is tantamount to simulating a system where all the
rates larger than kref are replaced with kref .

A useful alternative for probing long-time dynamics in systems with widely varying jump
times is variable time-step KMC. In the variable time-step technique, a hop is made every
KMC step and the system clock is updated accordingly.201,214 For a given configuration of
random walkers, a process list of possible hops from occupied to empty sites is compiled for
all molecules. A particular jump from site i to j is chosen from this list with a probability of
ki→j/ktot, where ktot is the sum of all rate coefficients in the process list. In contrast to fixed
time-step KMC, where all molecules attempt jumps during a KMC step, in variable time-step
KMC a single molecule executes a jump every KMC step and the system clock is updated
by an amount ∆tn = − ln(1 − x)/ktot, where x ∈ [0,1) is a uniform random number and n
labels the KMC step. This formula results directly from the Poisson distribution, suggesting
that other formulas may be used in variable time-step KMC to model kinetic correlations.123

In general, we suggest that simulations be performed using the variable time-step method,
with data analyses carried out by mapping the variable time-step KMC trajectories onto a
fixed time-step grid186 as discussed in section IIIB 2.
Ensembles. Guest-zeolite systems at equilibrium are inherently multicomponent systems
at constant temperature and pressure. Since guest molecules are continually adsorbing
and desorbing from more-or-less fixed zeolite particles, a suitable ensemble would fix NZ =
amount of zeolite, µG = chemical potential of guest, p = pressure and T = temperature,
keeping in mind that µG and p are related by the equation of state of the external fluid
phase. However, constant-pressure simulations are very challenging for lattice models, since
constant pressure implies volume fluctuations, which for lattices involve adding or deleting
whole adsorption sites. As such, constant-volume simulations are much more natural for
lattice dynamics. Since both the volume and amount of zeolite is virtually fixed during
intracrystalline adsorption and diffusion of guests, we need to specify only one of these
variables. In lattice simulations it is customary to specify the number of adsorption sites,
Nsites, which plays the role of a unitless volume. We thus arrive at the natural ensemble for
lattice dynamics in zeolites: the grand canonical ensemble, which fixes µG, Nsites and T .

The overwhelming majority of KMC simulations applied to molecules in zeolites have
been performed using the canonical ensemble, which fixes NG = number of guest molecules,
Nsites and T . Although the adsorption-desorption equilibrium discussed above would seem
to preclude using the canonical ensemble, fixing NG is reasonable if zeolite particles are large
enough to make the relative root mean square fluctuations in NG rather small. Such closed-
system simulations are usually performed with periodic boundary conditions, in analogy
with atomistic simulations.85,104 Defining the fractional loading, θ, by θ ≡ NG/Nsites, typical
KMC calculations produce the self-diffusion constant Ds as a function of T at fixed θ for
Arrhenius analysis, or as a function of θ at fixed T , a so-called diffusion isotherm.
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There has recently been renewed interest in grand canonical KMC simulations for three
principal reasons: to relax periodic boundary constraints to explore single-file diffusion with
lattice dynamics,16 to study non-equilibrium permeation through zeolites membranes,200

and in general to explore the interplay between adsorption and diffusion in zeolites.140,215,216

Grand canonical KMC requires that the lattice contain at least one edge that can exchange
particles with an external phase. In contrast to grand canonical MC used to model ad-
sorption, where particle insertions and deletions can occur anywhere in the system, grand
canonical KMC must involve insertions and deletions only at the edges in contact with
external phases, as shown in figure 8.

The additional kinetic ingredients required by grand canonical KMC are the rates of ad-
sorption to and desorption from the zeolite.217 Because desorption generally proceeds with
activation energies close to the heat of adsorption, desorption rates are reasonably simple
to estimate. However, adsorption rates are less well-known, because they depend on details
of zeolite crystallite surface structure. Although qualitative insights on rates of penetration
into microporous solids are beginning to emerge,218,219 zeolite-specific models have yet to take
hold.172 Calculating precise adsorption rates may not be crucial for parameterizing quali-
tatively reliable simulations, because adsorption rates are typically much larger than other
rates in the problem. For sufficiently simple lattice models, adsorption and desorption rates
can be balanced to produce the desired loading according to the adsorption isotherm.200 If
one assumes that the external phase is an ideal fluid, then insertion frequencies are propor-
tional to pressure p. As such, equilibrium grand canonical KMC produces the self-diffusion
coefficient as a function of p and T . Alternatively, for non-equilibrium systems involving
different insertion frequencies on either site of the membrane, arising from a pressure (chem-
ical potential) gradient across the membrane, grand canonical KMC produces the Fickian or
transport diffusion coefficient, D, as a function of T and the local loading in the membrane.

2. Data Analyses

Computing ensemble averages and correlation functions is extremely straightforward
using fixed time-step KMC. Ensemble averages take the form:

〈A〉 =
1

TK

NF∑
n=1

∆tbinA(n) =
1

NF

NF∑
n=1

A(n), (3.1)

where TK = NF∆tbin is the total KMC time elapsed in a fixed time-step simulation, NF is
the number of steps in the fixed time-step simulation, and A(n) is some dynamical vari-
able evolving during the KMC trajectory. In addition, correlation functions are obtained
according to:

C(t) = 〈A(0)B(t)〉 =
1

NF

NF−m∑
n=1

A(n)B(n + m), (3.2)

where t = m∆tbin. Ensemble averages from variable time-step KMC take the form:

〈A〉 =
1

TK

NV∑
n=1

∆tnA(n), (3.3)
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where NV is the number of steps in a variable time-step simulation, and ∆tn are the variable
time steps. We note that while the physical time TK may not vary between fixed and
variable time-step simulations, the numbers of steps, NF and NV respectivley, will generally
be different because each fixed time-step involves a full system sweep, while each variable
time-step effects a single molecule jump.

Computing correlation functions with variable time steps is not as straightforward as
that for ensemble averages. We first choose a time bin width, ∆tbin, which must be adjusted
to encompass the dynamics we wish to study. For example, ∆tbin should be a fraction of
the estimated cage residence time when modeling diffusion in cage-type zeolites.203 For the
time t = n∆tbin, the correlation function C(t) is given by:

C(t) = 〈A(0)B(t)〉 =
1

Qn

∑
lm

′ A(l)B(m), (3.4)

where the sum is restricted to those pairs (l, m) for which tm − tl falls into the nth time bin,
characterized by n = int[(tm − tl)/∆tbin], and Qn is the number of such pairs.

