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Modeling proton mobility in acidic zeolite clusters. II. Room temperature
tunneling effects from semiclassical rate theory
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We have developed a novel semiclassical transition state theory~SC-TST! for truncated parabolic
barriers, based on the formulation of Hernandez and Miller@Chem. Phys. Lett.214, 129 ~1993!#.
Our SC-TST rate coefficient has the formkSC-TST5kTST

•G, whereG depends on the zero point
corrected barrier,DE0 , and the barrier curvature,uvF

‡ u. Our rate expression is stable to arbitrarily
low temperatures, as opposed to purely harmonic SC-TST, because we identify the maximum
possible semiclassical action in the reaction coordinate. For low temperatures, we derive an
analytical approximation forG that is proportional toeb DE0. We develop a theory for the tunneling
crossover temperature,Tx , yielding kBTx>\uvF

‡ uDE0 /(2p DE02\uvF
‡ u ln 2), which generalizes

the harmonic theory for systems with large but finite barriers. We have calculated rate coefficients
and crossover temperatures for the O~1!→O~4! jump in H–Y and D–Y zeolites, yieldingTx

5368 K and 264 K, respectively. These results suggest that tunneling dominates proton transfer in
H–Y up to and slightly above room temperature, and that true proton transfer barriers are being
underestimated by neglecting tunneling in the interpretation of experimental mobility data.
© 2000 American Institute of Physics.@S0021-9606~00!70915-9#
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I. INTRODUCTION

Zeolites are nanoporous, shape-selective catalysts wi
used in the chemical industry for applications ranging fro
petroleum cracking to fine chemical synthesis.1 Many reac-
tions make use of the acidic properties of zeolites; mos
these involve proton transfer reactions as elementary st
To begin developing a microscopic picture for zeolite cata
sis, it is crucial to model the dynamics of these proton tra
fer events.2 The potentially quantum mechanical nature
proton transfer necessitates a reaction rate theory that
counts for quantum effects, while remaining sufficiently tra
table for the complexity of problems found in zeoli
science.2–4 In this article, we develop a novel semiclassic
transition state theory and apply it to the calculation of qu
tum rate coefficients for the O~1!→O~4! proton transfer in
H–Y zeolite.

Several sophisticated quantum rate theories are pres
available, based either on flux correlation functions,5,6 tran-
sition state theory,7–12 or instanton theory.4,13 To apply a
quantum rate theory to a many-body reactive system suc
a zeolite cluster model, the theory should require a real
cally limited set of potential energy parameters, becaus
the significant expense ofab initio calculations used to ob
tain those parameters. The simplest such theory is harm
semiclassical transition state theory~SC-TST!,14,15 which
only requires energies and frequencies at the reactant m
mum and transition state. Unfortunately, this theory only

a!Author to whom correspondence should be addressed. Electronic
auerbach@chem.umass.edu
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plies when quantum effects are small, diverging atT
5\uvF

‡ u/2pkB whereuvF
‡ u is controlled by the curvature o

the barrier. Hernandez and Miller have reported a n
separable SC-TST that remains stable, and accounts for
rier anharmonicity and reaction path curvature.8 However,
for many complex problems of chemical and materials s
ence interest, the cubic and quartic force constants requ
to parametrize their theory16 are impractical to obtain from
electronic structure calculations. In a similar way, the e
tended potential energy information required by the instan
method4 may also be difficult to obtain for very comple
systems.

We believe that harmonic SC-TST can provide a use
and reliable starting point for computational materials s
ence, because energy second derivatives are available
wide variety of electronic structure methods. Moreover
partial cancellation of error is expected from a harmo
theory because barrier anharmonicity tends to decrease
neling probabilities, while corner-cutting tends to increa
them. The instability of harmonic SC-TST arises from a
suming that the barrier remains parabolicad infinitum. In the
present article, we develop astable harmonic SC-TST by
re-introducing the ground state of reactants, which is re
niscent of the truncated parabolic barrier considered by B
in 1934.17 While the theory developed by Bell is only accu
rate in the deep tunneling regime, and the purely harmo
SC-TST is valid only at elevated temperatures where tun
ing corrections are small, our approach smoothly conne
the low and high temperature limits, as discussed below.
thus arrive at a quantum rate theory that is easy to par
il:
7 © 2000 American Institute of Physics
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etrize and evaluate, remains stable to arbitrarily low tempe
tures, and is amenable to an analytical solution in cer
limits. In a forthcoming publication, we will quantify the
accuracy of this approach by comparing with quantum fl
correlation calculations on model gas phase and conde
phase systems.18

