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Abstract

We review theory and simulation of rare event dynamics, diffusion and phase
equilibrium in nanopores, focusing on benzene in Na-X and Na-Y zeolites
because of persistent experimental discrepancies. We discuss transition state
theory and its application to zeolite–guest systems, suggesting that calcula-
tions on flexible lattices and at finite guest loadings are important areas for
future research. We consider many-body adsorption and diffusion in zeolites,
focusing on the coupling between rare event dynamics and strong guest–guest
interactions. We explore the possibility that benzene can undergo phase tran-
sitions from low to high sorbate density in Na-X, and find that this type of
phase transition might explain intriguing loading dependencies of water and
ammonia diffusion in terms of a subcritical droplet picture of adsorption in
zeolites. We discuss various formulations of non-equilibrium diffusion through
finite lattices, and describe a tracer counter-permeation simulation technique.
We find that transport in finite single-file systems is characterized by a dif-
fusivity that decreases monotonically with file length, but that this transport
is otherwise completely described by Fick’s laws. We conclude by speculating
on the prospect for cross-fertilization between zeolite science and other fields.
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I. INTRODUCTION

Zeolites are nanoporous crystalline aluminosilicates with a rich variety of interesting
properties and industrial applications.1–3 With over 100 zeolite framework topologies4,5 syn-
thetically available—each with its own range of compositions—zeolites offer size-, shape-
and electrostatically-selective adsorption,6 diffusion7,8 and reaction6 up to remarkably high
temperatures. Indeed, the technological importance of zeolites cannot be overstated, consid-
ering that the value of zeolite catalysis to petroleum cracking is well in excess of 100 billion
dollars.9 Zeolites are also used as molecular sieves for separating chemical mixtures, as ion
exchangers and filters, as environmentally safe detergents, as desiccants for new coolant
systems,10 and as hydrocarbon traps for new cold start catalytic converters.11 The closely
related mesoporous sieves12 show promise for separating biomolecules, and may be useful
for making optical electronic materials with substantial quantum confinement.

As important as zeolites are technologically, the physical chemistry underlying their ap-
plication is poorly known. The wide-ranging applicability of these materials results from
strong zeolite–guest interactions, which can severely retard guest mobility, making theoreti-
cal modeling nearly intractable.13,14 As a result, significant research activity has emerged in
the development and application of theoretical methods specialized for rare event dynamics,
such as transition state theory and kinetic Monte Carlo, to problems in zeolite science.15
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In this review, we explore the interplay among rare event dynamics, diffusion and phase
equilibrium in nanopores, highlighting our own atomistic simulations and lattice models of
molecules in zeolites.16–35

Zeolite nomenclature can be confusing despite its attempt at clarity. A given zeolite
is typically defined by its three-letter structure type, its silicon to aluminum ratio (Si:Al),
and its charge-compensating cations. For example, Na-Y is an “FAU-type” zeolite with a
Si:Al > 1.5, and with exchangeable Na cations compensating the negative aluminosilicate
framework charge. A different zeolite, Na-X, is also an FAU-type zeolite with Na cations,
but with Si:Al < 1.5 and hence containing a higher density of Na cations than that in
Na-Y. Other important zeolites include ZSM-5, which is an “MFI-type” zeolite with charge
compensated either by Na cations or protons, and silicalite, which is the completely siliceous
analog (Si:Al=∞) of ZSM-5. The majority of studies discussed below have been performed
on these four zeolites.

We have reported a series of theory and simulation studies modeling rare event dynamics,
diffusion and phase equilibrium of benzene in Na-X and Na-Y zeolites,16–25,27,28,31,33 because
of persistent, qualitative discrepancies between different experimental probes of the coverage
dependence of self diffusion.7 We discuss these studies in detail below to provide a common
thread for the review. A plethora of other interesting systems exist in zeolite science; our
choice of content for the review reflects our own experience in the field, and perhaps our
ignorance of other interesting work. We regret that no review can be complete.

We model benzene in Na-X and Na-Y by replacing the zeolite framework with a three
dimensional lattice of binding sites. Such a lattice model reproduces behavior accurately
when site residence times are much longer than travel times between sites,36 which is the case
for benzene in Na-X and Na-Y because of the strong charge–quadrupole interaction between
Na and benzene.37 The lattice of benzene binding sites in Na-X and Na-Y discussed below
contains four tetrahedrally arranged sites inside each cage, as well as four doubly shared,
tetrahedrally arranged sites that connect adjacent cages. These intercage sites are typically
called “window” sites. Such a hierarchy of intracage and window sites is very common in
zeolite science, and is very important for the results described below.

To facilitate visualizing such a complex, three-dimensional lattice, we discuss an analo-
gous two-dimensional lattice shown below. Figure 1 begins with a square lattice of window
sites in (a), which are then superimposed on a schematic lattice of zeolite cages in (b),
followed by the full lattice including intracage sites in (c). Figure 2 provides a blow-up
showing the actual site geometry for benzene in Na-X and Na-Y, including intracage (SII)
and window (W) sites. Dynamics and diffusion in this system are strongly influenced by the
competition between intracage motion and cage-to-cage migration, which is closely related
to the competition between molecular rotation and translation in zeolites. On the other
hand, phase transitions in this system are controlled by effective, cage-to-cage attractive in-
teractions that are mediated by the window sites. Below we describe theory and simulation
studies on this and related lattice models, with an emphasis on comparison with experiment.
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(a) (b) (c)
Figure 1. Development of schematic lattice for zeolite–guest systems.

SII

W

Generic Cage-type Lattice Benzene in Na-Y
Figure 2. Specific lattice geometry for benzene in Na-Y zeolite.

Lattice models are very convenient for simulating diffusion in zeolites at low loadings.
However, because the critical temperature of bulk benzene is over 560 K, attractive guest–
guest interactions are significant and should not be ignored. Modeling such systems remains
challenging because of the coupling between rare event dynamics and strong guest–guest
interactions, i.e. the competition between adhesive and cohesive forces. We outline below
our recently developed model for determining how guest–guest interactions modify activation
energies of site-to-site jumps,25,31 and speculate on the feasibility of more rigorous dynamical
treatments of guest–guest interactions.38

In what follows, we review transition state theory and its application to zeolite–guest
systems, suggesting that calculations on flexible lattices and at finite guest loadings are im-
portant areas for future research. We explore the possibility that benzene can undergo phase
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transitions from low to high sorbate density in Na-X, and we discuss various formulations of
non-equilibrium diffusion through finite lattices. In general, we find that understanding the
thermodynamics of confined fluids can be crucial for elucidating the transport properties of
molecules in zeolites, and that explicitly including adsorption and desorption phenomena in
open system diffusion models is crucial for drawing qualitatively valid conclusions.

II. TRANSITION STATE DYNAMICS OF SITE-TO-SITE JUMPS IN ZEOLITES

As discussed in the Introduction, the nature of adsorption in nanopores involves some
degree of confinement, creating long residence times either in specific sites or more generally
in zeolite cages or channels. Atomistic modeling of rare site-to-site or cage-to-cage motions
by molecular dynamics (MD) is therefore very challenging. These MD studies have been
relegated to relatively weakly binding zeolite–guest systems, and are reviewed in Ref. 14.
To model strongly binding zeolite–guest systems, theoretical methods specialized for rare
event dynamics, such as transition state theory (TST) and reactive flux correlation theory
(RFCT) must be utilized.39 The challenge in performing these rare event calculations, as
with all molecular simulations, is to devise a sufficiently accurate potential energy surface
(PES), and to sample statistically relevant regions of the potential.

A. Potentials and Jump Pathways

Most of the molecular simulations performed on zeolite systems to date involve potential
functions, i.e. molecular mechanics forcefields. In a small number of studies, the ab initio
molecular dynamics method of Car and Parrinello40 has been applied to zeolites;41–43 because
these calculations focus on very short time dynamics, we do not discuss them further. The
potential functions used in modeling zeolite frameworks generally fall into two categories:
ionic models and valence bond models.44 The ionic models represent the zeolite as a collection
of charged species interacting via short and long range forces,45 while the valence bond
models represent the zeolite via two-body and three-body short range interactions.14 As
with most molecular simulations,46 short range interactions are only evaluated within a
given cut-off distance according to the minimum image convention, while long range forces
are evaluated with either the Ewald method46 or the fast multipole method,23,47 the choice
dictated by the number of atoms allowed to move in the simulation.23

Zeolite–guest interactions typically involve Coulombic and Lennard-Jones terms:16,17,44

VZG =
NZ∑
i=1

NG∑
j=1


qiqj

rij
+ 4εij


(σij

rij

)12

−
(

σij

rij

)6



 , (2.1)

where the charges and Lennard-Jones parameters are fitted to either ab initio calculations48,49

or to crystallographic, adsorption and spectroscopic data. To reduce the complexity of the
potential parameter set, further approximations are typically invoked, such as neglecting
Lennard-Jones interactions between positively-charged guest atoms and Si/Al frame atoms,
because the repulsive electrostatic forces between these atoms supposedly keep them farther
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apart than the relatively short range of Lennard-Jones interactions. However, recent cal-
culations indicate framework radii of 1.2 Å for Si and 1.0 Å for O,50 suggesting that Si/Al
atoms may protrude into the intracrystalline void space, thereby interacting with guest
species at shorter distances than those predicted by conventional wisdom. Further ab initio
calculations are required to test the severity of neglecting these zeolite–guest Lennard-Jones
interactions.

A further approximation that is often invoked involves averaging the properties of Si and
Al in the framework, due to the difficulty in quantifying Al distributions in zeolites.51 This
so-called average T-site model, which derives its name from the SiO4 and AlO4 tetrahedra
in zeolites, may be justified for modeling molecules adsorbed in zeolites when guest atoms
remain relatively far from frame atoms, e.g., when guest species interact directly with charge-
compensating cations. However, we believe that the average T-site method is unrealistic
for modeling cations in zeolites, because of the close proximity between cations and frame
atoms. To ameliorate this difficulty, Vitale et al. have recently reported a forcefield for
Na-X zeolite (Si:Al = 1) using different charges on Si and Al, which accounts for some
but not all cation locations in Na-X.52 Jaramillo and Auerbach have also developed and
validated a new forcefield for Na cations in FAU-type zeolites, which explicitly distinguishes
Si and Al atoms, as well as different types of oxygens in the framework. This new forcefield
gives excellent agreement with experimental data on cation positions, site occupancies and
vibrational frequencies for most cations in Na-X and Na-Y.32

Despite the complexities of these potentials, they are almost always obtained from ab
initio or experimental data for species in their stable, equilibrium configurations. However,
to use these potentials for modeling rare event dynamics, the potentials must also reproduce
energies in the transition state region with equal fidelity. This remains an outstanding
problem in Physical Chemistry, which has been addressed for gas phase systems using direct
dynamics parameterized by correlated electronic structure methods.53,54 Along these lines,
Truong55 and Fermann et al.34,35 have performed rate calculations for proton motions in
acidic zeolites using various flavors of quantum TST, parameterized directly by correlated
electronic structure methods. Unfortunately, such calculations are relegated to very small
clusters, containing perhaps 3 Si/Al atoms. These small cluster models neglect long range
forces,56 and are likely to overestimate framework rigidity. An important avenue for future
research is thus the coupling of direct dynamics methods with periodic electronic structure
models of zeolites.56

For consistency with the electrostatic treament of zeolite–guest interactions in Eq. (2.1),
we prefer in general to use the ionic model with the approximations discussed above, by
fitting potential parameters to experimental data. This approach has been used to develop
potentials for a wide variety of zeolite–guest systems,44 including aromatics in FAU-type ze-
olites such as benzene in Na-Y,16 Na-X,17 Ca-X27 and Si-Y,57,58 by reproducing sorption sites
from crystallography and energies from thermochemistry. Si-Y is the completely siliceous
analog of Na-Y, i.e. with no Al and hence no charge-compensating cations, which is synthe-
sized by “Zero Defect De-Alumination” of zeolite Y (ZDDAY).59 Using these potentials, we
have calculated minimum energy paths (MEPs) for site-to-site jumps of benzene in these
zeolites, using the constrained optimization technique implemented in our program Dizzy60

as described in Ref. 16. In addition, other groups have performed MEP calculations for
aromatics in FAU-type zeolites.58,61–63 In general, the agreement between simulation and
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experiment is excellent, as discussed below.
To illustrate the results of these MEP calculations, we consider benzene in Na-Y, which

has two predominant sites64 shown schematically in Figs. 2 and 3 In the primary site, denoted
as SII, benzene is facially coordinated to a supercage 6-ring, ca. 2.7 Å above a Na cation
in site II according to crystallographic nomenclature. In the secondary site, denoted as
W, benzene lies in the plane of the 12-ring window separating adjacent supercages, ca. 5.3
Å from the SII site. Our theory and simulation studies (see Sec. IIC) show that the rate
determining step for benzene cage-to-cage migration in Na-Y, and hence for intracrystalline
diffusion, is the SII→W jump, for which the calculated MEP and energies are shown in Fig.
4. The activation energy from these calculations, 41 kJ mol−1, is in excellent agreement with
40±2 kJ mol−1, measured by Isfort et al. with two-dimensional exchange NMR.65 Because
this NMR experiment was performed with 5 molecules per Na-Y cage, while our calculation
involves 1 molecule per zeolite, it remains unclear whether this favorable comparison is
appropriate. Our calculated barrier is also in very good agreement with the unpublished
value of 37 kJ mol−1, measured by Jobic using quasi-elastic neutron scattering at low benzene
loadings.66 This computational result provides a picture to go along with these measured
activation energies, hence elucidating the process that is actually probed during diffusion
measurements.