Probably the most important quantity that is calculated from a KMC simulation is the
MSD, which was discussed in section IIB 2. The long-time limit required to relate the MSD
to diffusion vindicates the use of time bins that contaminate short-time dynamics, as can
arise for both fixed and variable time-step KMC. The MSD is calculated with variable time-
step KMC by replacing A(l)B(m) in equation 3.4 with |r(l) − r(m)|2. Great care must be
taken to ensure that KMC simulations are run long enough to approach the long-time limit
implicit in the Einstein relation. Indeed, one can obtain linear MSDs and still not sample
truly diffusive motion through zeolites.39

To make direct contact with NMR probes of dynamics220 such as NMR relaxation,43,221

exchange-induced sidebands NMR,10 and multidimensional exchange NMR,222 one can use
KMC to calculate the orientational correlation function (OCF) given by C(t) = 〈P2(cosβt)〉,
where P2(x) = 1

2
(3x2 − 1) is the second-degree Legendre polynomial, and βt is the angle

between a molecular axis at time 0 and t. In practice, an efficient way to evaluate OCFs
using KMC is to pre-compute and store a matrix of values of P2[cosβ(ij)], where i and j
label different sites in the lattice. In analogy with equation 3.4, the KMC-calculated OCF
thus becomes:

C(t) =
1

Qn

∑
lm

′ P2[cosβ(iljm)], (3.5)

where il is the site occupied at time tl, and likewise for jm. Calculating OCFs at long
times with KMC is typically more computationally intensive than that for MSDs, because
Monte Carlo algorithms are generally inefficient at converging exponentially small numbers
arising from sign cancellation. This is known as the “sign problem” which is especially dire
for real-time quantum Monte Carlo and many-fermion quantum Monte Carlo. In actual
applications, Auerbach and coworkers have used brute-force computer power to converge
OCFs,39,186 which severely limits the system sizes one can study.
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3. Models of Finite Loading

The great challenge in performing KMC simulations at finite loadings is that the rate
coefficients {ki→j} should depend upon the local configuration of molecules because of guest-
guest interactions. That is, in compiling the process list of allowed jumps and associated
rate constants on the fly of a KMC simulation, TST or related calculations should be per-
formed to account for the effect of specific guest configurations on the jump rate coefficients.
To date, this “ab initio many-body KMC” approach has not been employed because of its
daunting computational expense. Instead, researchers either ignore how guest-guest interac-
tions modify rate coefficients for site-to-site jumps; or they use many-body MD at elevated
temperatures when guest-guest interactions cannot be ignored.165,166

A popular approach for modeling many-body diffusion in zeolites with KMC is thus the
“site blocking model,” where guest-guest interactions are ignored, except for exclusion of
multiple site occupancy. This model accounts for entropic effects of finite loadings, but
not energetic effects. Calculating the process list and available rate coefficients becomes
particularly simple; one simply sums the available processes using rates calculated at infinite
dilution.223 This model is attractive to researchers in zeolite science,224 because blocking of
cage windows and channels by large, aromatic molecules that form in zeolites, i.e. “coking,”
is a problem that zeolite scientists need to understand and eventually control.

The site blocking model ignores guest-guest interactions that operate over medium to
long length scales, which modify jump activation energies for site-to-site rate coefficients
depending upon specific configurations of neighboring adsorbates. By incorporating these
additional interactions, diffusion models reveal the competition between guest-zeolite adhe-
sion and guest-guest cohesion.168,225,226 Qualitatively speaking, the diffusivity is generally
expected to increase initially with increasing loading when repulsive guest-guest interac-
tions decrease barriers between sites, and to decrease otherwise. At very high loadings, site
blocking lowers the self diffusivity regardless of the guest-guest interactions.

To develop a quantitative model for the effects of guest-guest attractions Saravanan et
al. proposed a “parabolic jump model,” which relates binding energy shifts to transition
state energy shifts.203,227 This method was implemented for lattice gas systems whose ther-
modynamics is governed by the following Hamiltonian:

H(~n) =
M∑
i=1

nifi +
1

2

M∑
i,j=1

niJijnj, (3.6)

where M is the number of sites in the lattice, ~n = (n1, n2, · · · , nM) are site occupation
numbers listing a configuration of the system, and fi = εi − Tsi is the free energy for
binding in site i. In equation 3.6, Jij is the nearest neighbor interaction between sites i and
j, i.e. Jij = 0 if sites i and j are not nearest neighbors.

Saravanan et al. assumed that the minimum energy hopping path connecting adjacent
sorption sites is characterized by intersecting parabolas, shown in figure 7, with the site-to-
site transition state located at the intersection point. For a jump from site i to site j, with
i, j = 1, . . . , M , the hopping activation energy including guest-guest interactions is given by:

Ea(i, j) = E(0)
a (i, j) + ∆Eij


1

2
+

δE
(0)
ij

kija2
ij


+ ∆E2

ij

(
1

2kija2
ij

)
, (3.7)
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where E(0)
a (i, j) is the infinite dilution activation energy calculated using the methods of

section IIC, and aij is the jump distance. ∆Eij is the shift in the energy difference between
sites i and j resulting from guest-guest interactions, and is given by ∆Eij = (Ej − Ei)
− (εj − εi), where Ek = εk +

∑M
l=1 Jklnl. This method allows the rapid estimation of

configuration dependent barriers during a KMC simulation, knowing only infinite dilution
barriers and the nearest neighbor interactions defined above. The parabolic jump model
is most accurate when the spatial paths of jumping molecules are not drastically changed
by guest-guest interactions, although the energies can change as shown in figure 7. While
other lattice models of diffusion in zeolites have been proposed that account for guest-guest
attractions,168,226 the parabolic jump model has the virtue of being amenable to analytical
solution, as discussed in section IIIC 1.