Using our stabilized harmonic SC-TST, we explore t
importance of tunneling for proton transfer in H–Y zeolit
We find it convenient to express our results in terms of
tunneling crossover temperature,Tx , below which tunneling
becomes dominant and above which tunneling becomes
ligible. We develop an analytical theory forTx that depends
upon the zero point vibrational energy corrected bar
height,DE0 , as well asuvF

‡ u. Consistent with our intuition
from elementary quantum theory, we find thatTx is much
more sensitive to changes inuvF

‡ u than it is to changes in
DE0 . Using parameters from high level electronic structu
calculations on zeolite cluster models, calculated in the p
vious paper, denoted Paper I, we find that tunneling do
nates proton transfer in H–Y up to and slightly above ro
temperature, and that true proton transfer barriers are b
underestimated by neglecting tunneling in the interpreta
of experimental mobility data.19–21

The remainder of this paper is organized as follows:
Sec. II A we review previous versions of SC-TST, in Se
II B we describe our stabilized harmonic SC-TST, and
Sec. II C we derive the high and low temperature limits
our new formula. In Sec. III A we discuss the results of o
proton transfer calculations for H–Y and D–Y in the conte
of tunneling crossover temperatures, and in Sec. III B
describe the consequences for experimental mobilities
zeolites. In Sec. IV we give concluding remarks and spe
late on areas for future study.

II. RATE THEORY

The quantum rate theory developed below involves
modification and simplification of the elegant treatme
given by Hernandez and Miller in 1993.8 For completeness
we begin with the rate expression developed by Miller
1975 for anF-dimensional system at temperatureT, given
by13

k~T!5
1

hQr E
E0

`

dEe2bEN~E!, ~2.1!

whereQr is the total partition function of the reactant~s!, E is
the total energy,E0 is the ground state energy of the rea
tant~s!, b5(kBT)21, kB is Boltzmann’s constant, andh
52p\ is Planck’s constant.N(E) is the cumulative reaction
probability~CRP!,13 discussed below. Equation~2.1! is exact
for gas phase reaction dynamics provided one accurately
culates the CRP.22 Although the CRP was originally define
in the context of gas phase reactive scattering,13 its calcula-
tion has since been pursued in condensed matter problem
well.23,24 The gas phase CRP is defined by summing
state-to-state reaction probabilities over all energetically
lowed reactant and product states at energyE, according to
a-
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N~E!5(
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(
np

Pnp←nr
~E!, ~2.2!

5(
nr

Pnr
~E!. ~2.3!

In Eq. ~2.3!, the CRP is written in terms of initial-state
selected reaction probabilities,25 Pnr

(E), which provide a
measure of the net flux through a surface spanning the p
uct channel.25–27 In the limit where all open reactant chan
nels have initial-state-selected reaction probabilities that
either zero or one, the CRP becomes thenumberof reactant
states that lead to products.

A. Transition state theory

The standardansatzin transition state theory~TST! is to
replace the dynamically converged, net reactive flux fro
reactants to products with the instantaneous flux through
transition state dividing surface. TST is inspired by the fa
that, althoughN(E) andk(T) are rigorously independent o
the surface through which fluxes are computed,25 the dura-
tion of dynamics required to converge the net reactive flux
usually shortest when using the transition state dividing s
face. The TST approximation can be formulated for g
phase or condensed phase systems,28,29 using classical or
quantum mechanics.11

In what follows, we develop a uniformly stable, ga
phase version of harmonic semiclassical TST, which is
pected to give qualitatively reliable results when the tunn
ing dynamics are nearly separable. We apply the new the
below to a condensed phase system—proton transfe
zeolites—by focusing exclusively on flux through the prot
transfer dividing surface. The approach is expected to g
qualitatively reliable results for condensed phase syste
when the density of reaction-coordinate vibrational state
high for energies near the transition state energy. In a fo
coming publication we will quantify the accuracy of th
approach by comparing with quantum flux correlation calc
lations on model gas phase and condensed phase syste18

We formulate the TST approximation to the CRP
terms of transition state normal mode coordinat
(q1 ,q2 ,...,qF), where qF is the reaction coordinate. Th
CRP is then approximated by30

N~E!>(
n‡

Pn‡~E!, ~2.4!

where n‡ describes the vibrational quantum state of theF
21 stable modes at the saddle point. WhenPn‡(E) is calcu-
lated semiclassically in the separable approximation,
~2.4! becomes7,31

N~E!>(
n‡

@11e2u(E,n‡)#21, ~2.5!

