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Abstract

We have modeled permeation through anisotropic zeolite membranes with nanoscopic defects that create shortcuts perpen-
dicular to the transmembrane direction (x). We have found that the dimensionless ratioDy /(kd1y) can be used to estimate
whether the shortcuts contribute significantly to the overall flux. HereDy is the diffusion coefficient for motion in the plane
of the membrane,kd is the rate of desorbing into defect voids, and1y is the spacing between adjacent defects. For values of
Dy/(kd1y) � 1, we find that shortcuts increase the flux by significant amounts. The magnitude of the flux is increased as
the imperfection spacing1y is decreased. For small values of1y, permeation through shortcuts becomes sorption-limited
so that decreasing1y further does not increase the flux through a single shortcut. However, as1y is decreased, the concen-
tration of shortcuts increases, thereby increasing the total contribution of the shortcuts to the flux. We have found regimes
where increasing1y or decreasingDy decreases the overall flux, showing that permeation can be diffusion-limited by motion
perpendicular to the transmembrane direction. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent progress in zeolite membrane synthesis has
suggested new opportunities for demanding gas, va-
por and liquid separations because of the crystalline,
microporous structures offered by zeolites [1–26].
However, the same crystallinity also poses the most
demanding challenge for the fabrication and use of
these membranes, i.e. the presence of unavoidable
grain boundaries between neighboring crystals in
these polycrystalline films. Although permeation [27]
and imaging [28] techniques have recently revealed

∗ Corresponding author. Tel.:+1-413-545-1240;
fax: +1-413-545-4490.
E-mail address:auerbach@chem.umass.edu (S.M. Auerbach).

such defects, there is very limited understanding of
the relation between the membrane’s microstructure
and its separation performance. Several investigations
have suggested the existence of non-zeolitic intercrys-
talline pathways in order to explain the permeation
behavior of different gas/vapor mixtures through MFI
zeolite membranes [22,29]. We recently noted the
absence of transport models that can account for the
interplay between zeolitic and non-zeolitic pathways
through these membranes [30]; here we introduce
such a mathematical model.

In a series of studies we reported the synthesis,
microstructural characterization and separation per-
formance of MFI membranes made by seeded growth
[6,9,11,20,21,24]. The synthesis consists of making
a colloidal suspension of zeolite nanocrystals that is
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used to deposit a seed layer on a substrate, followed
by secondary grain growth of the deposited nanocrys-
tals of the seed layer leading to a continuous film.
Characterization by microscopy and X-ray diffraction
indicates that film growth proceeds by direct growth
of the seed particles, leading to continuous colum-
nar films with single grains extending along the film
thickness, and exhibiting a preferred out-of-plane
orientation such that the crystals are oriented with
their c-axis perpendicular to the substrate. With this
preferred orientation the straight and zig-zag MFI
channels are oriented parallel to the substrate, forcing
intracrystalline transmembrane transport to follow the
tortuous, higher resistance paths along thec-axis.

In this class ofc-out-of-plane oriented MFI mem-
branes, we detected the presence of straight and open
grain boundaries extending along the film thickness
nearly in parallel with the zeolite grains, using fluo-
rescent confocal optical microscopy [28]. In order to
understand the permeation behavior of this class of
MFI membranes, we need to take into account the
transport anisotropy in the membrane grains (faster
transport parallel to the membrane surface and slower
transport in the transmembrane direction) and the
presence of non-zeolitic porosity at the grain bound-
aries extending along the membrane thickness. The
development of the mathematical model introduced
here is thus motivated by the microstructure of these
membranes.