Shifted by
Lateral ∆E(i,j)

Ea(i,j) Ea(j,i)

Interactions

a

Site i Site j

Figure 7. Site-to-site jump activation energies perturbed by guest-guest interactions,
approximated with parabolic jump model.

4. Recent Applications

Infinite Dilution. Most KMC simulations of diffusion in zeolites are performed at high
guest loadings, to explore the effects on transport of guest-guest interactions. A handful of
KMC studies have been reported at infinite dilution, to relate fundamental rate coefficients
with observable self diffusivities for particular lattice topologies. June et al. augmented their
TST and RFMD study with KMC calculations of Xe and SF6 self diffusivities in silicalite-
1.153 They obtained excellent agreement among apparent activation energies for Xe diffusion
calculated using MD, KMC with TST jump rates, and KMC with RFCT jump rates. The
resulting activation energies fall in the range 5–6 kJ mol−1, which is much lower than the
experimentally determined values of 15 and 26 kJ mol−1.228,229 van Tassel et al. reported a
similar study in 1994 on methane diffusion in zeolite A, finding excellent agreement between
self diffusivities calculated with KMC and MD.230

Auerbach et al. reported KMC simulations of benzene diffusion in Na-Y showing that the
cation → window jump (see figure 4) controls the temperature dependence of diffusion, with a
predicted activation energy of 41 kJ mol−1.36 Because benzene residence times at cation sites
are so long, these KMC studies could not be compared directly with MD, but nonetheless
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yield reasonable agreement with the QENS barrier of 34 kJ mol−1 measured by Jobic et al.45

Auerbach and Metiu then reported KMC simulations of benzene orientational randomization
in various models of Na-Y with different numbers of supercage cations, corresponding to dif-
ferent Si:Al ratios.39 Full cation occupancy gives randomization rates controlled by intracage
motion, whereas half cation occupancy gives rates sensitive to both intracage and intercage
motion. This finding prompted Chmelka and coworkers to perform exchange-induced side-
bands NMR experiments on labeled benzene in the corresponding Ca-Y (Si:Al=2.0), finding
indeed that they were able to measure both the cation → cation and cation → window
jump rates within a single experiment.10 Finally, when Auerbach and Metiu modeled ben-
zene orientational randomization with one quarter cation occupancy, they found qualitative
sensitivity to different spatial patterns of cations, suggesting that measuring orientational
randomization in zeolites can provide important information regarding cation disorder and
possibly Al distributions.
Finite Loadings. Theodorou and Wei used KMC to explore a site blocking model of
reaction and diffusion with various amounts of coking.209 Nelson and coworkers developed
similar models, to explore the relationship between the catalytic activity of a zeolite and its
lattice percolation threshold.231,232 In a related study, Keffer, McCormick and Davis modeled
binary mixture transport in zeolites, where one component diffuses rapidly while the other
component is trapped at sites, e.g. methane and benzene in Na-Y.202 They used KMC to
calculate percolation thresholds of the rapid penetrant as a function of blocker loading, and
found that these thresholds agree well with predictions from simpler percolation theories.233

Coppens, Bell and Chakraborty used KMC to calculate the loading dependence of self
diffusion for a variety of lattices, for comparison with mean field theories (MFT) of diffusion
(sec section IIIC 1).197 These theories usually predict Ds(θ) ∼= D0(1 − θ), where θ is the
fractional occupancy of the lattice and D0 is the self diffusivity at infinite dilution. Coppens
et al. found that the error incurred by MFT is greatest for lattices with low coordination
numbers, such as silicalite-1 and other MFI-type zeolites. Coppens et al. then reported
KMC simulations showing that by varying the concentrations of weak and strong binding
sites,204 their system exhibits most of the loading dependencies of self diffusion reported by
Kärger and Pfeifer.234 Bhide and Yashonath also used KMC to explore the origins of the
observed loading dependencies of self diffusion, finding that most of these dependencies can
be generated by varying the nature and strength of guest-guest interactions.198,199

Benzene in Na-X. Auerbach and coworkers reported a series of studies modeling the con-
centration dependence of benzene diffusion in Na-X and Na-Y zeolites.195,203,223,227,235 These
studies were motivated by persistent, qualitative discrepancies between different experimen-
tal probes of the coverage dependence of benzene self diffusion in Na-X.8 Pulsed field gradient
(PFG) NMR diffusivities decrease monotonically with loading for benzene in Na-X,236 while
tracer zero-length column (TZLC) data increase monotonically with loading for the same
system.237 We performed KMC simulations using the parabolic jump model to account for
guest-guest attractions.203,227 Our KMC results for benzene in Na-X are in excellent quali-
tative agreement with the PFG NMR results, and in qualitative disagreement with TZLC.
Other experimental methods yield results for benzene in Na-X that also agree broadly with
these PFG NMR diffusivities.41,238,239 Although the evidence appears to be mounting in
favor of the PFG NMR loading dependence for benzene in Na-X, it remains unclear just
what is being observed by the TZLC measurements. To address this issue, Brandani et al.
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reported TZLC measurements for benzene in various Na-X samples with different particle
sizes. They found tracer exchange rates that exhibit a normal dependence on particle size,
suggesting that their diffusivities are free from artifacts associated with unforeseen diffusion
resistances at zeolite crystallite surfaces.237

Noting that molecular transport in TZLC measurements samples longer length scales
than that in PFG NMR experiments, Chen et al. have suggested that the TZLC method
may be more sensitive than is PFG NMR to electrostatic traps created by random Al
and cation distributions.48 By performing a field theory analysis of an augmented diffusion
equation, Chen et al. estimate that such charge disorder can diminish the self diffusivity
by roughly two orders of magnitude from that for the corresponding ordered system. This
effect is remarkably close to the discrepancy in absolute magnitudes between PFG NMR and
TZLC diffusivities for benzene in Na-X at low loadings.237 This intriguing prediction by Chen
et al. suggests that there should be a striking difference between benzene diffusion in Na-X
(Si:Al=1.2) and in Na-LSX (Si:Al=1), since the latter is essentially an ordered structure. We
are not aware of self diffusion measurements for benzene in Na-LSX, but we can turn to NMR
spin-lattice relaxation data for deuterated benzene in these two zeolites.18,240 Unfortunately,
such data typically reveal only short length scale, intracage dynamics,39 and as a result may
not provide such a striking effect. Indeed, the activation energy associated with the NMR
correlation time changes only moderately, decreasing from 14.0±0.6 kJ mol−1 for Na-X18 to
10.6±0.9 kJ mol−1 for Na-LSX,240 in qualitative agreement with the ideas of Chen et al.48

It remains to be seen whether such electrostatic traps can explain the loading dependence
observed by TZLC for benzene in Na-X.