where u is the barrier penetration integral for the reacti
coordinate with reduced massm. The challenge in semiclas
sical tunneling theory is creating a mapping from the mu
dimensional potential surface to the one-dimensional tun
ing path required by the barrier penetration integral~vide
infra!.4 This becomes particularly simple within the sep
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rable approximation, because the total energy is given bE
5EF1«n‡, where«n‡ is the conserved vibrational energy
the F21 stable modes, andEF is the energy in the reactio
coordinate obtained as the eigenvalue ofĤF5 p̂F

2/2m

1V̂(qF). In terms of these quantities,u(E,n‡) is given by32

u~E,n‡!5
1

\ E
x1

x2
dqFA2m@V~qF!2~E2«n‡!#, ~2.6!

where the integration limits are the reaction coordinate tu
ing points on the barrier, which satisfy the equationV(qF)
5E2«n‡, and become complex for reaction coordinate e
ergies above the barrier. In generalu(E,n‡) is real; positive
for reaction coordinate energies below the barrier, and ne
tive for energies above. Because the reaction coordinate
ergy has a minimum, ground state value, the barrier pene
tion integral has a maximum positive value for short ran
barriers.

To model corner-cutting dynamics arising from reacti
path curvature, Hernandez, Miller, and co-workers exten
the formulation in Eq.~2.5! to nonseparable multidimen
sional systems, by conceiving ofu as a generalized barrie
penetration integral.7,16 Although the present article we focu
on locally separable dynamics, we briefly review the 19
nonseparable formulation of Hernandez and Miller8 to put
our method in perspective. The key insight7 of the nonsepa-
rable theory is that Eq.~2.5! can still be used when dynamic
are integrable, even when separability breaks down. Bas
on this idea, Hernandez and Miller expressed the energy
the transition state as

E>V‡1(
i 51

F

\v i
‡S ni

‡1
1

2D1 (
i , j 51

F

xi j
‡ S ni

‡1
1

2D S nj
‡1

1

2D ,

~2.7!

where V‡ is the transition state potential energy, a
$v i

‡% i 51,̄ ,F21 and $xi j
‡ % i , j 51,̄ ,F21 are the real harmonic

frequencies and anharmonic constants, respectively, of
F21 stable modes at the transition state. In Eq.~2.7!, vF

‡ is
the imaginary frequency associated with the curvature at
top of the barrier,xFF

‡ is a real anharmonic constant descr
ing the anharmonicity of the barrier, and$xiF

‡ % i 51,̄ ,F21 are
imaginary anharmonicities determined by the reaction p
curvature. For theF21 stable modes,$\(ni

‡1 1
2)% are locally

conserved semiclassical actions given by positive h
integer multiples of\. For the reaction coordinate,\(nF

‡

1 1
2) is the locally conserved semiclassical action associa

with the generalized barrier penetration integral accord
to7

u52 ip~nF
‡1 1

2!. ~2.8!

As with the separable case,u in Eq. ~2.8! is real, and de-
creases with increasing energy. Equation~2.7! provides the
energy as a quadratic function ofu andn‡, which is inverted
to obtainu(E,n‡) for use in Eq.~2.5!.

B. Stabilized harmonic semiclassical TST

The Hernandez and Miller nonseparable formulation
elegant in its treatment of barrier anharmonicity and reac
path curvature. Unfortunately, for many complex proble
-
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of chemical and materials science interest, the cubic
quartic force constants that are required16 to calculate the
anharmonicities in Eq.~2.7! are impractical to obtain from
electronic structure calculations. In a similar way, the e
tended potential energy information required by the instan
method4 may also be difficult to obtain for very comple
systems. As stated in the Introduction, we believe that h
monic semiclassical TST provides a useful and reliable st
ing point for computational materials science, because
ergy second derivatives are available for a wide variety
electronic structure methods. Moreover, partial cancellat
of error is expected from a harmonic theory because bar
anharmonicity tends to decrease tunneling probabilit
while corner-cutting tends to increase them. Although
purely harmonic version of semiclassical transition st
theory ~SC-TST! has exhibited numerical instabilities an
convergence problems in previous implementations,4,8 we
discuss below a stable expression for the rate coefficient
can be evaluated at all temperatures.

Pursuing the harmonic approximation, the energy in
region of the saddle point can be written as

E>V‡1 (
i 51

F21

\v i
‡S ni

‡1
1

2D2\uvF
‡ uu/p. ~2.9!