II

IIS -W

Na

W-W

Na-Y

S -SII II

Figure 3. Sorption sites and jumps for benzene in Na-Y.
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Figure 4. SII↔W MEP for benzene in Na-Y (transition state indicated in bold), with
a calculated barrier of 41 kJ mol−1.

In general, we believe this level of accuracy can be obtained for a wide variety of zeolite–
guest systems by carefully constructing potentials and searching for transition states. Indeed,
Table I shows a comparison between experiment and simulation for benzene in various FAU-
type zeolites, where |∆Hsorb| is the initial heat of sorption, Ea is the activation energy for
intracage motion, and “ref” cites the source of data. The results in Table I show that these
potentials are capable of reproducing all the experimental trends in both thermodynamic
and kinetic parameters, often with quantitative accuracy.

Zeolite Exp |∆Hsorb| ref Sim |∆Hsorb| ref Exp Ea ref Sim Ea ref
Ca-X 134 67 119 27 66 68 72 27
Na-X 73 69 70 17 14 17 15 17
Na-Y 79 69 77 16 24 59 35 16
Si-Y 55 58 59 57 10 59 7 57

Table I. Experiment and simulation for benzene energetics (kJ mol−1) in various FAU-
type zeolites.

Armed with the success of these potentials, we proceed to calculate pre-exponential
factors for rate coefficients describing site-to-site jumps in zeolites. In the next section, we
discuss methods for performing transition state theory (TST) and reactive flux correlation
theory (RFCT) calculations on molecules in zeolites, illustrating these ideas with results for
benzene in Na-Y.

B. Dividing Surface Statistics and Dynamics

The standard ansatz in TST is to replace the dynamically converged, net reactive flux
from reactants to products with the instantaneous flux through the transition state dividing
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surface. TST is inspired by the fact that, although a dynamical rate calculation is rigorously
independent of the surface through which fluxes are computed,70 the duration of dynamics
required to converge the net reactive flux is usually shortest when using the transition state
dividing surface. The TST approximation can be formulated for gas phase or condensed
phase systems,39,71,72 using classical or quantum mechanics.73

The rate coefficient for the jump from site i to site j can be expressed classically as:

ki→j(t) =
1

χi

〈q̇(0)δi[r(0)]Θj[r(t)]〉, (2.2)

where χi is the equilibrium mole fraction of particles in the state i, q is the particle coordinate
perpendicular to the dividing surface bounding state i, δi[r] denotes the Dirac delta function
whose value is 1 if the particle lies on the boundary surface of state i and zero otherwise,
and Θj[r] is the standard step function whose value is 1 if the particle is in state j and zero
otherwise. In Eq. (2.2), 〈· · ·〉 signifies an average in the canonical ensemble.

Equation (2.2) represents the flux of particles flowing through the dividing surface at
time 0, weighted by the step function indicating that only those molecules in site j are
counted in the average at time t. Although ki→j depends explicitly on time t in Eq. (2.2),
ki→j(t) will become constant for a finite but reasonably long period of time, provided that
site-to-site jumps are truly rare events for the system and temperature of interest. The
value of ki→j(t) in this “plateau regime” is the physically meaningful rate coefficient, which
should not depend in principle on the choice of dividing surface. Times in the plateau regime
satisfy τcorr < t � τrxn, where τcorr is the typical time of vibrational motion of the particle
in its site, and τrxn is the typical time between two “reactive” events. If the rate coefficient
in Eq. (2.2) does not reach a plateau value, but instead decreases linearly with time for a
duration long compared with τcorr, then the physically meaningful rate coefficient is obtained
by extrapolating this linear descent back to t = 0. On the other hand, if neither a plateau
regime nor a linear descent can be identified in the time dependence of ki→j(t), then chemical
kinetics is not a useful phenomenology because site-to-site jumps are not rare events. All is
not lost, though, because straightforward molecular dynamics can then be used to calculate
mobilities.

The standard TST rate coefficient can be written in the same notation:

kTST
i→j =

1

χi
〈q̇(0)δi[r(0)]Θj[r(ε)]〉, (2.3)

where ε is an infinitesimal time. Unlike Eq. (2.2), here all trajectories that leave site i and
enter site j at time 0 are considered reactive; therefore, Eq. (2.3) strongly depends on the
exact position of the transition state. The last equation can be rewritten by replacing the
projection operator in position with one in velocity, i.e. Θj [r(ε)] → Θ[q̇(0)], yielding the
more usual form:

kTST
i→j =

1

2

(
2kBT

πm

)1/2
Q‡

Qi
, (2.4)

where kB is Boltzmann’s constant, T is temperature, m is the reduced mass associated with
the reaction coordinate, Q‡ is the configurational partition function on the dividing surface
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and Qi is the configurational partition function in the reactant state i. The last expression
can be evaluated without recourse to dynamics, either by Monte Carlo simulation or in the
harmonic approximation by normal mode analysis.74 The exact rate coefficient can then be
written as:

ki→j = kTST
i→j × fij(t), (2.5)

where the so-called dynamical correction factor is:

fij(t) =
〈q̇(0)δi[r(0)]Θj[r(t)]〉
〈q̇(0)δi[r(0)]Θj[r(ε)]〉 . (2.6)

The dynamical correction factor is usually evaluated from short molecular dynamics simu-
lations originating on the dividing surface. For classical systems, fij(t) always takes a value
between zero and one, and gives the fraction of initial conditions on the dividing surface
that actually lead to reaction at temperature T .

While Eqs. (2.4)–(2.6) are standard expressions of TST and RFCT, the exact way in
which they are implemented depends strongly upon the actual system of interest. Indeed,
if the transition state dividing surface is precisely known (as for the case of an adatom),
Eq. (2.4) then provides a good first approximation to the rate coefficient, and the dynamical
correction factor accounts for the possibility that the particle does not thermalize in the
state it has first reached, but instead goes on to a different final state. This process is called
“dynamical recrossing” if the final state is identical to the original state, and otherwise is
called “multisite jumping.” The importance of dynamical recrossing or multisite jumping
depends on a number of factors, of which the height of the energy barriers and the mech-
anism of energy dissipation are essential. More important, perhaps, is the fact that the
rate coefficient computed via Eq. (2.5) does not depend on the exact location of the tran-
sition state, as long as the dynamical correction factor fij(t) can be evaluated with enough
accuracy.

In a complex system with many degrees of freedom it might be difficult, or even impos-
sible, to define rigorously the dividing surface between the states. In this case the transition
state approximation may fail, requring the use of Eq. (2.6) or an equivalent expression based
on a similar correlation function. Indeed, TST assumes that all trajectories initially crossing
the dividing surface in the direction of the product state will eventually relax in this state.
This statement will be qualitatively false if the supposed surface does not coincide with the
actual dividing surface. In this case, the dynamical correction factor corrects TST for an
inaccurately defined dividing surface, even when dynamical recrossings through the actual
dividing surface are rare. The problem of locating complex dividing surfaces has recently
been addressed using topology,75 statistics76 and dynamics.77,78 These methods share the
perspective that complex dividing surfaces can best be understood by considering paths
that connect the “reactant” and “product” potential minima.

TST and RFCT have been applied to zeolite–guest systems in a number of interesting
studies. These studies were motivated to some extent by the pioneering work of Demon-
tis, Yashonath and Klein,79 who performed the first molecular dynamics (MD) study on a
zeolite–guest system in 1989. In addition to calculating accurate heats of sorption with MD,
Demontis et al. attempted to use MD to model benzene diffusion in Na-Y at 326 K with a
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24 ps long simulation. That the length of their simulation is too short to model diffusion is
borne out by their reported diffusion coefficient – 4×10−9 m2 s−1 – appropriate for benzene
in Si-Y, but 2–3 orders of magnitude too large for benzene in Na-Y.59

June, Bell and Theodorou reported the first application of TST dynamically corrected
with RFCT for a zeolite–guest system in 1991,80 modeling the diffusion of Xe and “spher-
ical SF6” in silicalite, the siliceous analog of ZSM-5, an MFI-type zeolite. This system is
sufficiently weakly binding that reasonably converged MD simulations could be performed
for comparison with the rare event dynamics, showing excellent quantitative agreement in
the diffusivities obtained. This study also showed that computers available to academic re-
searchers in the early 1990’s can produce a useful overlap between the rare event regime and
the molecular dynamics regime. By modeling the motion of spherical guests in silicalite,
June et al. considerably simplified the task of finding dividing surfaces between sorption
sites. The dynamical correction factors obtained by June et al. show that recrossings can
diminish rate coefficients by as much as a factor of ca. 3, and that multisite jumps along
straight channels in silicalite81 contribute to the well known diffusion anisotropy in MFI-type
zeolites.82

Snurr, Bell and Theodorou then applied harmonic TST to benzene diffusion in sili-
calite, assuming that benzene and silicalite remain rigid, by using normal mode analysis
in generalized coordinates for the 6 remaining benzene degrees of freedom.83 Their results
underestimate experimental diffusivities by one to two orders of magnitude, probably more
from assuming a rigid zeolite than from using harmonic TST. Maginn, Bell and Theodorou
performed reversible work calculations with a TST flavor on long chain alkanes in silicalite,84

finding that diffusivities monotonically decrease with chain length until about n-C8, after
which diffusivities plateau and become nearly constant with chain length. Greenfield and
Theodorou even dared to apply TST to model molecular penetration through glassy poly-
mers, by computing configurational averages involving ca. 350 degrees of freedom.85 They
found an extremely broad distribution of rate coefficients for methane jumps in atactic
polypropylene at 233 K.

Jousse and co-workers reported a series of MD studies on butene isomers in channel
zeolite-types MEL and TON.26,86 Because the site-to-site energy barriers in these systems
are comparable to the thermal energies studied in the MD simulations, rare event dynamics
need not apply. Nonetheless, Jousse and co-workers showed that even for these relatively
low-barrier systems, the magnitudes and loading dependencies of the MD diffusivities could
be well explained within a jump diffusion model, with residence times extracted from the
MD simulations. These studies show once again that with modern computers, the MD
regime and rare event regime can have significant overlap.

Mosell, Schrimpf and Brickmann reported a series of TST and RFCT calculations on Xe
in Na-Y87,88 in 1996, and benzene and p-xylene in Na-Y63,89 in 1997. They calculated the
reversible work of dragging a guest specie along the cage-to-cage [111] axis of Na-Y, and
augmented this version of TST with dynamical corrections. In addition to computing the
rate coefficient for cage-to-cage motion through Na-Y, Mosell et al. confirmed that benzene
W sites are free energy local minima, while p-xylene W sites are free energy maxima, i.e. cage-
to-cage transition states.63,89 Mosell et al. also found relatively small dynamical correction
factors, ranging from 0.08–0.39 for benzene and 0.24–0.47 for p-xylene. At about the same
time in 1997, Jousse and Auerbach reported TST and RFCT calculations of specific site-to-
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site rate coefficients for benzene in Na-Y,23 using Eq. (2.2) with jump-dependent dividing
surfaces (see Fig. 5 below). As with Mosell et al., we found that benzene jumps to W sites
could be defined for all temperatures studied. We found dynamical correction factors mostly
above 0.5, suggesting that our jump-dependent dividing surfaces coincide more closely with
the actual ones. Although the flavors of the two approaches for modeling benzene in Na-Y
differed, the final results were remarkably similar considering that different forcefields were
used. In particular, Mosell et al. used MD to sample dividing surface configurations, while we
applied the Voter displacement-vector Monte Carlo method90 for sampling dividing surfaces.
The apparent activation energy for cage-to-cage motion in our study is 44 kJ mol−1, in very
reasonable agreement with 49 kJ mol−1 obtained by Mosell et al. Below we discuss further
the results in Ref. 23, to illustrate these TST and RFCT calculations.

As a prelude to our discussion of many-body diffusion in Sec. III, we note that Tunca
and Ford have reported TST rate coefficients for Xe cage-to-cage jumps at high loadings
in ZK-4 zeolite, the siliceous analog of Na-A, an “LTA-type” zeolite.38 These calculations
deserve several remarks. First, because this study treats multiple Xe atoms simultaneously,
defining the reaction coordinate and dividing surface can become quite complex. Tunca and
Ford addressed this problem by considering averaged cage sites, instead of specific intracage
sorption sites, which is valid because their system involves relatively weak zeolite–guest
interactions. They further assume a one-body reaction coordinate and dividing surface
regardless of loading, which is tantamount to assuming that the window separating adjacent
α-cages in ZK-4 can only hold one Xe at a time, and that cooperative many-Xe cage-to-cage
motions are unlikely. Second, Tunca and Ford advocate separate calculations of Q‡ and Qi

for use in Eq. (2.4), as opposed to the conventional approach of calculating ratios of partition
functions viz. free energies.90 It is not yet obvious to the author whether separating these
calculations is worth the effort. Third, Tunca and Ford have developed a recursive algorithm
for building up (N + 1)-body partition functions from N -body partition functions, using a
“test particle” method developed for modeling the thermodynamics of liquids. Although
the approach of Tunca and Ford has a restricted regime of applicability, and is not yet
able to compare with experiment, it nonetheless seems promising in its direct treatment of
many-body diffusion effects.