By varying fundamental energy scales, the model of Saravanan and Auerbach for benzene
in FAU-type zeolites exhibits four of the five loading dependencies of self diffusion reported
by Kärger and Pfeifer,234 in analogy with the studies of Coppens et al.204 and Bhide and
Yashonath.198,199 However, in contrast to these other KMC studies, we have explored the
role of phase transitions206,207 in determining the loading dependencies of self diffusion.203

In particular, we find that Kärger and Pfeifer’s type III diffusion isotherm, which involves a
nearly constant self diffusivity at high loadings, may be characteristic of a cluster-forming,
subcritical adsorbed phase where the cluster of guest molecules can extend over macroscopic
length scales. Such cluster formation suggests a diffusion mechanism involving “evaporation”
of particles from clusters. Although increasing the loading in subcritical systems increases
cluster sizes, we surmise that evaporation dynamics remains essentially unchanged by in-
creasing loading. As such, we expect the subcritical diffusivity to obtain its high loading
value at low loadings, and to remain roughly constant up to full loading. In addition, we find
that Kärger and Pfeifer’s types I, II and IV are characteristic of supercritical diffusion, and
can be distinguished based on the loading that gives the maximum diffusivity, θmax. For ex-
ample, the PFG NMR results discussed above for benzene in Na-X are consistent with θmax
<∼ 0.3, while the TZLC data give θmax

>∼ 0.5. Our simulations predict that θmax will decrease
with increasing temperature, increasing strength of guest-guest attractions, decreasing free
energy difference between site types, and in general anything that makes sites more equally
populated.203

Reactive Systems. Trout, Chakraborty and Bell applied electronic structure methods to
calculate thermodynamic parameters for possible elementary reactions in the decomposition
of NOx over Cu-ZSM-5.241 Based on these insights, they developed a KMC model of reac-

33



tion and diffusion in this system, seeking the optimal distribution of isolated reactive Cu
centers.205 This hierarchical approach to realistic modeling of complex systems presents an
attractive avenue for future research.
Open Systems. Gladden et al. developed a versatile open-system KMC program that
allows them to study adsorption, diffusion and reaction in zeolites simultaneously.216 They
have applied their algorithm to model ethane and ethene binary adsorption in silicalite-1,216

finding excellent agreement with the experimental binary isotherm.
Nelson and Auerbach reported open-system KMC simulations of anisotropic diffusion200

and single-file diffusion16 (infinitely anisotropic) through zeolite membranes. They defined
an anisotropy parameter, η, according to η = ky/kx, where kx and ky are the elementary
jump rates in the transmembrane and in-plane directions, respectively, as shown in figure
8. For example, the η < 1 case models p-xylene permeation through a silicalite-1 membrane
(see figure 6) oriented along the the straight channels (b-axis), while η > 1 corresponds
to the same system except oriented along the the zig-zag (a-axis) or “corkscrew” channels
(c-axis).109 The limiting case η = 0 corresponds to single-file diffusion.

kx  

ky

 PBC

νA 

νB

kd

kd

 PBC

 A 
reservoir

 B
reservoir

Figure 8. Schematic of a tracer counter-permeation simulation, with identical but
differently labeled particles. Diffusion anisotropy is controlled by the parameter η =
ky/kx, with the limiting case η = 0 corresponding to single-file diffusion.

Nelson and Auerbach have studied how the self diffusivity depends upon membrane thick-
ness L, and anisotropy η. However, the long-time limit of the MSD may not be accessible
in a membrane of finite thickness. Furthermore, the natural observable in a permeation
measurement is steady-state flux rather than the MSD. To address these issues, they simu-
lated two-component, equimolar counter-permeation of identical, labeled species—i.e. tracer
counter-permeation—which has been shown to yield transport identical to self diffusion.242

Such a situation is closely related to the tracer zero-length column experiment developed
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by Ruthven and coworkers.237 When normal diffusion holds the self diffusivity is indepen-
dent of membrane thickness, while anomalous diffusion is characterized by an L-dependent
self diffusivity. For η � 1, Nelson and Auerbach found that diffusion is normal and that
MFT becomes exact in this limit,200 i.e. Ds(θ) = D0(1 − θ). This is because sorbate mo-
tion in the plane of the membrane is very rapid, thereby washing out any correlations in
the transmembrane direction. As η is reduced, correlations between the motion of nearby
molecules decrease the diffusivity. For small values of η, a relatively large lattice is required
to reach the thick membrane limit, such that particle exchange becomes probable during the
intracrystalline lifetime. The extreme case of this occurs when η = 0, for which diffusion is
strictly anomalous for all membrane thicknesses.

Nelson et al. applied their open-system KMC algorithm to study the nature of anomalous
diffusion through single-file zeolites of finite extent.16 For times shorter than the vacancy
diffusion time, tc = L2/πD0, particle transport proceeds via the non-Fickian, single-file
diffusion mode, with mean square displacements increasing with the square-root of time. For
times longer than tc, however, we find that self diffusion in single-file systems is completely
described by Fick’s laws, except that the “Fickian” self diffusion constant depends on file
length, scaling inversely with L for long files. This gives an intracrystalline residence time,
τintra ≡ L2/Ds, that scales with L3 for long files, in complete agreement with the mean
field analysis reported by Rodenbeck and Kärger.243 Nelson and Auerbach found that the
fraction of time in the single-file diffusion mode scales inversely with file length for long files,
suggesting that Fickian self diffusion dominates transport in longer single-file zeolites. They
predicted that the cross-over time between (medium time) single-file diffusion and (long
time) Fickian diffusion is just above the experimental window for PFG NMR experiments,
suggesting that longer-time PFG NMR would observe this transition.