Below we investigate perhaps the simplest model
of isothermal, single-component permeation through
an imperfect zeolite membrane with constant-pressure
boundary conditions. We achieve this by studying
permeation through a Langmuirian lattice in two di-
mensions, which is in contact with reservoirs that
serve as sources and sinks of adsorbates. Langmuirian
models involve regular lattices of identical adsorption
sites where transport occurs via activated jumps be-
tween adjacent sites [31–38]. Defining the transmem-
brane direction along thex-axis, and the “plane” of
the membrane along they-axis, the rates with which
particles hop between adjacent adsorption sites arekx

and ky , respectively. Single-component permeation
fluxes through perfect, Langmuirian membranes are
rigorously independent of the jump rateky [33]. In
this article, we explore permeation throughimper-
fect Langmuirian membranes, to determine whether
certain defect structures can make permeation fluxes

depend on variables controlling motion along the
y-direction.

In previous studies, we have simulated detailed
aspects of activated permeation through relatively
thin (L < 0.2mm), defect-free membranes using
open-system kinetic Monte Carlo methods [37,38].
However, for the present study we wish to explore
more realistic membrane thicknesses, on the order
of L = 1mm. Because permeation simulation times
scale roughly withL2, kinetic Monte Carlo becomes
extremely time consuming when applied to these
thicker membranes. Instead, we apply a finite differ-
ence formulation of the diffusion equation [35,37,38],
which is known to reproduce the transport properties
of single-component Langmuirian systems much more
efficiently than with kinetic Monte Carlo. Below we
find that with a moderate density of voids in the mem-
brane, permeation fluxes can be strongly influenced by
jumps perpendicular to the transmembrane direction.
This suggests that an oriented zeolite membrane may
not produce the expected transport anisotropy if there
is a sufficient density of defects in the membrane.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the details of our model
membrane system, and describes the finite differ-
ence formulation used to calculate permeation fluxes.
Section 3 presents results and discussion for both
perfect and imperfect Langmuirian membranes, and
in Section 4 we give concluding remarks.

2. The membrane system

Fig. 1 shows the membrane system we will discuss
in this paper. The inflow reservoir is assumed to be
large, so that the chemical potential of the permeating
species remains constant at all times in the reservoir.
Similarly, the chemical potential of the permeating
component in the outflow reservoir is held constant.
For simplicity we will assume that the concentration in
the outflow reservoir is held at zero so that any perme-
ating molecules that reach the outflow reservoir have
zero probability of returning to the zeolite membrane.

The membrane has a number of imperfections or
defects. On the inflow side there is a pore that is at
the same chemical potential as the inflow reservoir.
On the outflow side there is an “erop,” which is a
pore in reverse. The space enclosed by the erop is at
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Fig. 1. Schematic representation of a Langmuirian zeolite membrane with nanoscopic defects. The membrane is of infinite extent in a
plane perpendicular to thex-coordinate direction. The inflow reservoir is maintained at a constant pressure (defined byν) and the outflow
reservoir is maintained at vacuum (ν = 0).

the same chemical potential as the outflow reservoir.
As such, the pore is an extension of the inflow reser-
voir while the erop is an extension of the outflow
reservoir. In addition, there is a void in the center of
the membrane shown in Fig. 1. This void is a region
devoid of zeolite that is accessible to the permeating
molecules. At any point in time, the chemical po-
tential throughout the void is spatially homogeneous.
Thus, the void may be considered as an internal reser-
voir of permeating molecules. The assumption that
the chemical potentials in the pore, void and erop are
spatially homogeneous is equivalent to assuming that
transport within these regions is much faster than in-
tracrystalline transport in the zeolite. This is justified
by the fact that gaseous diffusion is generally many
orders of magnitude faster than diffusion in zeolites.

For comparison with Fig. 1, we show in Fig. 2(a) a
top view SEM (scanning electron microscope) image

Fig. 2. SEM (scanning electron microscope) image of an MFI membrane; (a) top view; and (b) cross sectional view (from [28]).

of an MFI membrane, and in Fig. 2(b) we show the
corresponding cross sectional view (from Ref. [28]).
Furthermore, Fig. 3 shows a confocal microscopy im-
age that reveals the presence of grain boundaries (also
from [28]). The close correspondence between the
present model and actual membrane microstructure is
evident from comparing Figs. 1–3. Despite this corre-
spondence, the purpose of this paper isnot to suggest
the manufacture of membranes with particular mi-
crostructures, but rather to explore the consequences
of membrane microstructures that arise from modern
synthetic techniques.