To illustrate the mechanics of TST and RFCT calculations, we discuss our results for
benzene in Na-Y.23 We calculated rate coefficients for the following jumps: SII→SII, SII→W,
W→SII and W→W (see Figs. 3 and 4). The dividing surfaces used for these jumps are shown
schematically in Fig. 5. These surfaces are justified by a number of features of the actual
sites: (i) the symmetry of the SII→SII and W→W paths requires the corresponding dividing
surface to be on the symmetry plane; (ii) the transition state for the SII→W jump happens
to lie near the line joining the SII and W sites. Figure 5 shows that a problem appears for
the W→W jump: the dividing surface is indeed reduced to naught by the W→SII dividing
planes. This does not mean that there is actually no dividing surface, but only that it
cannot be defined in as simple and logical a way as for the SII→SII and SII→W processes.
Boundaries were placed on the W-W symmetric plane on each side in the middle 4-ring, so
that its total extent amounts to 2.4 Å. To extend the boundary surface farther would cause
it to approach the SII site, which is not a possible transition state for the W→W jump.
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Figure 5. Schematic of dividing surfaces for benzene jumps in Na-Y.

In general, dividing surfaces for benzene jumps should involve no fewer than 5 degrees
of freedom, to account for benzene’s orientational anisotropy. Our dividing surfaces clearly
ignore this anisotropy, which could lead to sizable error in the TST rate coefficients. To test
this, we calculated TST rates by averaging over 200,000 Monte Carlo steps in both the reac-
tant and transition state. The corresponding dynamical correction factors were calculated
by averaging over 2,000 MD trajectories initialized on the dividing surface, and propagated
for ca. 10 ps or until final thermalization was confirmed. A typical TST calculation for
this system required 10 CPU hours on an IBM RS/6000 PowerPC 604e 200MHz processor,
while the corresponding dynamical correction required ca. 48 additional CPU hours. Figure
6 shows the time dependence of the dynamical correction factor for the SII→SII jump at 298
K. In general, fij(t) should start at 1 and decrease non-monotonically to the plateau value.
In Fig. 6, the initial rise of fij(t) is an artifact of the calculation, due to the fact that our
dividing surface has a width,90 set in this calculation to 0.2 Å. The behavior of fij(t) agrees
well with what has been described in the literature: after an initial rapid decay, fij(t) decays
very slowly to its plateau value, in this case 0.687. We have also confirmed that the RFCT
results are independent of dividing surface, while the TST rates depend strongly on dividing
surface location, by redoing the calculations using a slightly different transition state.
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Figure 6. Time dependence of the dynamical correction factor for the SII→SII benzene
jump in Na-Y at 298 K.

The fact that the dynamical correction factor for the SII→SII rate coefficient plateaus near
0.7 suggests that neglecting benzene’s anisotropy in defining the SII→SII dividing surface is
reasonable. To determine if the other dividing surfaces for benzene in Na-Y work as well,
we calculated TST and RFCT rates for all 4 jumps over the temperature range 150–500 K.
The resulting apparent activation energies and pre-exponential factors are shown in Table
II, along with the apparent Arrhenius parameters for the SII→W equilibrium coefficient.

Activation Energy (kJ mol−1) Arrhenius Prefactors
Jump Process MEP TST RFCT TST RFCT
W→SII 16 17.0 ± 0.1 16.4 ± 0.3 2.7 1012 s−1 1.1 1012 s−1

W→W 18 → 1.1± 0.5← 15.1 ± 4.0 6.0 1011 s−1 2.4 1011 s−1

SII→W 41 44.8 ± 0.1 44.4 ± 0.1 1.6 1013 s−1 0.8 1013 s−1

SII→SII 35 37.4 ± 0.1 36.8 ± 0.3 1.6 1013 s−1 0.8 1013 s−1

Keq(SII→W) 25 28.0 ± 0.2 7.1

Table II. Apparent Arrhenius parameters from rate coefficients for benzene jumps
among SII and W sites in Na-Y, using TST and RFCT methods. Note the failure of
TST for the W→W jump.

Several remarks can be made about the data in Table II. First, the equilibrium coefficient
energetically favors the SII site for its strong π−cation interaction, but entropically favors
the W site for its greater flexibility; a trend that is mirrored by the rate coefficients. This
entropic predisposition for the W site is important for benzene phase transitions in Na-X,28

discussed in Sec. III B. Second, we clearly see the failure of TST for modeling the W→W
process, not because TST is inaccurate, but rather because our implementation of TST does
not account for the anisotropy of the actual W→W dividing surface. Third, because the
W→W prefactor is nearly an order of magnitude smaller than that for the W→SII jump,
there is likely to be a strong entropic bottleneck in the W→W jump. This can arise from
either a tight transition state, which TST should be able to handle, or from other final states
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that lie close to the W→W dividing surface, which TST cannot treat accurately because of
its blindness to the eventual fate of dividing surface flux. Figure 5 shows that the W→W
path crosses right through the SII→SII path, suggesting that most of the flux through the
W→W dividing surface relaxes to an SII site. Thus, most of these W→W dividing surface
configurations have nothing to do with actual W→W jumps, but do have energies slightly
higher than the W site energy, explaining the very small TST activation energy for this
jump.

Before leaving this section, we address a question that is raised at every meeting on zeolite
science: What effect do lattice vibrations play in molecular jump dynamics? While we can-
not provide a comprehensive answer, we can suggest some guidelines.14,91 For guest molecules
that fit tightly into zeolite pores, molecular simulations that neglect lattice vibrations will
almost surely overestimate cage-to-cage jump activation energies, because rigid-lattice simu-
lations ignore the cooperative effect of ring breathing with molecular motion. Such an error
in the activation energy will produce rate coefficients that can be several orders of magnitude
too small, as Snurr et al. found for benzene in silicalite.83 For guest molecules that fit loosely
into zeolite pores, rigid-framework MD or TST simulations are likely to overestimate the
external vibrational frequencies of guests during site-to-site jump attempts, because keeping
the framework rigid hardens the vibrational environment of an adsorption site. Such an
error in attempt frequencies is not likely to produce order-of-magnitude errors in rate coef-
ficients or diffusion coefficients, because rates and diffusivities are only linearly proportional
to attempt frequencies.80 To examine these effects, we performed several TST calculations
allowing for benzene internal flexibility and/or Na vibration in Na-Y zeolite.91 A typical
TST calculation with flexible benzene and movable Na cations required 35 CPU hours on
an IBM PowerPC. These TST calculations show only 1 kJ mol−1 decreases in activation
energies, and very modest changes in pre-exponential factors.

We thus find that site-to-site jump dynamics in zeolites are well described by TST when
the initial or final sites involve relatively deep potential mimina, and that molecular jump
dynamics in a large pore zeolite is well described by including only a small number of
degrees of freedom. We now turn our attention to calculating observable mobilities arising
from molecular translation and rotation.

C. Diffusion and Orientational Randomization at Infinite Dilution

In order to make contact with measurements of transport through zeolites,7,8 we must
relate our site-to-site rate coefficients with quantities such as the self diffusivity and trans-
port diffusivity, which arise from molecular translation; or we can model NMR correlation
times, which are controlled by molecular rotation. At infinite dilution on an M-dimensional
hypercubic lattice, i.e. 1-d, 2-d square, 3-d cubic, etc., both the self and transport diffusivity
are given by D0 = khopa

2 = 1
2M

ka2, where khop is the rate coefficient for jumps between near-
est neighbor sites, a is the distance between such sites, and 1/k is the mean site residence
time.36 This result neglects multisite hops, which have jump distances greater than a. Un-
fortunately, site lattices in zeolites are much more complicated than hypercubic, apparently
defying such simple analytical formulas. To address this complexity, many researchers have
applied kinetic Monte Carlo (KMC) to modeling diffusion in zeolites, parameterized either
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by ad hoc jump frequencies or by atomistically calculated jump rate coefficients.
KMC models diffusion on a lattice as a random walk composed of uncorrelated, single

molecule jumps. KMC is isomorphic to the more conventional Monte Carlo algorithms,46

except that in a KMC simulation random numbers are compared to ratios of rate coefficients,
instead of ratios of Boltzmann factors. However, if the pre-exponential factors cancel in a
ratio of rate coefficients, then a ratio of Boltzmann factors does arise, where the relevant
energies are activation energies. In addition to modeling transport in zeolites, KMC has
been used to model adsorption kinetics on surfaces,92 and even surface growth itself.93 The
fundamental assumption in KMC is that successive jumps are uncorrelated, leading to a
Poisson distribution of jump times controlled by the pre-calculated rate coefficients. This
assumption can break down when many-body motions become correlated, as can happen
with polymer dynamics or surface reconstructions.77 Despite these concerns, KMC remains
a powerful technique for modeling jumps of neutral molecules in zeolites.

KMC can be implemented with constant time-step algorithms where jumps are accepted
or rejected based on the kinetic Metropolis prescription, in which a ratio of rate coefficients,
khop/kref , is compared to a random number.19,94 Here kref is a reference rate that controls
the temporal resolution of the calculation. KMC can also be implemented with variable
time-step algorithms, in which a hop is made every KMC step and the system clock is
updated accordingly.95,96 The mean time elapsed before each hop is the inverse of the total
rate coefficient to leave the originating site. In all cases, the probability of a particular jump
is proportional to the associated rate coefficient. We find that constant time-step KMC is
more convenient for calculating correlation functions, while variable time-step KMC is more
efficient for calculating mean square displacements.19

Most KMC simulations of diffusion in zeolites are performed at high guest loadings, to
explore the effects on transport of guest–guest interactions. We review these studies below
in Sec. III. A handful of studies have been reported modeling diffusion in zeolites at infinite
dilution with KMC, to relate fundamental rate coefficients with observable self diffusivities
for particular lattice topologies. June et al. augmented their TST and RFCT study with
KMC calculations of Xe and SF6 self diffusivities in silicalite.80 They obtained excellent
agreement among apparent activation energies for Xe diffusion calculated using MD, KMC
with TST jump rates, and KMC with RFCT jump rates. The resulting activation energies
fall in the range 5–6 kJ mol−1, which unfortunately is much lower than the experimentally
determined values of 15 and 26 kJ mol−1.97,98 van Tassel et al. reported a similar study in
1994 on methane diffusion in zeolite A, finding excellent agreement between self diffusivities
calculated with KMC and MD.99 Auerbach et al. reported KMC simulations of benzene
diffusion in Na-Y, showing that the SII→W jump controls the temperature dependence of
diffusion,16 as discussed further below. Because benzene residence times at SII sites are so
long, these KMC studies could not be compared directly with MD, but nonetheless yield
very good agreement when compared with experiment (see Sec. IIA).

KMC simulations of diffusion in zeolites at infinite dilution usually involve a relatively
small configuration space, and a modest number of input parameters. The results of KMC for
sufficiently simple systems can often be anticipated, e.g. the apparent activation energy for
self diffusion in zeolites is usually controlled by jumping through a zeolite window. Indeed,
consider the case of benzene in Na-Y. Because the lattice of supercages is a diamond lattice,
as shown in Fig. 2, we can simplify the motion of benzene in Na-Y by imagining that—
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although hops really take place among SII and W sites—long range motion involves jumps
from one “cage site” to an adjacent “cage site.”18,20,100–102 As such, all the SII and W site
structure within a cage becomes the internal structure of the cage site. A random walk
through Na-Y reduces to hopping on the tetrahedral lattice of supercages, for which the
mean square displacement after N cage-to-cage jumps is given by:

〈
R2(N)

〉
=

〈∣∣∣∣∣
N∑

i=1

~li

∣∣∣∣∣
2〉

=

〈
N∑

i=1

∣∣∣~li∣∣∣2
〉

+

〈∑
i6=j

~li·~lj
〉

(2.7)

=

〈
N∑

i=1

a2

〉
= Na2 = kta2 = 6Dst,

where a is the kinetically averaged cage-to-cage distance, and 1/k ≡ 〈τc〉 is the kinetically
averaged supercage residence time.18 The third equality results because jumps are uncorre-
lated, and the final equality establishes that Ds = 1

6
ka2, identical to the expression for a

simple-cubic lattice. The same result is obtained from a rigorous analysis of the random
walk average using Bernoulli statistics,18 which explicitly samples the eight possible random
jump vectors {~li} for a tetrahedral lattice. In fact, the same result is obtained for any regular
lattice in three dimensions consisting of only one site type and one jump length scale, viz.
the tetrahedral lattice.

Now we seek analytical formulas for k and a in terms of fundamental rate coefficients and
jump lengths for the lattice model of benzene in Na-Y. The mean cage-to-cage jump distance
does have a weak temperature dependence,18 but nonetheless remains close to the cage-center
to cage-center distance, ca. 10.8 Å.64 The supercage residence time is more interesting,
however. In what follows the W and SII sites are denoted sites 1 and 2, respectively.