C. Mean Field and Continuum Theories

Mean field theory (MFT) and continuum theories provide illustrative and efficient means
for estimating the results of KMC simulations. MFT reduces the complexity of many-body
structure and dynamics to the simplicity of effective one-body properties,155 by averaging
over local fluctuations in the instantaneous energy of each adsorption site. Although MFT
can give numerical error for lattices with low coordination,197 the theory remains qualita-
tively reliable except near critical points, where cooperative fluctuations extend over large
distances. MFT can thus serve as a useful launching point for an analytical theory of many-
body diffusion in zeolites.

1. Finite Loading Effects

For diffusion at finite loadings on a hypercubic lattice within the site blocking model,
MFT predicts that Ds(θ) ∼= D0(1 − θ), where θ is the fractional occupancy of the lattice
and D0 is the self diffusivity at infinite dilution. The factor (1 − θ) is the fraction of jumps
that are successful at finite loadings, because they are directed towards vacancies. Spatial
correlations between successive jumps, which are accounted for by KMC but ignored by
MFT, tend to make Ds(θ) decrease more rapidly than (1 − θ).197
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It remains challenging in the general case to apply MFT to diffusion in zeolites, especially
when considering a heterogeneous lattice with several distinct site types, such as the lattice
of cation and window sites for benzene in FAU-type zeolites. To address this issue for
diffusion through cage-type zeolites, Saravanan and Auerbach have shown that a mean field
analysis of cage-to-cage motion yields Ds(θ) ∼= 1

6
kθa

2
θ, where aθ is the mean intercage jump

length, and 1/kθ is the mean cage residence time.195 Since aθ has a very weak temperature
and loading dependence,235 e.g. remaining in the range 11–13 Å for FAU-type zeolites, the
cage-to-cage rate coefficient carries the interesting T and θ dependencies. Such a formulation
is expected to hold for many guests in cage-type zeolites, but not for long chain alkanes (>
C8) in FAU-type zeolites, which are dominated by window-to-window jumps rather than by
cage-to-cage jumps.64

Saravanan and Auerbach have also shown that kθ is given by kθ = κ·k1·P1, where P1 is
the probability of occupying a window site between adjacent cages, k1 is the total rate of
leaving a window site, and κ is the transmission coefficient for cage-to-cage motion.195 This
theory provides a picture of cage-to-cage motion involving transition state theory (k1·P1)
with dynamical corrections (κ). Saravanan and Auerbach have found that P1 increases with
loading when cage sites are more stable than window sites, that k1 decreases with loading
in all cases, and that the balance between k1 and P1 controls the loading dependence of self
diffusion. Below we discuss applications of this theory to benzene in FAU-type zeolites.227,203

2. Fickian vs. Maxwell-Stefan Theory

Two theoretical formulations exist for modeling non-equilibrium diffusion, hereafter de-
noted “transport diffusion,” which ultimately arises from a chemical potential gradient or
similar driving force.8,9 The formulation developed by Fick involves linear response theory
relating macroscopic particle flows to concentration gradients, according to J = −D∇θ,
where J is the net particle flux through a surface S, D is the transport diffusivity, and ∇θ
is the local concentration gradient perpendicular to the surface S.155 While this perspective
is conceptually simple, it breaks down qualitatively in remarkably simple cases, such as a
closed system consisting of a liquid in contact with its equilibrium vapor. In this case, Fick’s
law would predict a non-zero macroscopic flux; none exists because the chemical potential
gradient vanishes at equilibrium. Fick’s law can be generalized to treat very simple mul-
ticomponent systems,16,200,242,244–246 such as co-diffusion and counter-diffusion of identical,
tagged particles.

Despite these shortcomings, Fick’s law remains the most natural formulation for trans-
port diffusion through Langmuirian lattice models of zeolite-guest systems. These involve
regular lattices of identical sorption sites where guest-guest interactions are ignored, except
for exclusion of multiple site occupancy. Such model systems exhibit Langmuir adsorp-
tion isotherms, and give single-component transport diffusivities that are independent of
loading.247 Moreover, for such systems the equation J = −D∇θ is exact for all concen-
tration gradients, i.e. all higher order terms beyond linear response theory cancel. Nelson
and Auerbach exploit this fact in their lattice model studies of counter-permeation through
anisotropic200 and single-file nanoporous membranes,16 described above in section IIIB 4.

The other formulation of transport diffusion was developed independently by Maxwell
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and Stefan, and begins with the equation J = −L∇µ, where L is the so-called Onsager co-
efficient and ∇µ is a local chemical potential gradient at the surface S.8,111 To make contact
with other diffusion theories, the Onsager coefficient is written in terms of the so-called cor-
rected diffusivity, Dc, according to L = θDc/kBT , where θ is the local intracrystalline loading
at the surface S. Clearly this formulation does not suffer from the qualitative shortcomings
of Fick’s law, and can be properly generalized for complex multicomponent systems.248 The
corrected diffusivity depends strongly upon loading for Langmuirian systems, where jump
diffusion holds, but depends very weakly on loading for more fluid-like diffusion systems,111

making the Maxwell-Stefan formulation more natural for weakly binding zeolite-guest sys-
tems. The relationship between the Fickian and Maxwell-Stefan diffusivities is often called
the Darken equation, given by:8

D = Dc

(
∂ ln f

∂ ln θ

)
T

, (3.8)

where f is the fugacity of the external fluid phase. Other versions of the Darken equation
often appear, e.g., where Dc is replaced with Ds, the self diffusivity.

3. Recent Applications

Finite Loadings. MFT has been used to explore how site connectivity influences spatial
correlations,197 how site energetics control loading dependencies,204 and how system size
controls tracer exchange residence times,243 as discussed above in the context of compa-
rable KMC simulations. Saravanan et al. applied MFT in conjunction with the parabolic
jump model to obtain analytical expressions for the cage-to-cage rate constant kθ, as a
function of chemical potential and temperature for the specific example of benzene in FAU-
type zeolites.203,227 Saravanan et al. considered two levels of guest-guest interaction: (i) site
blocking alone and (ii) site blocking with nearest neighbor guest-guest attractions. In what
follows, the window and cation sites for benzene in FAU-type zeolites are denoted sites 1
and 2, respectively.