2.1. Langmuirian zeolites

In this paper, we investigate perhaps the sim-
plest, realistic model for single-component perme-
ation through zeolite membranes, the “Langmuirian”
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Fig. 3. Confocal microscopy image showing grain boundaries (from [28]). Correspondence between the present model and actual membrane
microstructure is evident.

model. This model has been extensively investigated
[31–38], and has been shown to quantitatively model
adsorption and diffusion for many zeolite host–guest
systems over a wide range of conditions. As de-
scribed in more detail elsewhere [37], Langmuirian
models involve regular lattices of identical adsorption
sites where transport occurs via activated jumps be-
tween adjacent sites. In addition, such models ignore
guest–guest interactions except for exclusion of mul-
tiple site-occupancy. Such models exhibit Langmuir
adsorption isotherms, and give single-component
transport diffusivities that are independent of load-
ing. A typical example is cyclohexane in silicalite,
where experimental results are consistent with the
Langmuirian model up to a maximum loading of four
molecules per unit cell [39]. Such behavior should
be expected because silicalite channel intersections,
where cyclohexane is adsorbed, are separated by a
relatively large distance, so that the molecules in
adjacent sites do not interact strongly.

Diffusion in Langmuirian systems proceeds by a
sequence of thermally activated jumps, in which a sor-
bate molecule jumps from one site to a vacant nearest
neighbor site, only after overcoming an energy barrier
of Ex in thex-direction. Attempted jumps to occupied
sites are unsuccessful because double occupancy of
adsorption sites is forbidden. The rates with which a
particle attempts to hop from one adsorption site to an
adjacent site in thex- and y-directions, respectively,
are given by

kx = ax exp(−βEx) andky = ay exp(−βEy), (1)

whereβ = 1/kBT , kB is Boltzmann’s constant, and
Ex and Ey are the activation energies for jumping
between two adjacent sites in thex- andy-directions,

respectively. We define the anisotropy parameter,η,
by the ratio

η = ky

kx

, (2)

of the attempted jump rates in they- andx-directions.
η = 1 corresponds to an isotropic lattice,η > 1 cor-
responds to a membrane where the jump rate in the
transmembrane direction is slower, andη < 1 corre-
sponds a membrane where diffusion is faster in the
transmembrane direction. Single-component perme-
ation fluxes through perfect, Langmuirian membranes
are rigorously independent of the jump rateky . We
explore the influence of diffusion anisotropy on per-
meation throughimperfectLangmuirian membranes
(see Fig. 1) by varyingη over several orders of magni-
tude. For values ofη 6= 1, η depends on temperature;
we vary η by fixing Ex and varyingEy to give a
desired value ofη at a particular temperature, to be
discussed further below.

The rate coefficient for desorption of a molecule
from an edge site into any non-zeolitic region such as
either of the reservoirs (including the pore and erop),
or into the void, is given by

kd = ad exp(−βEd). (3)

Hence, we assume that desorption from the lattice is a
thermally activated process with an activation energy
given by the heat of adsorption, as has been done
previously [37,38].

For sites exposed to the inflow reservoir, at the
left-hand edge of the membrane or at the edges of the
pore, adsorption into the zeolite is controlled by an
attempted insertion rate given by

ν = a ρgas
√

T . (4)
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In using Eq. (4), we have assumed that the inflow
reservoir is an ideal gas phase [37,38].a is a prefactor
determined by the surface topology of the zeolite and
the mass of the molecule,ρgasis the gas phase density
andT is the absolute temperature. Eq. (4) is also used
for sites exposed to the void; however, in the voidρgas
is not constant but rather is a free variable determined
by the accumulation of permeating molecules in the
void.