We imagine a trajectory executed by a single benzene molecule through Na-Y, hopping
among SII and W sites. In the limit of a very long trajectory, mean residence times at SII

and W sites can be used to calculate hopping rate coefficients and equilibrium coefficients
in accord with the ergodic hypothesis.103 The mean supercage residence time is then given
by:

〈τc〉 =
T

Ncc
=

1

Ncc
(T1 + T2) =

T1

Ncc

(
T1 + T2

T1

)

T→∞−→ T1

Ncc
[1 + Keq(1→2)] , (2.8)

where T = T1 + T2 is the total time of the trajectory, T1 and T2 are the total residence
times at W and SII sites, respectively, and Ncc is the number of cage-to-cage jumps during
the trajectory. The long time limit in Eq. (2.8) ensures convergence of T2/T1 to the equilib-
rium coefficient Keq(1→2) = 2k1→2/k2→1, where ki→j are fundamental rate coefficients (cf.
Table II), and the factor of two arises because each W site is shared between two adjacent
supercages. The long time limit allows T1 to be expressed as:

T1 = N ‡ · T1

N ‡ = N ‡ · 〈τ1〉
T→∞−→ N ‡

k1
=

N ‡

6 (k1→1 + k1→2)
, (2.9)
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where N ‡ is the number of visits to W sites, 〈τ1〉 is the mean W site residence time, k1 =
1/〈τ1〉 is the total rate of leaving the W site, and the factor of six counts available target sites
in the Na-Y supercage structure. The long trajectory limit allows one further simplification,
namely that Ncc = N ‡/2. The factor of one half accounts for randomizing in the W site
which halves the probability to leave the cage, an assumption which is valid for benzene but
not p-xylene in Na-Y.63

Putting these results together, we have:

〈τc〉 = 2 · 〈τ1〉 · [1 + Keq(1→2)] =
1 + 2k1→2/k2→1

3 (k1→1 + k1→2)
, (2.10)

which represents an exact formula determining cage-to-cage motion in terms of fundamental
hopping rate coefficients. The formula in Eq. (2.10) agrees quantitatively with results from
KMC simulations for all temperatures and fundamental rate coefficients studied.18,20 If we
assume that Keq(1→2)� 1 because of the energetic stability of the SII site, the cage-to-cage
rate coefficient reduces to:

k ∼= 3

2
· k2→1

(
1 +

k1→1

k1→2

)
∼= 3

2
k2→1, (2.11)

where the last approximation arises from the entropically diminished pre-exponential for
the W→W jump. Thus, we have found that the rate-determining step for cage-to-cage
migration, and hence intracrystalline self diffusion for benzene in Na-Y is the SII→W jump.
Qualitatively similar conclusions can be expected for many other zeolite–guest systems, but
not for long chain alkanes (> C8) in FAU-type zeolites, which are dominated by W→W
jumps.104

The diffusion theory outlined above in Eqs. (2.7)–(2.11) relies on the tetrahedral topol-
ogy of Na-Y in particular, and FAU-type zeolites in general. Developing such a theory for
general frameworks remains challenging. Braun and Sholl have recently developed a Laplace-
Fourier transformation method for calculating exact self-diffusion tensors in generalized lat-
tice gas models.105 These methods in general involve quite heavy matrix algebra, which can
sometimes hide the underlying physical meaning of the parameters. Jousse, Auerbach and
Vercauteren have developed an alternative method for deriving analytical self-diffusion co-
efficients at infinite dilution for general lattices, by partitioning the correlated displacement
of a tracer into uncorrelated sequences of jumps.33 This approach can be used to analyze
both geometric correlations due to the non-symmetric nature of adsorption sites in zeolite
pores, and kinetic correlations arising from insufficient thermalization of a molecule in its
final site.

It is interesting to note that the formulas controlling cage-to-cage motion are rigorously
independent of k2→2, the SII→SII rate coefficient. As such, a measurement of benzene dif-
fusion through Na-Y is totally insensitive to this fundamental rate parameter, raising the
question: What physical situation would be controlled by the intracage, SII→SII hopping
process? We have addressed this issue by performing KMC simulations of the orienta-
tional correlation function (OCF) that is probed by NMR relaxation and multidimensional
exchange experiments,106 namely C(t) = 〈P2(cosβt)〉, where P2(x) = 1

2
(3x2−1) is the second-

degree Legendre polynomial, and βt is the angle between benzene’s six-fold axis at time 0
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and t. We note that Klein et al. studied this OCF and others in their molecular dynamics
simulations of benzene, xylenes and nitroaniline in Na-Y.107 We have found that benzene
orientational randomization in Na-Y is controlled exclusively by k2→2 when the Si:Al ra-
tio of the zeolite provides full occupancy of Na(II) cations.19 Because these Na(II) cations
are arranged tetrahedrally in the supercage, as shown in Fig. 2, benzene can undergo com-
plete orientational randomization by making only SII→SII jumps, and by avoiding the more
energetically costly SII→W jump. Thus, we predict that the NMR spin-lattice relaxation
experiments of Bull et al.59 on benzene in Na-Y (Si:Al=1.7) observe intracage hopping pro-
cesses, their data providing a direct probe of the SII→SII hopping rate coefficient. This
suggests the comparison of their 24 kJ mol−1 apparent activation energy to our Ea(SII→SII)
= 35 kJ mol−1, as shown in Table I.

In several instances self diffusion coefficients for adsorbed benzene are estimated from
relaxation data59,108–110 according to Ds ∼ 1

6
kBORa2, where a is a likely jump length chosen

from structural data, and 1/kBOR is the measured correlation time for benzene orienta-
tional randomization (BOR). Our present results suggest that using NMR relaxation data
to estimate diffusivities may be incorrect for many systems. Therefore, reporting NMR cor-
relation times in terms of diffusion coefficients may lead to inappropriate comparisons with
data from, e.g., pulsed field gradient (PFG) NMR which directly measures mean square
displacements.7,111

These results indicate that benzene intracage dynamics in Na-Y can be probed by mea-
suring molecular rotation with NMR relaxation; while intercage dynamics requires a probe of
molecular translation, which can be achieved with PFG NMR. One wonders whether a single
experiment can measure both intracage and intercage dynamics. We have addressed this
question by modeling BOR in Na-Y with only 2 Na(II) cations per supercage, thereby break-
ing the tetrahedral symmetry that was present with 4 Na(II) cations per cage.19 Our KMC
calculated OCF exhibits biexponential decay as shown in Fig. 7, revealing rapid intracage
motion (SII→SII) at short times and more sluggish cage-to-cage migration (SII→W) at longer
times. This prediction has been verified experimentally for benzene in Ca-Y (Si:Al=2.0) by
the exchange-induced sidebands NMR method,27 hence providing a single experiment that
can probe simultaneously intracage and intercage motions in zeolites.
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Figure 7. Ln|OCF| for benzene in Na-Y (Si:Al=3.0) at T = 300 K by KMC. Intracage
motion gives rapid, incomplete decay while cage-to-cage migration gives slower, long
time decay.

By modeling BOR in Na-Y with only 1 Na(II) cation per supercage, we have found that
the resulting OCF is sensitive to the precise distribution of Na(II) cations.19 In particular,
single exponential decay of the OCF is predicted when each cage contains exactly 1 Na(II)
cation, while biexponential decay arises when the distribution of Na(II) cations among su-
percages is not as regular. This is important because measuring the distribution of Na(II)
cations is closely related to measuring Al distributions in disordered zeolites, which remains
challenging to modern characterization methods.51,112 The striking conclusion drawn from
these calculations is that studying BOR in Na-Y with one quarter Na(II) occupancy can
clearly distinguish between qualitatively different Al distributions. We therefore suggest that
guest mobility can be used to probe structural aspects of disordered zeolites; this prediction
awaits experimental verification.

Thus far our discussion of dynamics in zeolite has focused (almost38) exclusively in the
low loading regime, wherein the transport of isolated guest molecules can be considered.
This is the least interesting situation to those who utilize zeolites in chemical applications,
because infinite dilution means slowly accumulating profits. In Sec. III, we turn our attention
to the statistical mechanical problem of many-body diffusion in zeolites.

III. STATISTICAL MECHANICS OF MANY-BODY DIFFUSION IN ZEOLITES

Significant effort has been devoted to understanding the loading dependence of diffusion
in zeolites, revealing fascinating physical effects such as anomalous diffusion,113,114 correlated
cluster dynamics,115 soft core interactions,21,25 broken symmetry27 and percolation.116 Most
if not all models of the loading dependence of jump diffusion in zeolites have been carried
out with KMC. Variable time-step KMC simulations are usually carried out as follows: for
a given configuration, ~n, of random walkers, a process list of possible hops from occupied
to empty sites is compiled for all molecules. A particular jump from site i to j is chosen
from this list with a probability of ki→j/ktot(~n), where ki→j is the i to j rate coefficient and
ktot(~n) is the sum of all rate coefficients in the process list. A hop is made every KMC step
and the system clock is updated with variable time-steps.95,96 The actual KMC time-step is
obtained from: ∆t(~n) = − ln(1−x1)/ktot(~n), where x1 ∈ [0,1) is a uniform random number.

The great challenge in implementing this scheme is that the rate coefficients {ki→j}
should depend upon the local configuration of molecules because of guest–guest interactions.
That is, in compiling the process list of allowed jumps and associated rate constants on the
fly of a KMC simulation, TST or RFCT calculations should be performed to account for
the effect of specific guest configurations on the jump rate coefficients. This scheme could
become feasible if rate coefficients for jumps within recurring configurations are stored and
efficiently accessed for subsequent KMC steps. To date, this “ab initio many-body KMC”
approach has not been employed because of its daunting computational expense. Instead,
researchers either ignore how guest–guest interactions modify rate coefficients for site-to-site
jumps; or they use many-body MD at elevated temperatures when guest–guest interactions
cannot be ignored.77,78
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A popular approach for modeling many-body diffusion in zeolites with KMC is thus the
“site blocking model,” where guest–guest interactions are ignored, except for exclusion of
multiple site occupancy. This model accounts for entropic effects of finite loadings, but
not energetic effects. Calculating the process list and available rate coefficients becomes
particularly simple; one simply sums the available processes using rates calculated at infinite
dilution.22 This model is attractive to researchers in zeolite science,117 because blocking of
cage windows and channels by large, aromatic molecules that form in zeolites, i.e. “coking,”
is a problem that zeolite scientists need to understand and eventually eliminate.

Theodorou and Wei used KMC to explore a site blocking model of reaction and diffusion
with various amounts of coking.118 Nelson and co-workers developed similar models, to ex-
plore the relationship between the catalytic activity of the zeolite and its lattice percolation
threshold.119,120 In a related study, Keffer, McCormick and Davis modeled binary mixture
transport in zeolites, where one component diffuses rapidly while the other component is
trapped at sites, e.g. methane and benzene in Na-Y.116 They used KMC to calculate per-
colation thresholds of the rapid penetrant as a function of blocker loading, and found that
these thresholds agree well with predictions from simpler percolation theories.121 Coppens,
Bell and Chakraborty used KMC to calculate the loading dependence of self diffusion for
a variety of lattices, for comparison with mean field theories (MFT) of diffusion.122 These
theories usually predict Ds(θ) ∼= D0(1− θ), where θ is the fractional occupancy of the lat-
tice and D0 is the self diffusivity at infinite dilution. Coppens et al. found that the error
incurred by MFT is greatest for lattices with low coordination numbers, such as silicalite
and other MFI-type zeolites. Coppens et al. then reported KMC simulations showing that
by varying the concentrations of weak and strong binding sites (cf. SII and W sites), their
system exhibits most of the loading dependencies of self diffusion reported by Kärger and
Pfeifer.123

In all these studies, the jump frequencies and reaction rate coefficients were estimated in
various ad hoc ways. In contrast, Trout, Chakraborty and Bell applied electronic structure
methods to calculate thermodynamic parameters for possible elementary reactions in the
decomposition of NOx over Cu-ZSM-5.124 Based on these insights, they developed a KMC
model of reaction and diffusion in this system, seeking the optimal distribution of isolated
reactive Cu centers.125 This hierarchical approach to realistic modeling of complex systems
presents an attractive avenue for future research.

Auerbach and co-workers have reported a series of studies modeling the concentration
dependence of benzene diffusion in Na-X and Na-Y zeolites,21,22,24,25,31 because of persistent,
qualitative discrepancies between different experimental probes of the coverage dependence
of self diffusion.7 PFG NMR diffusivities decrease monotonically with loading for benzene in
Na-X,111 while tracer zero-length column (TZLC) data increase monotonically with loading
for the same system.126 TZLC is a flow method that measures the desorption rate arising from
tracer exchange in a zero-length chromatographic column containing zeolite particles. The
TZLC data is converted to self diffusivities through a model assuming that tracer exchange
introduces no chemical potential gradient. PFG NMR differs from TZLC in that the NMR
experiment directly measures the mean square displacement of magnetically labeled particles
at equilibrium in a zeolite.

Addressing this discrepancy between PFG NMR and TZLC with theory and simulation
may provide better understanding of the microscopic physics essential to benzene transport
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in Na-X and Na-Y. In addition, by varying fundamental energy scales, our model for these
systems exhibits four of the five loading dependencies of self diffusion reported by Kärger
and Pfeifer,123 in analogy with the study of Coppens et al.127 However, because the critical
temperature of bulk benzene is over 560 K, attractive guest–guest interactions are signif-
icant and should not be ignored. Modeling such systems remains challenging because of
the coupling between rare event dynamics and strong guest–guest interactions,26,128 i.e. the
competition between adhesive and cohesive forces. In what follows, we outline our recently
developed model for determining how guest–guest interactions modify activation energies of
site-to-site jumps.25,31 Based on this model, our calculations for benzene in Na-X described
below give excellent qualitative agreement with PFG NMR diffusivities, and give qualitative
disagreement with TZLC data.