In this site blocking model, there are only four fundamental rate constants in the problem,
{ki→j}, where i, j = 1,2. For example, the rate constant k2→1 is the fundamental rate
constant for jumping from a cation site to a window site (see figure 4). In the limit where
cation sites are very stable compared to window sites, which models benzene in Na-Y, these
MFT equations reduce to:195

kθ
∼= 3

2

(
2

2 − 3θ
· k1→1

k1→2
+ 1

)
k2→1 for θ <

2

3

∼= 3 (1 − θ)

(
3θ − 2

θ

)
k1→1 for θ >

2

3
. (3.9)

These MFT formulas agree well with the results of KMC simulations using input rates
calculated for benzene in Na-Y.223 For T <∼ 650 K, equations 3.9 give diffusion isotherms
consistent with Kärger and Pfeifer’s type IV diffusion isotherm,234 because jumping out of
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Na-Y window sites is much faster than jumping off cations, i.e. k1→1 � k2→1. The type
IV isotherm involves a broadly increasing diffusivity at low loadings (as cation sites become
occupied), followed by a sharply decreasing diffusivity at high loadings (as all sites become
occupied). At present there is a paucity of reliable self-diffusion data for benzene in Na-Y
due to the fact that Na-Y crystallites are typically rather small, making intracrystalline
diffusion measurements rather challenging. However, QENS data collected at 2 and 4.5
benzenes per cage are consistent with a type I isotherm for benzene in Na-Y,45 which is
monotonically decreasing.

Saravanan and Auerbach explored the performance of this MFT in the more general case,
for arbitrary guest-guest attractions and for arbitrary cation and window stabilities.203 It
should not be surprising that this lattice model of benzene in FAU-type zeolites with guest-
guest attractions supports phase transitions from low to high sorbate density, analogous to
vapor-liquid equilibrium of bulk benzene.206,207 For benzene in Na-X, which involves window
sites that are more stable than those in Na-Y, MFT predicts a very broad coexistence region
in θ, much broader than that predicted by grand canonical MC simulations.206,207 This
renders MFT pretty useless for benzene in Na-X, because MFT cannot be used to evaluate
diffusivities for the wide range of fractional loadings in the MFT coexistence region. On the
other hand, MFT predicts a much narrower coexistence curve for benzene in Na-Y, which
increases the range of fractional loadings for which MFT can be evaluated. For these values
of θ, MFT gives excellent agreement with KMC simulations of benzene in Na-Y. Even with
this more sophisticated treatment of benzene in Na-Y, including guest-guest attractions, we
still predict203 a Kärger and Pfeifer type IV diffusion isotherm.234 Resolving this discrepancy
between theory and QENS may require collecting QENS data at more loadings, and may
also require more sophisticated simulation approaches.
Lattice Topology. The diffusion theory discussed above relies on the tetrahedral topology
of FAU-type zeolites. Developing such a theory for general frameworks remains challenging.
Braun and Sholl developed a Laplace-Fourier transformation method for calculating exact
self-diffusion tensors in generalized lattice gas models.193 These methods generally involve
quite heavy matrix algebra, which can sometimes hide the underlying physical meaning of
the parameters. Jousse, Auerbach and Vercauteren developed an alternative method for
deriving analytical self-diffusion coefficients at infinite dilution for general lattices, by par-
titioning the trajectory of a tracer into uncorrelated sequences of jumps.125 This approach
can be used to analyze both geometric correlations due to the non-symmetric nature of
adsorption sites in zeolite pores, and kinetic correlations arising from insufficient thermal-
ization of a molecule in its final site. This method was applied to benzene diffusion in Na-Y
(geometric correlations) and to ethane diffusion in silicalite-1 (geometric and kinetic corre-
lations), yielding quantitative agreement with KMC simulations.125 The new method was
also extended to finite loadings using MFT, yielding a completely analytical approach for
modeling diffusion in any guest-zeolite system.
Maxwell-Stefan and Fick. Krishna and van den Broeke modeled the transient perme-
ation fluxes of methane and n-butane through a silicalite-1 membrane using both the Fick
and Maxwell-Stefan formulations.249 Transient experiments showed that initially the perme-
ation flux of methane is higher than that of n-butane, but that this methane flux eventually
reduces to a lower steady-state value. The Maxwell-Stefan formulation succeeded in re-
producing this non-monotonic evolution to steady state for methane; the Fick formulation
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failed qualitatively in this regard. This is attributed to the fact that multicomponent systems
pose a challenge to the Fick formulation of diffusion. van de Graaf, Kapteijn and Moulijn
used the Maxwell-Stefan formulation to interpret permselectivity data for the separations
of ethane/methane and propane/methane mixtures with a silicalite-l membrane.250 Based
only on separately determined single-component adsorption and diffusion parameters, the
Maxwell-Stefan model gave permselectivities in excellent agreement with their experimental
data.

As discussed in section IIIB 4, Chen et al. augmented the standard diffusion equation
(Fick’s second law)8 with terms representing the effects of static charge disorder.48 They
analyzed the resulting equation in the hydrodynamic limit using renormalization group
theory,155 finding that such disorder can diminish self diffusivities in zeolites by one to two
orders of magnitude. Nelson, Tsapatsis and Auerbach computed steady-state solutions of
the diffusion equation to evaluate the influence of defects, voids and diffusion anisotropy on
permeation fluxes through model zeolite membranes.251 Nelson et al. augmented the lattice
configuration shown in figure 8 with various kinds of defect structures, and used a time-
dependent, numerical finite difference approach for computing steady-state fluxes in a variety
of situations. They found that with a reasonable anisotropy and with a moderate density of
voids in the membrane, permeation fluxes can be controlled by jumps perpendicular to the
transmembrane direction. This suggests that oriented zeolite membranes may not behave
with the intended orientation if there is a sufficient density of defects in the membrane.