The processes governed by the rateskx , ky , kd, and
ν are assumed to be independent, Poisson processes
with an instantaneous probability that is Markovian,
i.e. the probability only depends on the current state
of the system, and as such does not depend on the
system’s history. Throughout the paper, as well as in
our earlier work [37,38], we use input parameters char-
acteristic of cyclohexane in silicalite, motivated by the
measurements of Magalhães et al. [39]; please see [37]
for more details. Briefly, these parameters areEd =
17.5 kcal mol−1 andEx = 11.5 kcal mol−1. We gener-
ally expect thatkd � kx ; however, ifkd is too small the
simulations may become intractable. To keep the sim-
ulations reported in [37] tractable, we studied the case
wherekd = kx/100, which corresponds to the temper-
atureT = 656 K using the above activation energies
measured by Magalhães et al. In the present study, we
model membrane permeation at different temperatures
and for different values of the anisotropy,η. Since in
generalη depends on temperature, we need to quote
values ofη at a reference temperature. Unless other-
wise specified, we quote values ofη atT = 656 K, for
consistency with our previous studies of membrane
permeation. As such, we explore the effect of diffusion
anisotropy by varying direction-dependent activation
energies, and determining the temperature-dependent
consequences of such variations.

A Langmuirian zeolite exposed to a fluid with-
out external driving forces will have an adsorption
isotherm of the form

θeq = 1

1 + (kd/ν)
, (5)

whereθeq is the equilibrium occupancy. Eq. (5) can
be derived by equating the rate of actual insertion,
ν(1−θeq), and the rate of desorption,kdθeq, at equi-
librium. Because our goal is a kinetic transport study,
this kinetic form of the Langmuir isotherm is the most
relevant. For an isothermal ideal gas,ν is proportional

to the gas pressure, and the more usual form of the
Langmuir isotherm is thus recovered

θeq = 1

1 + (b/p)
, (6)

giving occupancy as a function of the pressure,p. In
this study, we compute the temperature dependence of
permeation fluxes at constant pressure. The parameter
ν is chosen atT = 656 K to give a target value of
θeq at the inflow edge;ν is then scaled according to
νT 1/2 = constant, to keep the pressure fixed.

2.2. Finite difference formulation of diffusion

The theory of adsorption and diffusion in Lang-
muirian host–guest systems is well-developed
[31,32,35,37] and is based on a finite difference
formulation (FDF) of diffusion, which we briefly de-
scribe below. Because nodes in the finite difference
formulation represent adsorption sites, the natural
grid spacing in the FDF is the distance between ad-
jacent sites. It is well-established that the FDF for
a single component Langmuirian host–guest system
gives the same numerical results as a large ensemble
of kinetic Monte Carlo simulations [37]. Hence, in
this work we will utilize the FDF to investigate the
effect of a particular microstructure on permeation
through anisotropic membranes.

We define the spatially and temporally varying
occupancies of the permeating specie in the Lang-
muirian membrane as follows:θx,y(t) is the concen-
tration of particles at timet at site (x,y), also known
as the local site occupancy fraction at this point. This
concentration should be considered as an ensemble
average over large number of identical systems with
identical boundary conditions. An alternate interpre-
tation ofθx,y(t) is that it represents the probability of
finding a particle at adsorption site (x,y) at time t. In
what follows, we will omit the explicit dependence
on site position (x,y) and time t, i.e. θx,y(t) → θ ,
unless clarity requires otherwise. We model transient
behavior as a convenient method for approaching and
numerically simulating steady states. Direct model-
ing of steady states is also possible; however, with
the present pore-void-erop membrane microstruc-
ture, such modeling would require an inconvenient
self-consistent approach, because the density of par-
ticles in the void is not known beforehand.
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For diffusion in the interior of the lattice, we can
write

δθx,y

δt
= Dx

(δx)2
(θx−1,y − θx,y)+ Dx

(δx)2
(θx+1,y − θx,y)

+ Dy

(δy)2
(θx,y−1 − θx,y)

+ Dy

(δy)2
(θx,y+1 − θx,y), (7)

for the bulk of the zeolite. If the site is an edge site
then one of the four terms on the right-hand side of
Eq. (7) should be replaced by the term