It should not be surprising that this three-dimensional lattice model of benzene in Na-X
with attractive interactions supports phase transitions from low to high sorbate density,
analogous to vapor–liquid equilibrium of bulk benzene.28 We examine this phase transition
below, using grand canonical lattice Monte Carlo and thermodynamic integration to explore
the nature of subcritical and supercritical phases. We also explore the impact of this phase
transition on diffusion in zeolites. In general, we find that understanding the thermodynam-
ics of confined fluids can be crucial for elucidating the transport properties of molecules in
zeolites.129,130

A. Supercritical Diffusion: Theory and Simulation

Thus far we have discussed the dynamics and diffusion of benzene in Na-Y; we now
turn our attention to benzene in Na-X. As discussed in the Introduction, Na-X is a FAU-
type zeolite with Si:Al ratios in the range 1.0–1.5, and hence with a higher density of Na
cations than that in Na-Y. Locating benzene adsorption sites in Na-X is more difficult
because of these additional Na cations, which lie in or near the 12-ring window separating
adjacent supercages.52,131 The powder neutron diffraction study of Vitale et al.52 found
benzene in Na-X only at SII, but located only half the adsorbed benzene, suggesting that
low-symmetry benzene sites near the 12-ring window are likely. These binding sites would
act as intermediates for cage-to-cage motion, in analogy with Na-Y W sites. As such, we
denote benzene sites near Na cations in 12-ring windows as Na-X W sites, although strictly
speaking their geometries and energies differ from those of Na-Y W sites. In particular, we
expect that Na-X W sites are stabilized relative to those in Na-Y, because of these additional
Na cations in Na-X. The lattice of benzene binding sites in Na-X and Na-Y thus contains
four tetrahedrally arranged SII sites and four tetrahedrally arranged, doubly shared W sites
per supercage. Saturation coverages of ca. 6 molecules per cage are found for benzene in
Na-X and Na-Y,69 corresponding to occupation of all SII and W sites. In equations that
follow, the W and SII sites are denoted sites 1 and 2, respectively.

1. Parabolic Jump Model

A lattice gas model is used to describe the thermodynamics of these systems, limiting
the range of guest–guest interactions to nearest neighbors. The Hamiltonian for a lattice
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with M1 W sites and M2 = 2M1 = M −M1 SII sites, takes the form:

H(~s, ~σ) =
M1∑
i=1

sif1 +
1

2

M1∑
i,j=1

siJ
11
ij sj +

M1∑
i=1

M2∑
j=1

siJ
12
ij σj +

1

2

M2∑
i,j=1

σiJ
22
ij σj +

M2∑
i=1

σif2 (3.1)

where ~s and ~σ are site occupation numbers for W and SII sites, respectively, and f1 and f2

are their respective site free energies given by fi = εi−Tsi. In Eq. (3.1), J11
ij , J12

ij and J22
ij are

the nearest neighbor W–W, W–SII and SII–SII interactions, respectively, i.e. J11
ij = J11 for

nearest neighbor W sites and zero otherwise, and so on for J12
ij and J22

ij . These parameters
are obtained from the second virial coefficient of the heat of adsorption,69,132 yielding ca. J =
J12 = J22

∼= −4 kJ mol−1. However, to determine qualitatively how guest–guest interactions
control the loading dependence of the self diffusivity, we vary J12 and J22 over the range 0
to −10 kJ mol−1.

The site binding energies are taken as ε2 = −78 kJ mol−1 and ε1 = −63 kJ mol−1 for
benzene in Na-X, and ε2 = −78 kJ mol−1 and ε1 = −53 kJ mol−1 for benzene in Na-Y.25,31

Site 2 is chosen for the zero of entropy in both Na-X and Na-Y, giving s2 ≡ 0. Given the
data in Table II, the entropy for site 1 is therefore s1 = kB ln(7.1) = 1.96kB. The results we
find below are particularly sensitive to the parameter (f1 − f2)/|J |, of which f1 is the most
poorly known. This fact underscores the importance of obtaining more precise structural
information for the Na-X W site, perhaps by synthesizing larger Na-X crystals to facilitate
single-crystal diffraction studies.131

We may be tempted to use the rate data in Table II to parameterize our model at infinite
dilution. However, since the diffusivity is especially sensitive to activation energies, we must
recognize that our calculated barriers may not be the most accurate of all available data.
We choose instead to extract activation energies from experimental data for benzene in Na-
X17,111 and Na-Y,17,66 yielding the barriers below in Table III. We do utilize the Arrhenius
pre-exponential factors in Table II for benzene in Na-Y, and assume that they also hold for
benzene in Na-X.

Na-Y Na-X
SII→SII 25 15
SII→W 38 25
W→SII 13 10
W→W 13 10

Table III. Best available activation energies (kJ mol−1) for benzene jumps at infinite
dilution in Na-X and Na-Y.

The attractive guest–guest interactions introduce new complexities into the kinetics of
the diffusion problem, as discussed above. An extreme case of this was recently reported by
Sholl and Fichthorn,115 wherein strong guest–guest interactions generated transport domi-
nated by correlated cluster dynamics instead of single molecule jumps. While such correlated
clusters are not likely to dominate benzene diffusion in FAU-type zeolites, guest–guest in-
teractions will modify jump activation energies for site-to-site rate coefficients, depending
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upon specific configurations of neighboring adsorbates. In order to account for this, we have
generalized a model that relates binding energies to transition state energies used previously
by Hood et al.,133 and also used by us for predicting mobilities in zeolites.17 To implement
this approach, it is convenient to write the lattice gas Hamiltonian in the following form:

H(~n) =
M∑
i=1

nif̃i +
1

2

M∑
i,j=1

niJ̃ijnj, (3.2)

where ~n = (n1, n2, · · · , nM) are site occupation numbers listing a configuration of the system,
and f̃i = ε̃i − T s̃i is the free energy for binding in site i. In Eq. (3.2), J̃ij is the nearest
neighbor interaction between sites i and j, i.e. J̃ij = 0 if sites i and j are not nearest
neighbors.

We assume that the minimum energy hopping path connecting adjacent sorption sites
is characterized by intersecting parabolas, shown in Fig. 8, with the site-to-site transition
state located at the intersection point. For a jump from site i to site j, with i, j = 1, . . . , M ,
the hopping activation energy including guest–guest interactions is given by:

Ea(i, j) = E(0)
a (i, j) + ∆Eij


1

2
+

δE
(0)
ij

kija
2
ij


+ ∆E2

ij

(
1

2kija
2
ij

)
, (3.3)

where E(0)
a (i, j) is the activation energy without guest–guest interactions, i.e. the infinite

dilution activation energy, and aij is the jump distance. ∆Eij is the shift in the energy
difference between sites i and j resulting from guest–guest interactions, and is given by
∆Eij = δEij − δE

(0)
ij = (Ej − Ei) − (ε̃j − ε̃i), where Ek = ε̃k +

∑M
l=1 J̃klnl for a particular

lattice configuration ~n. This method allows the rapid estimation of configuration dependent
barriers during a KMC simulation, knowing only infinite dilution barriers and the nearest
neighbor interactions defined above. The parabolic jump model is most accurate when the
spatial paths of jumping molecules are not drastically changed by guest–guest interactions,
although the energies can change as shown in Fig. 8. While other lattice models of diffusion
in zeolites have been proposed that account for attractive guest–guest interactions,26,128 the
parabolic jump model has the virtue of being amenable to analytical solution, as discussed
next.

Shifted by
Cohesive ∆E(i,j)

Ea(i,j) Ea(j,i)

Interactions

a

Site i Site j

Figure 8. Site-to-site jump activation energies perturbed by guest–guest interactions,
approximated with parabolic jump model.
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2. Mean Field Theory

Mean field theory (MFT) provides a powerful means of reducing the complexity of many-
body structure and dynamics to the simplicity of effective one-body properties.39 MFT av-
erages over local fluctuations in the instantaneous energy of each adsorption site, thereby
neglecting correlations that extend beyond the length scale separating sites. Although MFT
can give numerical error for lattices with low coordination,122 the theory remains qualita-
tively reliable except near critical points, where cooperativity in fluctuations extends over
large distances. Thus, we view MFT as a useful launching point for an analytical theory of
many-body diffusion in zeolites. We note that a general theoretical method called dynamical
MFT has recently been reported,134 which is reminiscent of our approach outlined below.

We have shown that a mean field analysis applied to cage-to-cage motion through Na-X
and Na-Y yields Ds(θ) ∼= 1

6
kθa

2
θ, where aθ is the mean intercage jump length, and 1/kθ

is the mean cage residence time.21 The mean cage-to-cage jump distance has a very weak
temperature and loading dependence,24 remaining in the range 11–13 Å as dictated by the
Na-X supercage structure. We have also shown21 that the cage-to-cage rate coefficient, kθ,
is given by kθ = κ·k1·P1, where P1 is the probability of occupying a W site, k1 is the total
rate of leaving a W site, and κ is the transmission coefficient for cage-to-cage motion. This
theory provides a picture of cage-to-cage motion involving transition state theory (k1·P1)
with dynamical corrections (κ), which is valid for both weak and relatively strong guest–
guest interactions. For consistency with our mean field analysis, we assume that κ = 1

2
for

all loadings. We also expect that P1 will increase with loading, and that k1 will decrease with
loading. Below we outline the derivation of analytical expressions for k1 and P1, to elucidate
how the balance between k1 and P1 controls the loading dependence of self diffusion.25,31

In the Na-X and Na-Y lattices, with twice as many SII sites as W sites, P1 is given by
1/(1+2θ2/θ1), where θ1 and θ2 are the fractional coverages on W and SII sites, respectively.
We determine θ1 and θ2 in the grand canonical ensemble, according to:

θ1
∼= 〈si〉MF =

e−β[(f1−µ)+6(J11θ1+J12θ2)]

1 + e−β[(f1−µ)+6(J11θ1+J12θ2)]
(3.4)

θ2
∼= 〈σi〉MF =

e−β[(f2−µ)+3(J22θ2+J12θ1)]

1 + e−β[(f2−µ)+3(J22θ2+J12θ1)]
, (3.5)

where µ is the chemical potential and β = (kBT )−1. The factors of 3 and 6 in Eqs. (3.4) and
(3.5) arise from the site connectivity among SII and W sites. The total fractional coverage
is then given by θ = (θ1 + 2θ2)/3.

The MFT expression for the loading dependence of k1, the total rate of leaving a W site,
is given by:

k1
∼= 6(1− θ1)〈k1→1〉+ 6(1− θ2)〈k1→2〉, (3.6)

where 6(1− θj) counts available target sites, and 〈k1→j〉 averages over fluctuating rate coef-
ficients for jumps leaving W sites. As described above, we model the fluctuating activation
energies according to the parabolic jump model. Assuming that fluctuations in the pre-
exponentials can be ignored and that activation energies are Gaussian-distributed, we have
that:
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〈ki→j〉 ∼= νi→j〈e−βEa(i,j)〉
= νi→j · e−β〈Ea(i,j)〉 · e−β2σ2

a(i,j)/2, (3.7)

where σ2
a(i, j) is the variance of the Gaussian distribution of activation energies, i.e. σ2

a(i, j)
= 〈[Ea(i, j)− 〈Ea(i, j)〉]2〉 = 〈[Ea(i, j)]

2〉 − 〈Ea(i, j)〉2. We see from Eq. (3.3) that applying
mean field theory requires averages of ∆Ek

ij up to k = 4. We only consider terms up to
second order, since higher order terms will typically be small.

3. Comparison with Simulation and Experiment

To test the accuracy of this MFT, we used KMC and the parabolic barrier model to
calculate benzene mean square displacements in Na-X.31 Figure 9 shows that three “dif-
fusion isotherm” types emerge. We see in Fig. 9 excellent qualitative agreement between
theory (lines) and simulation (dots). MFT consistently overestimates simulated diffusivities
because theory neglects correlations that increase the probability of the particle returning
to its original position. These diffusion isotherm types differ in the coverage that gives the
maximum diffusivity: θmax = 0 is defined as type I, θmax ∈ (0, 0.5] is type II, and θmax ∈
(0.5, 1] is type III. Defining the parameter χ ≡ (f1 − f2)/kBT , we find that type I typi-
cally arises from χ < 1, type II from χ ∼ 1, and type III from χ > 1. This suggests that
when the SII and W sites are nearly degenerate, i.e. χ <∼ 1, the coverage dependence of P1

is weak, and hence kθ and Ds(θ) are dominated by the decreasing coverage dependence of
k1. Alternatively, when χ >∼ 1, the enhancement of P1 at higher loadings dominates the
diffusivity until θ1 ∼ θ2, at which point the decreasing k1 begins to dominate.127 We also
obtain excellent qualitative agreement between theory and simulation for the temperature
dependence of diffusion for all cases studied.31
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Figure 9. Comparison between KMC and MFT for benzene in Na-X at three different
temperatures, showing that three diffusion isotherm types emerge.

Figure 10 shows KMC calculated diffusion isotherms for benzene in Na-X at T = 393 K
and 468 K, compared to PFG NMR data111 at the same temperatures (uniformly scaled by
a factor of 5), and TZLC diffusivities126 at T = 468 K (uniformly scaled by a factor of 100).
The experimental data were scaled to facilitate comparison with the loading dependence
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predicted by simulation, which itself was not fitted to either experimental result. Figure
10 shows that our model is in excellent qualitative agreement with the PFG NMR results,
and in qualitative disagreement with TZLC. Other experimental methods yield results that
also agree broadly with these PFG NMR diffusivities.135–137 Our model overestimates PFG
NMR diffusivities at high loadings because the lattice model allows 6 molecules per cage,
while the observed saturation coverage is 5.4 molecules per cage.
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Figure 10. Diffusion isotherm for benzene in Na-X at 468 K, by PFG NMR (scaled by
5), TZLC (scaled by 100) and by KMC simulations.