IV. CONCLUDING REMARKS

In this review we have explored recent efforts to model the dynamics of sorbed molecules
in zeolites with either atomistic methods or lattice models. We assessed recent approaches
for constructing guest-zeolite forcefields, as well as atomistic models of aluminosilicate frame-
works with charge-compensating cations. We then detailed the techniques and applications
of equilibrium molecular dynamics (MD), transition-state theory and reactive flux MD to
sorbed molecules in zeolites. Changing focus from atomistic methods to lattice models, we
discussed the assumptions underlying such lattice models, and analyzed their validity for
molecules in zeolites. We then described the techniques and applications of kinetic Monte
Carlo, mean field theory and other continuum theories to modeling transport in complex
guest-zeolite systems.

Over the last several years a wealth of insight has been gained from studies modeling
dynamics in zeolites. Here we summarize some (but not all) of the key ideas that have
recently emerged. A useful picture has developed that relates guest size and shape, and
zeolite pore size and topology, to the resulting transport properties of hydrocarbons in all-
silica zeolites. We have also gained a better understanding of the role of framework flexibility,
especially for molecules in tight-fitting guest-zeolite systems. In general, the analysis of
both simulation and experimental data in terms of jump diffusion models has proven very
useful for developing simplified pictures of dynamics in zeolites. Regarding dynamics in
acidic zeolites, we have learned that the inherent disorder in framework charge and proton
distributions can produce cage-to-cage jump rates with significant non-Arrhenius behavior.
Furthermore, recent studies have suggested that tunneling dominates proton transfer in
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some acidic zeolites at ambient temperatures, and that true proton transfer barriers are
being underestimated by neglecting tunneling in the interpretation of experimental mobility
data.

Recent simulations on lattice models have provided qualitative insights regarding the
relationship between fundamental site-to-site jump rates and the resulting loading depen-
dencies of diffusion. Various loading dependencies have also been connected with subcritical
and supercritical states of the confined fluid. For the specific example of benzene in Na-X,
recent results point towards the validity of the decreasing loading dependence observed by
PFG NMR, while the TZLC data remain mysteriously reproducible. At the same time,
a possible discrepancy between simulation and experiment may be emerging for the load-
ing dependence of benzene diffusion in Na-Y. Both atomistic methods and lattice models
have contributed to our basic understanding of single-file diffusion in zeolites. In particu-
lar, we understand more clearly when to expect anomalous mean square displacements in
both simulations and experiments. Finally, while most studies model diffusion in zeolites
(translational dynamics), a new emphasis on modeling orientational dynamics has emerged,
to reveal more subtle aspects of zeolite structure including possibly Al distributions.

Despite this impressive progress many challenges lay ahead; below we list some desider-
ata for future modeling of dynamics in zeolites. To begin, we need better representations of
charge disorder, as well as other defect structures in zeolites, to determine their impact on
diffusion. In parallel, we require better understanding of the external surfaces of zeolite crys-
tallites, to facilitate realistic grand canonical MD simulations of permeation through zeolites.
To facilitate modeling in general, more portable forcefields and more tractable ab initio MD
would allow simultaneous modeling of diffusion and reaction. We seek more realistic lattice
models to bridge the gap between atomistic methods and lattice dynamics,165 to test the
presently oversimplified lattice treatments of the loading dependence of activated diffusion.
Finally, we hope to understand the loading dependencies of multicomponent diffusion in
zeolites, as well as the practical impact of single-file diffusion in zeolite applications.252

We hope that these computational studies can assist in the design of new materials
with advanced performance by elucidating the microscopic factors that control dynamics
in zeolites. While this dream is not yet an everyday reality, examples exist today that
have the flavor of rational design.253 We believe that such design will become much more
commonplace within the next ten years, with the advent of better algorithms and faster
computers. Perhaps even more significant is the need for enhanced cooperation between
experiment and simulation, to inspire the next generation of dynamics models for molecules
in zeolites.
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93 E. Fois and A. Gamba, J. Phys. Chem. B 103, 1794 (1999).
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Nature 392, 805 (1998).
103 P. Demontis, G. B. Suffritti, A. Alberti, S. Quartieri, E. S. Fois, and A. Gamba, Gazz.

Chim. Ital. 116, 459 (1986).
104 D. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, San

Diego, 1996.
105 C. J. Mundy, S. Balasubramanian, K. Bogchi, M. E. Tuckerman, and M. L. Klein, Rev.

Comp. Chem. 14, 291 (2000).
106 M. E. Tuckerman and G. J. Martyna, J. Phys. Chem. B 104, 159 (2000).
107 W. G. Hoover, Physica A 194, 450 (1993).
108 W. G. Hoover and O. Kum, Mol. Physics 86, 685 (1995).
109 M. C. Lovallo and M. Tsapatsis, AIChE Journal 42, 3020 (1996).
110 X. Lin, J. L. Falconer, and R. D. Noble, Chem. Mater. 10, 3716 (1998).
111 E. J. Maginn, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 97, 4173 (1993).
112 G. S. Heffelfinger and F. van Swol, J. Chem. Phys. 100, 7548 (1994).
113 D. Nicholson, Supramolecular Science 5, 275 (1998).
114 K. P. Travis and K. E. Gubbins, Langmuir 15, 6050 (1999).
115 L. Xu, T. T. Tsotsis, and M. Sahimi, J. Chem. Phys. 111, 3252 (1999).
116 I. Wold and B. Hafskjold, Int. J. Thermophys. 20, 847 (1999).
117 K. P. Travis and K. E. Gubbins, J. Chem. Phys. 112, 1984 (2000).
118 L. Xu, M. G. Sedigh, T. T. Tsotsis, and M. Sahimi, J. Chem. Phys. 112, 910 (2000).
119 K. Hahn, J. Kärger, and V. Kukla, Phys. Rev. Lett. 76, 2762 (1996).
120 V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. V. C. Rees, S. Schunk,

K. K. Unger, and J. Kärger, Science 272, 702 (1996).
121 H. van Beijeren, K. W. Kehr, and R. Kutner, Phys. Rev. B 28, 5711 (1983).
122 R. L. June, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 96, 1051 (1992).
123 F. Jousse, L. Leherte, and D. P. Vercauteren, J. Phys. Chem. B 101, 4717 (1997).
124 J. Kärger, P. Demontis, G. B. Suffritti, and A. Tilocca, J. Chem. Phys. 110, 1163 (1999).
125 F. Jousse, S. M. Auerbach, and D. P. Vercauteren, J. Chem. Phys. 112, 1531 (2000).
126 S. W. Lovesey, Theory of Neutron Scattering from Condensend Matter Vol. 1: Nuclear

Scattering, Clarendon Press, Oxford, 1984.
127 H. Jobic, M. Bée, and G. J. Kearley, Zeolites 12, 146 (1992).
128 D. Bougeard, C. Brémard, D. Dumont, M. Le Maire, J.-M. Manoli, and C. Potvin, J.