Dx

(δx)2
(θx−1,y − θx,y)

surface→ ν(1 − θx,y) − kdθx,y . (8)

Note that the surface term does not include a length
scale. This means that the grid point should corre-
spond to an actual surface site. Although the finite
difference grid can be mapped naturally onto the array
of adsorption sites, it can also be mapped onto a grid
with spacing larger than the distance between adsorp-
tion sites. This corresponds to solving the continuous
differential equation for diffusion (Fick’s second law)
numerically on a grid, where the grid spacing is
controlled by the spatial variation of density across
the membrane. Using FDF grid spacings larger than
site-to-site distances is appropriate when density vari-
ations are relatively small over such length scales.
This approach can result in significant increases in
the numerical efficiency of the algorithm.

Eq. (7) results in part from Fick’s first law,J =
−D∇θ . In the alternative treatment of permeation, the
Maxwell–Stefan formulation, the flux is given by

J = −L∇µ, (9)

whereJ is the particle flux,L is the Onsager coef-
ficient and∇µ is the chemical potential gradient in
a non-equilibrium system. The approach we take in
this paper is entirely consistent with Eq. (9) [35,37],
in the sense that the Fickian and Stefan–Maxwell
approaches would produce the same fluxes given the
same driving forces, where∇θ and ∇µ are related
through the adsorption isotherm.

When analyzing permeation through zeolite mem-
branes, it is commonly assumed that there are no mass
transfer resistances external to the membrane, and that
permeation is determined solely by intra-membrane

transport [40]. In this “diffusion-limited” regime, the
chemical potentials at the edges of the membrane are
assumed to be the same as in the reservoirs they are
contacting. This assumption of local thermodynamic
equilibrium at the edges of the membrane is valid for
relatively thick membranes, wherekdL � Dx , where
L is the membrane thickness andDx is the transmem-
brane Fickian diffusivity. However, as we have pre-
viously shown, this approximation breaks down for
relatively thin membranes [35,37,38]. In the present
paper, we will demonstrate that a change in the mi-
crostructure of an otherwise large membrane may
change the membrane from being diffusion-limited to
sorption-limited.

3. Results and discussion

The FDF was used to calculate the flux through var-
ious membrane configurations. The initial condition
was that the zeolite was filled with an equilibrium-
adsorbed amount of the permeating specie. The
time-dependent evolution of the concentration profiles
were then generated using Eqs. (7) and (8). Steady
states were identified when the influx from the inflow
reservoir was the same to numerical accuracy as the
flux into the outflow reservoir.

3.1. Perfect membrane

As a test of the finite difference code, we calculated
the flux through a perfect membrane, i.e. one with no
pores, voids or erops. For this perfect system, an ana-
lytical expression for the steady-state flux can be de-
rived. At steady state there is a linear concentration
gradient from the inflow side atx = 1 to the outflow
side atx = L. By applying Fick’s first law of diffu-
sion, we find that the flux,J, is given by

J = −Dx

[
θL − θ1

L − 1

]
. (10)

For large values ofL, L − 1 can be replaced byL. At
the inflow edge, the flux is given by

J = ν(1 − θ1) − kdθ1. (11)

The first term on the right-hand side is the rate of
actual insertion of particles from the inflow reservoir
into the sites in columnx = 1. The second term on the
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right-hand side is the rate of particle desorption from
the sites in column 1 into the inflow reservoir. At the
outflow edge, the flux is given by

J = kdθL, (12)

as we have set the concentration in the outflow reser-
voir to be zero so thatν = 0 at the outflow edge.

Eqs. (10)–(12) can be solved for the flux in terms
of known quantities, yielding

J = νkdDx

kdL(ν + kd) + (ν + 2kd)Dx

. (13)

If we substitute the kinetic form of the equilibrium ad-
sorption isotherm, i.e. Eq. (5), into Eq. (13) we obtain

J = kdθeqDx

kdL + (2 − θeq)Dx

, (14)

whereθeq is the loading of the corresponding equi-
librium system, with both reservoirs presenting inser-
tion frequencies equal toν. As discussed below for
non-equilibrium systems,θeq is also the local con-
centration on the influx edge in the diffusion-limited
regime.