One way to view the discrepancy in Fig. 10, apart from the absolute magnitudes, is that
both simulation and PFG NMR are consistent with a low coverage of maximum diffusivity,
θmax, while TZLC exhibits a large θmax. While it is not obvious why the TZLC results differ so
markedly from PFG NMR data and from our simulated diffusivities, our results in Ref. 31 do
suggest future experiments to test the reliability of TZLC. Indeed, we found in Ref. 31 that
θmax decreases with increasing temperature, as all sites become more degenerate. As such,
high temperature TZLC diffusion isotherms should be measured, to confirm consistency
with our rather plausible prediction regarding the temperature dependence of θmax.

Buoyed by the apparent success of our transport theory, we now ask the question: can this
system undergo a phase transition analogous to vapor–liquid equilibrium of bulk benzene,
driven by the attractive nearest neighbor interactions in our model? Clearly we cannot
distinguish between “vapor” and “liquid” inside an individual zeolite cage, but effective
cage-to-cage attractions may lead to cooperativity on longer length scales. Traditionally,
the fields of transport and adsorption in zeolites have enjoyed little overlap.129,130 In the
Secs. III B and IIIC, we attempt to connect these two fields for benzene in Na-X and Na-Y.

B. Vapor–Liquid Equilibrium

The thermodynamic properties of confined fluids play a central role in separations and
reactions that take place within porous materials.138,139 Of particular interest are hysteresis
loops and precipitous jumps in adsorption isotherms, since these are often associated with
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vapor–liquid transitions of the confined fluid. Although there is a vast literature on such
transitions in mesoporous materials, there are very few reports of phase transitions in mi-
croporous solids such as zeolites. This is presumably because confinement into such small
cavities (< 20 Å) reduces the vapor–liquid critical temperature to extremely low values.

Nevertheless, there have been occasional reports of possible phase transitions in such
systems. For example, hysteresis loops have been observed at 77 K for methane in AlPO4-
5,140 a one-dimensional channel zeolite. Since phase transitions in one-dimensional systems
are theoretically forbidden,39 Radhakrishnan and Gubbins141 and Maris et al.142 simulated
this system to determine whether interactions among methanes in adjacent channels could
account for the observed phase transition. They found critical temperatures of 52 K and
33 K, respectively, arising from different levels of detail in their models of AlPO4-5. For
benzene in Na-Y, a multiple-quantum proton NMR study detected a continuous network
of coupled proton spins,143 suggesting the importance of interactions among molecules in
adjacent cages. We have used grand canonical Monte Carlo46 (GCMC) and thermodynamic
integration94,144,145 to demonstrate that these cooperative interactions can lead to vapor–
liquid transitions for benzene in Na-X.28

1. Adsorption Isotherms and Coexistence Curves

In GCMC simulations, the chemical potential µ, volume V , and temperature T are
fixed, while the number of adsorbed molecules is allowed to fluctuate. We have performed
Metropolis GCMC calculations on a simulation cell that consists of eight Na-X unit cells,
containing 128 W sites and 256 SII sites. The lattice model is parameterized as discussed
in Sec. IIIA, using J = J12 = J22 = −0.04 eV = −3.86 kJ mol−1. The average fractional
occupancy is calculated after (1.0 − 2.5) × 107 Monte Carlo (MC) steps, with an initial
equilibration period of 106 MC steps. The GCMC isotherms are calculated over a grid of
µ∗ = (µ− ε2)/|J |. In the deep subcritical regime we observe hysteresis between the GCMC
calculations performed by adsorbing molecules onto an empty lattice, viz. the adsorption
or vapor branch; and desorbing molecules from a fully occupied lattice, viz. the desorption
or liquid branch. For higher temperatures in the subcritical region, greater than 300 K
(T ∗ = kBT/|J | = 0.65), the hysteresis region becomes too narrow to be recovered from
GCMC adsorption and desorption calculations. The liquid and vapor branches for these
temperatures are obtained by averaging separately the vapor and liquid densities that arise
from a single GCMC run. The liquid and vapor branches are used for performing thermo-
dynamic integration,28,94,144,145 which leads to the vapor–liquid coexistence curve.

It is not possible to approach the critical point very closely using the Metropolis al-
gorithm, because this algorithm does not efficiently produce the macroscopic fluctuations
that characterize the critical point. More sophisticated algorithms have been developed that
create and destroy large clusters, rather than individual particles, thereby simulating large
density fluctuations efficiently.146–148 In order to obtain an estimate of the critical point
from Metropolis simulations, we fitted the coexistence points to the Ising scaling law for the
density difference between the liquid and vapor phases for three-dimensional systems, i.e.
(Tc−T ) = A(ρl−ρg)

3, together with the law of rectilinear diameters.141,149 We also estimate
the critical point with MFT, using Eqs. (3.4) and (3.5) to calculate adsorption isotherms.
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We have performed GCMC adsorption and desorption calculations for benzene in Na-
X over the temperature range 50–700 K. For T > 400 K (T ∗ = 0.86), the isotherms are
continuous and reversible with respect to the adsorption and desorption branches. However,
for lower temperatures, regions of hysteresis are observed because of metastabilty in the
adsorbed state. In Fig. 11, we show the hysteresis region that arises at T = 340 K (T ∗ =
0.73). This hysteresis region is extremely narrow, with a width of only 0.02|J |. This phase
transition occurs because of attractive interactions between benzene molecules in adjacent
cages. These interactions are mediated by benzene molecules in W sites, which are shared
between adjacent supercages, and hence are able to build a continuous network of coupled
benzenes.
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Figure 11. GCMC adsorption calculation for benzene in Na-X, showing hysteresis at
T = 340 K (T ∗ = 0.73).
Figure 12. Simulated coexistence envelope for benzene in Na-X, giving Tc = 370 ± 20
K (T ∗

c = 0.79± 0.04).

The coexistence envelope for benzene in Na-X obtained from thermodynamic integration
is shown in Fig. 12. The asymmetry in the coexistence curve arises from the presence of two
different types of sites in our model. The critical point we estimate for benzene in Na-X is
Tc = 370 ± 20 K (T ∗

c = 0.79 ± 0.04) and θc = 0.45 ± 0.05. Applying the same analysis to
adsorption isotherms obtained with MFT, we obtain a mean field critical temperature of 691
K (T ∗

c (mft) = 1.48). We thus find that MFT greatly over estimates the critical temperature
for this lattice model, hence requiring the GCMC simulations.

It is interesting to compare the reduced critical temperature found above to those from
other lattices, in order to understand what aspects of our lattice model for benzene in Na-X
determine its critical point. In particular, each actual site interacts with 6 nearest neighbors,
while the overall tetrahedral symmetry of FAU-type zeolites provides 4 direct cage-to-cage
interactions. It is not obvious, then, whether the critical point for benzene in Na-X should
be characteristic of lattices with 4-fold or 6-fold coordination. T ∗

c for the 2-d square lattice
is 0.58, while that for the 3-d cubic lattice is 1.0.39 Our system, with T ∗

c = 0.79, happens to
fall right in between the results for these two lattices, suggesting that the interplay between
local coordination and cage-to-cage couplings controls the critical point for benzene in Na-X.
This analysis also suggests why MFT, which is only sensitive to local coordination as shown
in Eqs. (3.4) and (3.5), so grossly overestimates the critical temperature.
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The existence of this phase transition is sensitive to the value of the parameter γ ≡
(f1 − f2)/|J |. If γ exceeds a certain value, the critical temperature vanishes along with
the phase transition. Preliminary calculations show that when γ >∼ 4, which is the case for
benzene in Na-Y, the phase transition is completely suppressed. Indeed, without entropy
favoring benzene W sites, the phase transition would also be suppressed in our model of
benzene in Na-X. This sensitivity underscores yet again the importance of obtaining more
precise structural information for the Na-X W site, to quantify f1 more accurately. Although
hysteresis has been observed in adsorption isotherms measured for benzene in Na-X,150 this
observation must arise from a structural transformation of the zeolite rather than from
cooperative interactions among guests, because the measured densities in the adsorption
branch exceed those in the desorption branch. As such, our predictions for benzene in Na-X
await experimental confirmation.

Our analysis above suggests that this phase transition should be even more pronounced
for benzene in Si-Y, where zeolite–benzene interactions are weaker than they are in Na-X.
Performing off-lattice GCMC simulations on benzene in Si-Y thus constitutes an important
avenue for future research. These calculations will likely require configurational-bias Monte
Carlo151,152 to facilitate inserting anisotropic adsorbates at high density.

Based on these thermodynamic studies, we now understand that the diffusion isotherms
compared with experiment in Fig. 10 represent supercritical lattice gas diffusion—hence
the name of Sec. IIIA—because these simulations were performed at temperatures above
Tc = 370 K. It is irresistible to wonder how transport in zeolites becomes modified when
considering subcritical lattice gas diffusion.

C. Subcritical Diffusion: Droplet Formation

The comprehensive loading dependence of diffusion in these systems is controlled by the
degree of degeneracy between SII and W sites, which depends upon three energy scales: f1−
f2, J and kBT . As such, two unitless parameters are required to describe the Corresponding
States of benzene in Na-X and Na-Y. It is convenient now to utilize the parameter T ∗ =
kBT/|J |. This Corresponding States parameter suggests that benzene becomes a subcritical
fluid in Na-X by either decreasing T or increasing |J |. For computational convenience we
prefer to increase |J |, which allows us to compare diffusion isotherms at fixed temperature.

Figure 13 shows KMC calculated diffusion isotherms for benzene in Na-X at 468 K, us-
ing various values of the coupling parameter J .31 These diffusion isotherms were calculated
from mean square displacements (KMC-MSD), and also were estimated from the mean field
approximation (KMC-MFA): Ds(θ) ∼= 1

6
kθa

2
θ, where kθ and aθ are determined from KMC

simulations. These two methods agree semi-quantitatively as shown in Fig. 13, which sim-
plifies KMC simulations because kθ and aθ are time-independent quantities, in contrast to
mean square displacements whose time-dependence must be calculated. The thermody-
namic analysis above indicates that the diffusion isotherms in Fig. 13 using |J | ≤ 0.04 eV
represent supercritical diffusion. The loading dependence exhibited by these isotherms is
weakly type II, and qualitatively demonstrates the monotonically decreasing (1 − θ) form
predicted by simple MFT. In related calculations, we find a type III diffusion isotherm for
supercritical benzene in Na-Y, which arises because W sites in Na-Y are relatively unstable
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at most temperatures. In general, we find that increasing temperature and/or making J
more negative, while keeping all other parameters constant, changes isotherms according to
type III → II → I.
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Figure 13. Diffusion isotherms for benzene in Na-X by KMC-MSD and KMC-MFA (see
text) at 468 K for various values of J , showing the signature of subcritical diffusion
for J = −0.07 eV.

On the other hand, when J =−0.07 eV we find an interesting loading dependence, involv-
ing a sharp decrease for small loadings, followed by a broad region of constant diffusivity for
higher loadings. If we assume for the moment that Tc ∝ |J |, then Tc ≈ 650 K in Na-X with
J = −0.07 eV. Since the self diffusivities in Fig. 13 were calculated at 468 K, the simulations
using J = −0.07 eV represent subcritical diffusion. Since canonical KMC simulations fix the
loading, a subcritical system at, e.g., θ = 0.5 will involve a fluctuating liquid-like cluster
of filled sites occupying approximately half the lattice, while a supercritical system at the
same loading will be more evenly dispersed throughout the lattice, as shown schematically
in Fig. 14. This insight explains our intriguing simulation results, and may help elucidate
experimental findings as well. In particular, cluster formation in subcritical systems sug-
gests a diffusion mechanism involving “evaporation” of particles from clusters. Increasing
the loading in subcritical systems increases mean cluster sizes, and smoothes cluster inter-
faces. Once these interfaces become sufficiently smooth, we can assume that evaporation
dynamics remain essentially unchanged by further increases in loading. As such, we expect
the subcritical diffusivity to obtain its full loading value at low loadings, and then remain
roughly constant up to full loading, as shown for Na-X in Fig. 13.
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Figure 14. Schematic of cluster formation in subcritical nanoporous systems, where
the subcritical droplet spans many Na-X cages that are full of benzene.

This subcritical type of loading dependence, involving broad regions of constant diffusiv-
ity, is surprising because isotherms for interacting adsorbates are expected to decrease with
loading when site blocking dominates. It is interesting to note that an isotherm type has
been reported for strongly associating adsorbates such as water and ammonia,123 denoted
by Kärger and Pfeifer as type III (not to be confused with our type III), involving an initial
increase followed by a broad region of constant diffusivity. The present analysis suggests that
Kärger and Pfeifer’s type III diffusion isotherm may be characteristic of a cluster-forming,
subcritical adsorbed phase.

Thus far we have focused on equilibrium transport processes such as self diffusion and ori-
entational randomization. We now turn our attention to modeling non-equilibrium diffusion
in nanopores, which is the process most relevant to industrial applications.