45



Phys. Chem. B 102, 10805 (1998).
129 R. L. June, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 94, 8232 (1990).
130 A. K. Nowak, C. J. J. den Ouden, S. D. Pickett, B. Smit, A. K. Cheetham, M. F. M.

Post, and J. M. Thomas, J. Phys. Chem. 95, 848 (1991).
131 S. J. Goodbody, K. Watanabe, D. MacGowan, J. P. R. B. Walton, and N. Quirke, J.

Chem. Soc., Faraday Trans. 87, 1951 (1991).
132 F. Jousse, L. Leherte, and D. P. Vercauteren, J. Mol. Cat. A: Chemical 119, 165 (1997).
133 R. C. Runnebaum and E. J. Maginn, J. Phys. Chem. B 101, 6394 (1997).
134 H. Jobic, M. Bée, and J. Caro, Translational mobility of n-butane and n-hexane in

ZSM-5 measured by quasi-elastic neutron scattering, in Proceedings of the 9th Interna-
tional Zeolite Conference, edited by R. vonr Ballmoos et al., pages 121–128, Butterworth-
Heinemann, 1993.

135 J. B. Nicholas, F. R. Trouw, J. E. Mertz, L. E. Iton, and A. F. Hopfinger, J. Phys. Chem.
97, 4149 (1993).

136 V. A. Ermoshin and V. Engel, J. Phys. Chem. A 103, 5116 (1999).
137 E. Hernández and C. R. A. Catlow, Proc. Roy. Soc. Lond. A 448, 143 (1995).
138 E. J. Maginn, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 100, 7155 (1996).
139 V. Lachet, A. Boutin, B. Tavitian, and A. H. Fuchs, Faraday Discuss. 106, 307 (1997).
140 R. Krishna, B. Smit, and T. J. H. Vlugt, J. Phys. Chem. A 102, 7727 (1998).
141 V. Lachet, A. Boutin, B. Tavitian, and A. H. Fuchs, J. Phys. Chem. B 103, 9224 (1999).
142 M. D. Macedonia and E. J. Maginn, Grand canonical Monte Carlo simulation of single

component and binary mixture adsorption in zeolites, in Proceedings of the 12th Inter-
national Zeolite Conference, pages 363–370, Materials Research Society, 1999.

143 T. J. H. Vlugt, R. Krishna, and B. Smit, J. Phys. Chem. B 103, 1102 (1999).
144 D. S. Sholl and K. A. Fichthorn, J. Chem. Phys. 107, 4384 (1997).
145 P. A. Fedders, Phys. Rev. B 17, 40 (1978).
146 J. Kärger and H. Pfeifer, Diffusion anisotropy and single-file diffusion in zeolites, in Proc.

9th Int. Zeolite Conf., Montreal 1992, edited by R. von Ballmoos et al., pages 129–136,
Butterworth–Heinemann, 1993.

147 V. Kukla, K. Hahn, J. Kärger, J. Kornatowski, and H. Pfeifer, Anomalous diffusion
in AlPO4-5, in Proceedings of the 2nd Polish-German Zeolite Colloquium, edited by
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FIG. 1. Activation energies of benzene diffusion in FAU-type zeolites. The top part shows
Si:Al ratios of FAU-type zeolites, with the corresponding occupied cation sites. The middle part
represents schematic benzene adsorption sites, and the energy barriers between them arising from
different cation distributions. C is a benzene supercage site far from a cation, W is a benzene
window site far from a cation, S2 is a cage site close to an SII cation, S3 is a window site close to
an SIII cation. The bottom part gives diffusion activation energies for various Si:Al ratios. The
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Poisson statistics, computed from a 1 ns molecular dynamics simulation at 800 K with a single
benzene molecule in the simulation cell.
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FIG. 3. Self-diffusion isotherms of methane and butane in silicalite-1 at 300K, from PFG NMR,
QENS and MD simulations, showing good agreement with the (1−θ) loading dependence predicted
by mean field theory. Crosses are NMR data from Caro et al.11 for methane and Heink et al.20 for
butane, while the star shows QENS butane data from Jobic et al.134 In all cases, error bars represent
an estimated 50% uncertainty. Letters are MD results (slightly spread for clarity): a–l for methane
and m–s for butane, from the following references: (a) June et al.,129 (b) Demontis et al.,51 (c)
Catlow et al.,52 (e) Goodbody et al.,131 (f) Demontis et al.,53 (g) Nicholas et al.,135 (h) Smirnov,54

(i) Jost et al.,71 (j) Ermoshin and Engel,136 (k) Schuring et al.,67 (l) Gergidis and Theodorou,70

(m) June et al.,122 (n) Hernández and Catlow,137 (o) Maginn et al.,138 (p) Bouyermaouen and
Bellemans,55 (q) Goodbody et al.,131 (r) Gergidis and Theodorou70 and (s) Schuring et al.67
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FIG. 4. Cation ↔ window path for benzene in Na-Y (transition state indicated in bold), with
a calculated barrier of 41 kJ mol−1.36
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FIG. 5. Schematic lattice model for molecules in cage-type zeolites, showing cages, intracage
sites and window sites (left), as well as the specific lattice geometry for benzene in Na-Y zeolite
(right).
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FIG. 7. Site-to-site jump activation energies perturbed by guest-guest interactions, approxi-
mated with parabolic jump model.
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FIG. 8. Schematic of a tracer counter-permeation simulation, with identical but differently
labeled particles. Diffusion anisotropy is controlled by the parameter η = ky/kx, with the limiting
case η = 0 corresponding to single-file diffusion.
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