Fig. 4 shows the flux,J, through a perfect mem-
brane withL = 1001 sites as a function of tempera-
ture, for a constant pressure reservoir. We report flux in
units of (number of permeating molecules) per (edge
site) per (time unit), where the time unit is 1/(4kx) =
2 × 10−7 s, which is the mean residence time in an

Fig. 4. Flux through a perfect membrane of thicknessL as a
function of temperature. The maximum in the flux,J (solid line),
is caused by competition between the temperature dependencies of
the equilibrium amount adsorbed,θ (solid line), and the diffusivity,
Dx /L (dashed line). The dotted line,θDx /L, indicates the flux in
the thick membrane limit (see text).

interior adsorption site of a perfect, isotropic lattice at
T = 656 K. For the discussion below, we denote the
temperature that gives the maximum flux,Jmax, by the
variableTmax. The FDF numerical method was found
to give results identical to those predicted by Eq. (14).
As shown in Fig. 4, the maximum flux arises because
of the competition between the temperature dependen-
cies of the diffusivity,Dx , and the equilibrium amount
adsorbed,θ . It is the competition between these trends
that accounts for the maximum in the flux, as can be
seen by the close match between the FDF fluxes and
those given by the product

J = θeqDx

L
, (15)

which is the limiting form of Eq. (14) whenkdL �
Dx . Eq. (15) is the thick-membrane limit wherein per-
meation is diffusion-limited, and is also isomorphic
to Fick’s first law,J = −D∇θ , whereD = Dx and
∇θ = −θeq/L.

Bakker et al. have reported curves similar to those
in Fig. 4 for permeation of lighter molecules through
silicalite membranes [41]. A significant difference
between our flux curve and that of Bakker et al. is
that the latter gradually increases with temperature for
temperatures well aboveTmax. In their analysis, there
is an additional “gaseous” permeation term that is
driven by the pressure drop across the membrane [41].
The “gaseous diffusivity” increases with temperature,
while the pressure drop across the membrane remains
constant by design, thereby producing increasing flux
at high temperatures. Such an increase is inconsistent
with the Langmuirian model discussed here as there
is only a single mode of transport, namely, jump
diffusion between well-defined adsorption sites. At
high temperatures in our model, the adsorbed amount
decreases more rapidly with temperature than the
diffusivity Dx increases (see Eq. (15)).

For relatively thin Langmuirian membranes where
kdL � Dx , the flux is given by

J = kdθeq

(2 − θeq)
. (16)

This is the sorption-limited extreme where the con-
centration throughout the membrane is constant with
the value

θL = θeq

(2 − θeq)
. (17)
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Fig. 5. Comparison of fluxes through an anisotropic imperfect
membrane with nanoscopic defects, as shown in Fig. 1, and a
perfect membrane as a function of temperature.

In this regime the intracrystalline chemical potential
is constant throughout the membrane interior, and is
intermediate between those of the inflow and out-
flow reservoirs. Note that the thickness of the mem-
brane does not appear in Eq. (16), indicating that
the flux is independent of membrane thickness in the
sorption-limited extreme.

3.2. Imperfect membranes

Fig. 5 shows the flux through the membrane shown
in Fig. 1. The membrane isL = 1000 sites thick, cor-
responding to a 1mm thick silicalite membrane. The
vertical distance between the void and the pore, and
the void and the erop is1y = 50 sites. The pore, void

Fig. 6. Schematic representation of a shortcut through the anisotropic membrane of Fig. 1. In the shortcut, the diffusion in they-direction
is controlling.

and erop are 500 sites wide and 50 sites high. Instead
of applying the usual periodic boundary conditions to
this membrane in they-direction, we applied reflec-
tive boundary conditions, so that they-component of
the flux is zero across the top and bottom sites of the
membrane shown in Fig. 1. These reflective bound-
ary conditions, which are equivalent to impermeable
grain boundaries, are implemented using impermeable
sites at the top and bottom edge, and produce a mem-
brane of infinite extent in they-direction. The results
in Fig. 5 were obtained with an anisotropy factor of
η = 10 atT = 656 K for the cyclohexane in silicalite
system, by adjustingEy as discussed above.