IV. NONEQUILIBRIUM DIFFUSION IN NANOPORES

Two theoretical formulations exist for modeling non-equilibrium diffusion, hereafter de-
noted “transport diffusion,” which ultimately arises from a chemical potential gradient or
similar driving force.7,8 The formulation developed by Fick involves linear response theory
relating macroscopic particle flows to concentration gradients, according to J = −D∇θ,
where J is the net particle flux through a surface S, D is the transport diffusivity, and ∇θ
is the local concentration gradient perpendicular to the surface S.39 While this perspective
is conceptually simple, it breaks down qualitatively in remarkably simple cases, such as a
closed system consisting of a liquid in contact with its equilibrium vapor. In this case, Fick’s
law would predict a non-zero macroscopic flux; none exists because the chemical potential
gradient vanishes at equilibrium. Fick’s law can be generalized to treat very simple multi-
component systems,29,30,153–156 such as co-diffusion and counter-diffusion of identical, tagged
particles.
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Despite these shortcomings, Fick’s law remains the most natural formulation for trans-
port diffusion through Langmuirian lattice models of zeolite–guest systems. These involve
regular lattices of identical sorption sites where guest–guest interactions are ignored, except
for exclusion of multiple site occupancy. Such model systems exhibit Langmuir adsorp-
tion isotherms, and give single-component transport diffusivities that are independent of
loading.157 Moreover, for such systems the equation J = −D∇θ is exact for all concentra-
tion gradients, i.e. all higher order terms beyond linear response theory cancel. We exploit
this fact below in our lattice model studies of counter-permeation through anisotropic29 and
single-file nanoporous membranes.30

The other formulation of transport diffusion was developed independently by Maxwell
and Stefan, and begins with the equation J = −L∇µ, where L is the so-called Onsager co-
efficient and ∇µ is a local chemical potential gradient at the surface S.7,158 To make contact
with other diffusion theories, the Onsager coefficient is written in terms of the so-called cor-
rected diffusivity, Dc, according to L = θDc/kBT , where θ is the local intracrystalline loading
at the surface S. Clearly this formulation does not suffer from the qualitative shortcomings
of Fick’s law, and can be properly generalized for complex multicomponent systems.159 The
corrected diffusivity depends upon loading for Langmuirian systems, where jump diffusion
holds, but depends very weakly on loading for more fluid-like diffusion systems,158 making
the Maxwell-Stefan formulation more natural for weakly binding zeolite–guest systems. The
relationship between the Fickian and Maxwell-Stefan diffusivities is often called the Darken
equation, given by:7

D = Dc

(
∂ ln f

∂ ln θ

)
T

, (4.1)

where f is the fugacity of the external fluid phase. Other versions of the Darken equation
often appear, e.g., where Dc is replaced with Ds, the self diffusivity. We find for Langmuirian
systems that this replacement is tantamount to mean field theory (MFT).29

Many researchers prefer to report their transport data in terms of the corrected diffusivity
because it is completely determined by dynamics, in contrast to the Fickian diffusivity which
is also influenced by thermodynamics, as evidenced by the adsorption factor in Eq. (4.1).
Indeed, a correlation function analysis of the corrected diffusivity yields:36,158,160

Dc =
1

3N

N∑
i,j=1

∫ ∞

0
dt 〈~vi(0) · ~vj(t)〉 (4.2)

=
1

3N

N∑
i,j=1

lim
t→∞

1

2t
〈δ~ri(t) · δ~rj(t)〉, (4.3)

where N is the number of particles in the system, and ~vi(t) and δ~ri(t) = ~ri(t) − ~ri(0) are
the velocity and displacement of the ith particle at time t, respectively. Both Eqs. (4.2)
and (4.3) can be used for fluid-like diffusion, e.g. for methane in silicalite, while only Eq.
(4.3) is convenient for jump diffusion, e.g. for benzene in Na-Y, because velocity correlations
typically decay well before rare jump events occur. The interparticle correlation functions in
Eqs. (4.2) and (4.3) manifest the collective nature of non-equilibrium diffusion, which is why
this type of transport is often called collective diffusion. The correlation functions in Eqs.
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(4.2) and (4.3) also suggest that non-equilibrium diffusion can be modeled with equilibrium
simulations viz. the fluctuation-dissipation theorem,39 though the poor statistics of such
simulations make them very challenging. An interesting avenue for future research involves
the use of Eq. (4.3) with realistic lattice models,161 to develop a feasible equilibrium approach
for modeling non-equilibrium diffusion in zeolites.

In the limit of low loading, interparticle correlations vanish and Eqs. (4.2) and (4.3)
become:

Dc
θ→0−→ 1

3N

N∑
i=1

∫ ∞

0
dt 〈~vi(0) · ~vi(t)〉 (4.4)

=
1

3N

N∑
i=1

lim
t→∞

1

2t
〈[δ~ri(t)]

2〉 = Ds(θ = 0) = D0, (4.5)

which is precisely the self diffusivity at infinite dilution. This analysis confirms that the
corrected diffusivity provides the proper generalization of self diffusion for collective trans-
port phenomena, while the Fickian diffusivity combines both transport and thermodynamic
properties.

While many interesting phenomenological simulations have been published on transport
diffusion through nanopores, relatively few atomistic calculations have been carried out.162

An important study was reported in 1993 by Maginn, Bell and Theodorou, developing
non-equilibrium molecular dynamics calculations of methane transport diffusion through
silicalite.158 They applied gradient relaxation molecular dynamics (MD) as well as color field
MD, simulating the equilibration of a macroscopic concentration gradient and the steady-
state flow driven by an external field, respectively. They found indeed that the corrected
diffusivity depends very weakly upon loading for this fluid-like system, and that the color
field MD technique provides a more reliable method for simulating the linear response regime.

With the availability of high performance parallel supercomputers, there has been great
interest in developing rigorous, grand canonical MD methods for modeling non-equilibrium
transport through nanopores.163–165 Despite the progress that has been made, these MD
methods still suffer from the well known time scale problems discussed above for systems
exhibiting rare event dynamics. As such, an important avenue for continued research is the
development of realistic and illustrative lattice models for studying non-equilibrium diffu-
sion in nanopores, especially because of recent progress in synthesizing continuous, oriented
zeolite membranes.166–169 These systems present new challenges to permeation theories be-
cause the finite extent of membranes in the transmembrane direction can produce interesting
transport anomalies, as discussed below in Secs. IVA and Secs. IVB.

A. Anisotropy in Open Systems

Diffusion anisotropy in zeolites results from molecular jump rates that depend upon
direction.7,82 Diffusion anisotropy takes on special importance for permeation through ori-
ented zeolite membranes, because the anisotropy introduced by a transmembrane concen-
tration gradient can couple with the anisotropy inherent in a zeolite–guest system, yield-
ing novel transport properties. For example, consider a 2-d square Langmuirian lattice
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model. In this case, anisotropy leads to single-file transport through the membrane at
one extreme, and single-file transport in the plane of the membrane in the other extreme.
Although single-file motion at finite loadings exhibits normal concentration-independent,
single-component transport diffusion, single-file motion gives rise to anomalous self diffu-
sion, wherein the mean square displacement (MSD) is proportional at long times to t1/2

rather than to t.113,114,170–172 It is therefore of interest to investigate the signature of such
anomalous self diffusion in a membrane transport system. However, since the long time limit
of the MSD may not be accessible in a membrane of finite thickness, and since the natu-
ral observable in a permeation measurement is steady-state flux rather than the MSD, we
need to imagine a convenient experiment that can probe this anomalous diffusion. Indeed,
it has been shown that two-component, equimolar counter-permeation of identical, labeled
species yields transport identical to self-diffusion.155 Such a situation, hereafter denoted
“tracer counter-permeation” (TCP),29 is closely related to the tracer zero-length column
experiment developed by Ruthven and co-workers.126

1. Tracer Counter-Permeation

The TCP simulation for a 2-d Langmuirian lattice model is shown in Fig. 15 below.
We define the anisotropy parameter, η, according to η = ky/kx, where kx and ky are the
elementary jump rates in the transmembrane and in-plane directions, respectively. η =1
corresponds to an isotropic lattice, η > 1 corresponds to a membrane where the jump rate
in the transmembrane direction is slower, and η < 1 corresponds a membrane where diffusion
is faster in the transmembrane direction. The limiting case η = 0 corresponds to single-file
diffusion. For example, the η < 1 case models p-xylene permeation through a silicalite
membrane oriented along the b-axis, i.e. the straight channels, while η > 1 corresponds to
the same system except oriented along the a-axis or c-axis,166 i.e. the zig-zag or “corkscrew”
channels, respectively. In Fig. 15, the parameters νA, νB and kd control adsorption and des-
orption kinetics. We have parameterized this model based on data reported for cyclohexane
in silicalite by Magalhães, Laurence and Conner,173 as detailed in Ref. 29.
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Figure 15. Schematic of a TCP simulation, with identical but differently labeled par-
ticles.

For such a system, it is well established that the scalar form of Fick’s law should be
replaced by a vector equation of the form:29,30,153–156

(
JA

JB

)
= −

(
DAA DAB

DBA DBB

)( ∇θA

∇θB

)
, (4.6)

where θA and θB are the local loadings of components A and B, respectively. When species
A and B have identical diffusive properties, the matrix in Eq. (4.6) is asymmetric, and
has two eigenvectors that correspond to co-diffusion and counter-diffusion, the latter being
relevant to TCP. The apparent diffusivities for counter-diffusion are given by :

D+
A = D+

B = D0(1− θT )f(θT ) = Ds(θT ), (4.7)

where θT = θA + θB is the total loading, which is constant throughout the lattice in TCP.
f(θT ) is the so-called correlation factor, a number between zero and one that measures the
extent to which correlations diminish the self diffusivity from the MFT estimate (cf. the
transmission coefficient and TST in Sec. II). Equation (4.7) shows that TCP can be used
to model self diffusion in zeolites of finite extent.

We have developed and applied an open system KMC algorithm to explore the extent to
which strong anisotropy can lead to anomalous self diffusion in zeolite membranes.29 We have
studied how the TCP-calculated self diffusivity depends upon membrane thickness L, and
anisotropy η. When normal diffusion holds, the self diffusivity is independent of membrane
thickness, i.e. is an intensive quantity, while anomalous diffusion is characterized by an L-
dependent self diffusivity. Our simulations model cyclohexane in silicalite at T = 656 K with
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a total fractional loading of θT = 0.9. For convenience, we report the results in terms of the
correlation factor, f(L, η) = Ds/D0(1 − θT ). For η � 1, we find that diffusion is normal
and f(L, η) ∼= 1, indicating that MFT becomes exact in this limit.29 This is because sorbate
motion in the plane of the membrane is very rapid, thereby washing out any correlations
in the transmembrane direction. This is analogous to rapid SII→SII jumps washing out
correlations in cage-to-cage motion of benzene in Na-Y,31 which helps to explain why MFT
works so well for that system.

As η is reduced, correlations between the motion of nearby molecules decrease the
counter-diffusivity, as shown in Fig. 16 for η = 0.01, 0.001 and 0. The η = 0.01 diffusivities
are independent of membrane thickness for all cases studied, and hence exhibit normal diffu-
sion for membranes as thin as 10 sites across. On the other hand, the η = 0.001 diffusivities
depend on membrane thickness for thin membranes, but approach a constant limiting value
for thicker membranes. This indicates that for small values of η, a relatively large lattice is
required to reach the thick membrane limit, such that particle exchange becomes probable
during the intracrystalline lifetime. For thin membranes and small values of η, a diffusion
mode with correlation lengths comparable to the membrane thickness, i.e. a global mode of
diffusion, dominates. The extreme case of this occurs when η = 0 and diffusion is strictly
single-file. In this type of lattice there is no localized mechanism for diffusion, and the
diffusion coefficient always depends on system size, as shown in Fig. 16.
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Figure 16. KMC calculated self diffusivities in membranes of various thicknesses and
anisotropies, η, using the TCP method. η > 0 shows normal diffusion for sufficiently
thick membranes, while η = 0 (single-file) is strictly anomalous.

The signature of anomalous self diffusion in single-file zeolite membranes is thus a diffu-
sivity that decreases monotonically with membrane thickness. The findings in Fig. 16 suggest
that the single-file self diffusivity scales as 1

L
, which can be understood with the following

simple picture. In order for an A-particle to cross a single-file membrane, there must be no
B-particles in the file. The probability that a given file contains no B particles scales as 1

L
.

In Sec. IVB, we outline a theory for single-file self diffusion that accounts quantitatively for
these anomalies using a vacancy-particle compound diffusion mechanism.30
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B. Single-File Diffusion in Open Systems

In this section we explore a compound (two-stage) mechanism for diffusion in strictly
single-file systems, wherein particle displacements of one lattice spacing are produced by a
vacancy traversing the entire length of the file.30 We begin by considering a single-file system
of length L = 6 with TCP boundary conditions, as shown in Fig. 17. We imagine that the
system is at steady-state with total occupancy close to one, so that on average there will be
no more than a single vacancy in the file. Each of the states in Fig. 17(i)–(ix) is separated by
an elementary jump event. The entire sequence in Fig. 17 entails a single vacancy entering
on the A-side of the file, traveling through the file and subsequently leaving on the B-side.
The net effect of the vacancy transport through the file is displacement of the particles by
one lattice spacing to the left. Thus, a compound diffusion mechanism operates in single-
file systems, which requires a vacancy to diffuse the entire file length to generate particle
displacements of one lattice spacing.

i 

ii

iii

iv

v

vi

vii

viii

ix

des

ads

...

Figure 17. Vacancy transport through an L = 6 single-file system, with A-particles
(dark) and B-particles (light). Steps (i) through (vii) represent the passage of an “A-
vacancy” from right to left, giving particle displacement of one lattice spacing in the
opposite direction.

We now consider a thought experiment where vacancies within the lattice are labeled
by the side of the lattice on which they were created, e.g. an A-vacancy is created in the
transition from steps (i) to (ii) in Fig. 17. In fact, an A-vacancy is created whenever a particle
of either type desorbs into the A-phase. In Fig. 17(vii), the A-vacancy exchanges with a
B-particle from the external B-phase. With this interpretation, we have a steady-state flux
of A-vacancies from left to right through the lattice, and vice versa for the B-vacancies,
while unlabeled vacancies have no net flux.
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We now derive the L-dependence of Ds assuming that the flux of A-vacancies obeys
Fick’s law:

JV
A = −DV

A∇θV
A , (4.8)

where ∇θV
A is the A-vacancy concentration gradient, and DV

A is the apparent diffusivity of
A-vacancies. At infinite vacancy dilution, DV

A is equal to D0, the single-component particle
transport diffusivity. Inspired by the compound diffusion picture developed above, we further
assume that the flux of B-particles is related to the flux of A-vacancies by the following
ansatz:

JB = − JV
A

L− 1
. (4.9)

The factor of (L− 1)−1 arises because an A-vacancy must traverse the length of the file, as
shown in Fig. 17, to move particles by one lattice spacing. By exploiting the properties of
steady-state TCP, these assumptions lead to the following expression for Ds:

Ds =
D0θT k2

d(L− 1)

(1− θT )(L− 1)ν[ν(L− 1) + 2D0]− 2D0θT kd
. (4.10)

Equation (4.10) agrees quantitatively with results from open system KMC simulations under
TCP boundary conditions.30 Furthermore, in the limit that L → ∞, the expression in Eq.
(4.10) becomes:

Ds =
D0 (1− θT )

LθT

, (4.11)

which is precisely the expression recently obtained by Hahn and Kärger for the self diffusion
coefficient associated with center-of-mass motion of particles within the file.174 Hahn and
Kärger obtained their expression by analyzing the Gaussian statistics of several correlated
random walkers in a single-file system. Our derivation of Eq. (4.11) shows that Hahn and
Kärger’s result is consistent with assuming that transport is diffusion-limited, which becomes
valid in the long-file limit. Our result in Eq. (4.10) is also valid for short files, which exhibit
sorption-limited transport.

We find it intriguing that a self-diffusion coefficient can be meaningfully defined and
derived for a strictly single-file system, albeit of finite extent. It is irresistible to wonder
whether mean square displacements (MSDs) for this system can exhibit the t1/2 behavior that
characterizes single-file systems of infinite extent. To address this question, we calculated
MSDs using open system KMC as follows. An L = 60 single-file system was initially filled
with particles up to an average occupancy of θT = 0.9 throughout. Particles in column
30 were labeled as B-particles, while the remainder were labeled as A-particles. At t = 0,
both edges of the system were exposed to a phase of A-particles with an insertion rate that
maintained the equilibrium A-occupancy at θA = 0.9.

The results are shown in Fig. 18 on a log-log plot. The dotted lines have slope equal
to 1 indicating that the MSD is proportional to t, whereas the dashed line has a slope of 1

2

indicating that the MSD is proportional to t1/2. The short time behavior is consistent with

39



mean field theory, where the dotted line is given by Einstein’s equation with Ds = D0(1−θT ).
At long times, the MSD in Fig. 18 (middle dotted line) is again given by Einstein’s equation
with Ds given by Eq. (4.10), giving transport that is dominated by compound diffusion. At
intermediate times, transport is achieved by a single-file mode that operates as if the file
were of infinite extent, with an MSD given by 〈R2(t)〉 = 2Ft1/2, where F is the single-file
mobility.153,174
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Figure 18. Log-log plot of MSDs calculated with KMC and theory for an L = 60
single-file system; from simulation (solid line), MFT (left-most dotted line), single-file
diffusion theory with slope of 1

2 (dashed line), and compound diffusion theory giving
slope of 1 (middle and right-most dotted lines).

Using the theory derived above, the crossover time between single-file diffusion and com-
pound diffusion in long files is given by tc = L2/πD0, which is precisely the formula obtained
by Hahn and Kärger,174 and is proportional to the characteristic time for vacancy diffusion
through the system.175 That is, by the time a vacancy has traversed the file, the extent
of correlations becomes comparable to the file length, the compound diffusion mechanism
dominates, and the MSD is once again governed by Einstein’s equation, with a diffusivity
that is greatly diminished by correlations according to Eq. (4.10). Hence, the file edges
influence the motion of all particles long before they reach the file edges.

Typical parameters for zeolite membrane permeation are L = 10 µm and D0 = 10−6

cm2s−1. These parameters give a crossover time of tc ∼= 0.3 s, which happens to fall just above
the experimental window of observation for PFG NMR.170 We therefore predict that PFG
NMR measurements extended to longer times will observe that MSDs crossover from t1/2

to normal Fickian behavior, except with a long-time single-file self diffusivity that depends
upon system size.

Although the duration of single-file diffusion increases with file length, the relative im-
portance of single-file motion decreases with file length. This becomes clear by analyzing
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the fraction of time that particles spend single-file diffusing while adsorbed in a zeolite crys-
tallite. This fraction is given by tc/τintra, where tc is the crossover time and τintra is the
intra-crystalline residence time,172 which scales as L2/Ds. Since tc ∝ L2 while Ds ∝ 1/L for
long files, we see that the fraction of time in single-file diffusion mode scales as 1/L for long
files. Ironically, while single-file diffusion is more easily measured in longer files, compound
diffusion becomes the dominant transport process in larger zeolite particles.

V. CONCLUDING REMARKS

In this review, we have explored the interplay among dynamics, diffusion and phase
equilibrium in nanopores. We have focused on atomistic and lattice models of small to
medium guest molecules in zeolite molecular sieves, because of their great importance and
versatility in science and industry. As a common theme running through the review, we
have highlighted our own calculations on benzene in Na-X and Na-Y zeolites, because of
persistent, qualitative discrepancies between different experimental probes of self diffusion
for these systems.

We began by discussing the theory and practice of modeling rare event dynamics in
zeolites, by considering how researchers develop forcefields and implement transition state
theory (TST) with dynamical corrections. We find that site-to-site jump dynamics in zeolites
are well described by TST when the initial or final sites involve relatively deep potential
mimina, and that molecular jump dynamics in a large pore zeolite is well described by
including only a small number of degrees of freedom. Challenges for future modeling include
direct ab initio parameterization of TST calculations on zeolites, TST with flexible lattices
for tight-fitting zeolite–guest systems, and TST applied to molecules in zeolites at finite
loadings. Solving the latter two problems will require progress in defining high dimensional
dividing surfaces.

Based on kinetic Monte Carlo (KMC) simulations of benzene in Na-Y, we have shown
that non-exponential decay of the orientational correlation function can disentangle the rates
of intracage and intercage motion, and may indicate heterogeneous aluminum agglomeration,
leading to new NMR probes of zeolite structure. In general, we believe that such modeling
should be regarded as a characterization tool complementary to diffraction, NMR, IR, etc.
The impact of such modeling will grow by maintaining close connections with practitioners
of experimental characterization.

We then considered many-body adsorption and diffusion in zeolites, in an effort to begin
bridging the gap between these two fields. We focused on mean field theory (MFT) and
KMC applied to lattice models, which are natural for systems dominated by jump diffu-
sion. Modeling many-body diffusion in zeolites remains challenging because of the coupling
between rare event dynamics and strong guest–guest interactions. To address this, we out-
lined a model for determining how guest–guest interactions modify activation energies of
site-to-site jumps. Based on this model, our calculations for benzene in Na-X give excellent
qualitative agreement with PFG NMR diffusivities, and give qualitative disagreement with
TZLC data. We then explored the possibility that benzene can undergo phase transitions
from low to high sorbate density in Na-X, analogous to vapor–liquid equilibrium of bulk
benzene. Although our calculations suggest a critical temperature of 370 K, this result is
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exquisitely sensitive to errors in the model. By exploring the impact of this type of phase
transition on diffusion in zeolites, we explain intriguing loading dependencies of water and
ammonia diffusion in terms of a subcritical droplet picture of adsorption in zeolites. In
general, we find that understanding the thermodynamics of confined fluids can be crucial
for elucidating the transport properties of molecules in zeolites.

Finally, we discussed various formulations of non-equilibrium diffusion through lattice
models of finite extent. We suggested that computing cross-correlated mean square displace-
ments may provide a feasible equilibrium approach for modeling non-equilibrium diffusion
in zeolites. We described a tracer counter-permeation KMC algorithm, to search for the
steady-state signature of anomalous transport in finite single-file systems. Our theory and
simulations show that transport in finite single-file systems is characterized by a diffusivity
that decreases monotonically with file length. Hence, except for the fact that this diffusivity
depends on file length, self diffusion in single-file systems is Fickian in the sense that Fick’s
first and second laws are obeyed for a file of given length. We discussed the experimental
implications of this finding in the context of PFG NMR observation times. In general, we
have found that explicitly including adsorption and desorption phenomena in open system
diffusion models is crucial for drawing qualitatively valid conclusions regarding single-file
diffusion.

We hope that these computational studies can assist in the design of new materials
with advanced performance by elucidating the microscopic factors that control adsorption,
diffusion and reaction in zeolites. While this dream is not yet an everyday reality, examples
exist today that have the flavor of rational design.176 We believe that such design will become
much more commonplace within the next ten years, with the advent of better algorithms and
faster computers. Perhaps even more significant is the prospect for cross-fertilization between
zeolite science and other fields. For example, it is intriguing to wonder whether single-file
diffusion through biological ion channels in cell membranes177 occurs via the compound
diffusion mechanism described above. Answering such a question will require even further
breakthroughs in our understanding of dynamics and diffusion in nanopores.
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TABLES

TABLE I. Experiment and theory for benzene energetics (kJ mol−1) in various FAU-type
zeolites.

Zeolite Exp |∆Hsorb| ref Theo |∆Hsorb| ref Exp Ea ref Theo Ea ref
Ca-X 134 67 119 27 62 68 75 27
Na-X 73 69 70 17 14 17 15 17
Na-Y 79 69 77 16 24 59 35 16
Si-Y 55 58 59 57 10 59 7 57

TABLE II. Apparent Arrhenius parameters from rate coefficients for benzene jumps among SII

and W sites in Na-Y, using TST and RFCT methods. Note the failure of TST for the W→W
jump.

Activation Energy (kJ mol−1) Arrhenius Prefactors
Jump Process MEP TST RFCT TST RFCT
W→SII 16 17.0 ± 0.1 16.4 ± 0.3 2.7 1012 s−1 1.1 1012 s−1

W→W 18 → 1.1± 0.5← 15.1 ± 4.0 6.0 1011 s−1 2.4 1011 s−1

SII→W 41 44.8 ± 0.1 44.4 ± 0.1 1.6 1013 s−1 0.8 1013 s−1

SII→SII 35 37.4 ± 0.1 36.8 ± 0.3 1.6 1013 s−1 0.8 1013 s−1

Keq(SII→W) 25 28.0 ± 0.2 7.1

TABLE III. Best available activation energies (kJ mol−1) for benzene jumps at infinite dilution
in Na-X and Na-Y.

Na-Y Na-X
SII→SII 25 15
SII→W 38 25
W→SII 13 10
W→W 13 10
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FIGURES

FIG. 1. Development of schematic lattice for zeolite–guest systems.

FIG. 2. Specific lattice geometry for benzene in Na-Y zeolite.

FIG. 3. Sorption sites and jumps for benzene in Na-Y.

FIG. 4. SII↔W MEP for benzene in Na-Y (transition state indicated in bold), with a calculated
barrier of 41 kJ mol−1.

FIG. 5. Schematic of dividing surfaces for benzene jumps in Na-Y.

FIG. 6. Time dependence of the dynamical correction factor for the SII→SII benzene jump in
Na-Y at 298 K.

FIG. 7. Ln|OCF| for benzene in Na-Y (Si:Al=3.0) at T = 300 K by KMC. Intracage motion
gives rapid, incomplete decay while cage-to-cage migration gives slower, long time decay.

FIG. 8. Site-to-site jump activation energies perturbed by guest–guest interactions, approxi-
mated with parabolic jump model.

FIG. 9. Comparison between KMC and MFT for benzene in Na-X at three different tempera-
tures, showing that three diffusion isotherm types emerge.

FIG. 10. Diffusion isotherm for benzene in Na-X at 468 K, by PFG NMR (scaled by 5), TZLC
(scaled by 100) and by KMC simulations.

FIG. 11. GCMC adsorption calculation for benzene in Na-X, showing hysteresis at T = 340 K
(T ∗ = 0.73).

FIG. 12. Simulated coexistence envelope for benzene in Na-X, giving Tc = 370 ± 20 K
(T ∗

c = 0.79 ± 0.04).

FIG. 13. Diffusion isotherms for benzene in Na-X by KMC-MSD and KMC-MFA (see text) at
468 K for various values of J , showing the signature of subcritical diffusion for J = −0.07 eV.

FIG. 14. Schematic of cluster formation in subcritical nanoporous systems, where the subcrit-
ical droplet spans many Na-X cages that are full of benzene.
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FIG. 15. Schematic of a TCP simulation, with identical but differently labeled particles.

FIG. 16. KMC calculated self diffusivities in membranes of various thicknesses and anisotropies,
η, using the TCP method. η > 0 shows normal diffusion for sufficiently thick membranes, while
η = 0 (single-file) is strictly anomalous.

FIG. 17. Vacancy transport through an L = 6 single-file system, with A-particles (dark) and
B-particles (light). Steps (i) through (vii) represent the passage of an “A-vacancy” from right to
left, giving particle displacement of one lattice spacing in the opposite direction.

FIG. 18. Log-log plot of MSDs calculated with KMC and theory for an L = 60 single-file
system; from simulation (solid line), MFT (left-most dotted line), single-file diffusion theory with
slope of 1

2 (dashed line), and compound diffusion theory giving slope of 1 (middle and right-most
dotted lines).
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