As can be seen from Fig. 5, the flux through the im-
perfect membrane has a similar functional form to that
for the perfect membrane, but with a maximum flux
that is about ten times larger. If molecules only travel
in the x-direction, the effective membrane thickness
would be about one-half that of a perfect membrane.
This would account for about a two-fold increase in
the flux; the additional increase in flux must therefore
be produced by molecules taking shortcuts through
the membrane as shown schematically in Fig. 6. In
taking such shortcuts, the molecules pass through two
thin zeolite sections of thickness1y, with a com-
bined thickness of about one-tenth that of the perfect
membrane. Although we predict higher fluxes for
this imperfect, anisotropic membrane, permselectivi-
ties obtained from this membrane may be lower than
those for defect-free membranes, because theeffective
membrane thickness is much smaller than the actual
thickness.

As discussed in Section 1, the goal of this study is
to explore the influence of microstructural defects on
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permeation though anisotropic zeolite membranes. We
wish to determine whether certain defect structures
can make permeation fluxes depend on variables con-
trolling motion along they-direction, even though this
is perpendicular to the transmembrane,x-direction.
In particular, we are interested in correlating fluxes
with the following variables: the diffusivity along
the y-direction, Dy = ηDx ; and 1y, the distance
between adjacent defects. As discussed above for
perfect membranes, permeation is diffusion-limited
when kdL � Dx and is sorption-limited when
kdL � Dx . Now, for imperfectmembranes, we want
to know whether shortcut-dominated permeation
may be diffusion-limited whenkd1y � Dy and
sorption-limited whenkd1y � Dy .

To explore how flux depends onDy = ηDx , we
varied the diffusion anisotropyη keepingEx fixed as
discussed above. Fig. 7 shows the peak flux,Jmax, as
a function of diffusion anisotropy for two values of
the distance between defects,1y. Because the diffu-
sion anisotropy varies with temperature, we plotJmax
against the value ofη at the temperatureTmax, cor-
responding to the maximum flux. At low values of
the anisotropy, diffusion in they-direction is slowed
down dramatically and transport through the shortcut
becomes negligible. As a result, the flux approaches a

Fig. 7. Maximum flux as a function of diffusion anisotropy at
the maximum flux temperature,η(Tmax), for imperfect membranes
with two different imperfection spacings1y = 50 (solid lines)
and 1y = 25 (dotted lines). Also shown is the dimensionless
ratio, Dy /(kd1y), which successfully predicts whether shortcuts
contribute significantly to the overall flux.

constant value for smallη. When1y � L, this con-
stant flux is related to the average length of defects
along thex-direction. For example, with defects that
extend half the membrane thickness, as in Figs. 1 and
6, the asymptotic flux for smallη will be roughly twice
that for a perfect membrane, ca. 2× 0.0005= 0.001.
The flux for smallη decreases as1y increases, ap-
proaching the perfect-membrane value of about 0.0005
as 1y → ∞. This is because for fixed values ofη

and increasing1y, the distance between imperfec-
tions becomes sufficiently large that the fraction of
flux through the shortcut becomes minimal, so that
flux approaches that for a perfect membrane.

Also shown in Fig. 7 is the dimensionless ratio,
Dy /(kd1y), which reflects whether permeation
through the shortcut is diffusion- or sorption-limited.
At high values of diffusion anisotropy,Dy /(kd1y)
becomes large and the shortcut flux approaches a
sorption-limited value. In this regime, the magnitude
of shortcut flux depends on1y because the concentra-
tion of imperfections in they-direction is controlled
by 1y. For example, there is one shortcut per 300
sites when1y = 50 and one shortcut per 225 sites
when1y = 25.

The dimensionless ratioDy /(kd1y) appears to be a
good indicator for when shortcut flux is significant.
For values ofDy /(kd1y) much less than unity, the
shortcut flux produces a negligible contribution to the
overall flux. However, for large values the shortcut
flux becomes significant. In this case, the overall flux
will notexhibit the usualL−1 dependence expected for
a perfect, diffusion-limited membrane. Indeed, in ac-
tual permeation measurements the flux often decreases
with L to a plateau value and not to zero [21]; our cal-
culations suggest that this plateau arises when shortcut
flux through defects dominates normal flux.

For values ofη between 0.1 and 1.0 using the
parameters in our model, permeation flux correlates
well with Dy , i.e. transmembrane flux is strongly in-
fluenced by the rate of jumps along the y-direction.
As an example of the consequence of such a trans-
port regime, considerp-xylene permeation through a
c-oriented silicalite membrane [20,21,42]. Although
such a membrane may be continuous in that it lacks
pinholes, the membrane may have a sufficient den-
sity of voids to make transmembrane flux influenced
by p-xylene motion down theb-axis, i.e. the straight
channels. This is in contrast to transport diffusion
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Fig. 8. Maximum flux as a function of imperfection spacing, for a
diffusion anisotropy ofη = 10. For small imperfection spacings the
shortcut flux dominates; whereas, for larger imperfection spacings
the flux approaches that of a perfect membrane.

through perfect Langmuirian membranes, for which
permeation flux is rigorously independent ofDy . At
values ofDy /(kd1y) close to unity, the flux is approx-
imately halfway between the limit of a perfect mem-
brane and the limit where shortcut flux dominates.

Fig. 8 shows the variation of peak flux as a function
of the spacing between imperfections, for a system
where η = 10 at T = 656 K for the cyclohexane
in silicalite system discussed above. The first two
points in Fig. 8 correspond to1y = 25 and 50,
respectively. As discussed above, the flux decreases
as the concentration of imperfections decreases. As
the spacing between imperfections increases, the flux
decreases towards the perfect-membrane value of
about 0.0005. The decrease ofJmax with 1y shown
in Fig. 8 provides another signature of the regime
where permeation flux is diffusion-limited along the
y-direction. This is analogous to the diffusion-limited
case of a perfect membrane, whereJmax decreases
with membrane thicknessL.

4. Conclusions

We have modeled permeation through anisotropic
zeolite membranes with nanoscopic defects. Configu-
rations of defects that create shortcuts perpendicular
to the transmembrane direction have been investi-
gated. We have shown that the addition of void-like

defects can have a dramatic effect on the flux through
the membrane, particularly if diffusion in the plane of
the membrane is significantly faster than diffusion in
the transmembrane direction. We have found that the
dimensionless ratioDy /kd1y can be used to estimate
whether the shortcuts contribute significantly to the
overall flux. HereDy is the diffusion coefficient for
motion perpendicular to the transmembrane direction,
kd is the rate of desorbing into defect voids, and1y is
the spacing alongy between adjacent defects. For val-
ues ofDy/kd1y � 1 we find that shortcuts increase
the flux by significant amounts. The magnitude of the
flux is increased as the imperfection spacing1y is de-
creased. For small values of1y, permeation through
shortcuts becomes sorption-limited so that decreasing
1y further does not increase the flux through a single
shortcut. However, as1y is decreased, the concen-
tration of shortcuts increases, thereby increasing the
total contribution of the shortcuts to the flux. We have
found regimes where increasing1y or decreasingDy

decreases the overall flux, showing that permeation
can be diffusion-limited by motion perpendicular
to the transmembrane direction. In the context of
c-out-of-plane oriented MFI membranes, this find-
ing suggests that with the appropriate distribution of
open grain boundaries evenc-oriented membranes
can behave likeb- or a- oriented films.
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