Hernandez and Miller have shown that the integral overE in
Eq. ~2.1! can be transformed to an integral overu,8 giving

kSC-TST~T!5
1

hQr (
n‡

E
u0

2`

duS ]E

]u De2bE(u,n‡)
1

11e2u

5
1

hQr (
n‡

F e2bE(u,n‡)

b~11e2u!
U

2`

u0

1
1

b E
2`

u0
du e2bE(u,n‡)

2e2u

~11e2u!2, ~2.10!

where the second equality is obtained using integration
parts. Although integrating over energies is only stric
valid for gas phase systems, and hence is not rigorously
rect for condensed matter systems such as zeolites, repla
discrete sums with integrals is consistent with semiclass
theory.33

Determining the correct value ofu0 in Eq. ~2.10!, the
transform ofE0 in Eq. ~2.1!, is a crucial element of this
theory and the major contribution in this paper. The Hern
dez and Miller treatment resolved this issue by assuming
the integrand in Eq.~2.10! decays to zero well beforeu
reaches its upper limit, effectively allowing the upper bou
to be replaced with positive infinity. The surface term is th
discounted for similar reasons. This often works because

harmonic effects introduce a factor ofe2bxFF
‡ u2/p2

into the
integrand, forcing arigorous and faster decay to zero wit
increasingu. This is sufficient in many cases to reduce
eliminate errors involved with integrating to positive infinity
It has been noted that in the absence of these anharm
effects there exists a temperature,T5\uvF

‡ u/2pkB , below
which the integral in Eq.~2.10! will diverge because the
integrand approaches infinity with increasingu.8
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It is especially at low temperatures when SC-TST ne
to be applied. As such, it is imperative that a definition ofu0

be determined that allows rate calculations at such temp
tures. In the harmonic approximation, fortunately,u0 can be
defined as the value ofu that makes the energy in Eq.~2.9!
equal to the lowest allowed energy, which is the zero po
vibrational energy~ZPVE! corrected ground state of the re
actant,E0

r . The resulting value ofu0 is then

u05
pDE0

\uvF
‡ u

, ~2.11!

whereDE05E0
‡2E0

r is the ZPVE corrected classical barri
height. This choice is consistent with our separable appr
mation, because the largest amount of energy that can
removed from the molecule by descending the minimum
ergy pathway to reactants is exactlyDE0 , regardless of ex-
citations in other modes. This value ofu0 considerably sim-
plifies the rate expression because it is strictly independen
n‡, thereby decoupling the summation and integration in
~2.10!.

Enforcing a finite upper limit to the integral in Eq.~2.10!
within our harmonic theory is reminiscent of the truncat
parabolic barrier considered by Bell in 1934,17 shown sche-
matically as the dashed line in Fig. 1. The theory develo
by Bell is only accurate in the deep tunneling regime, wh
Eq. ~2.10! smoothly connects the low and high temperatu
limits, as discussed in Sec. II C.

Using Eqs.~2.9! and~2.11! in Eq. ~2.10!, and removing
all terms constant inu from the brackets, we arrive at ou
final expression for the SC-TST rate coefficient in the h
monic approximation:

kSC-TST~T!5
kBT

hQr (
n‡

expH 2bFV‡1 (
i 51

F21

\v i
‡S ni

‡1
1

2D G J
3F eb DE0

11e2p DE0 /\uvF
‡ u

1
1

2E2`

p DE0 /\uvF
‡ u

du eb\uvF
‡ uu/psech2 uG

5
kBT

h
•

Q‡

Qr •G~T!5kTST~T!•G~T!. ~2.12!

The summation overn‡ gives the total vibrational partition
function at the transition state. The final result is identified
the transition state theory rate coefficient,kTST(T), multi-

FIG. 1. Schematic of truncated parabolic barrier, showing orthogonal q
tized modes.
s
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t
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plied by a tunneling correction factor,G(T), which must be
evaluated using a numerical integration scheme. Equa
~2.12! is the main working formula in this paper. The onlyab
initio data required to calculatekSC-TST(T) are the energies
and harmonic vibrational frequencies at the two relevant
tionary points: reactant minimum and transition state. In P
per I, we established convergence of these parameters
respect to basis set and level of theory, by focusing on sm
cluster models of H–Y. An approximate correction to t
barrier accounting for long range interactions, which are
nored in our cluster models, is taken from the embedd
cluster calculations reported by Saueret al.,34 and is used to
predict our final barrier height. Those results will be utilize
in rate calculations presented in Sec. III of the current wo

C. High and low temperature limits of G„T…

To examine the plausibility of our new tunneling corre
tion factor in Eq.~2.12!, and to relate this factor to previou
results, we consider the high and low temperature limits
G(T). First we consider the high temperature limit, whe
b→0, in two cases:~i ! whereE0

r →2` so thatDE0→`,
i.e., the simple parabolic barrier: and~ii ! whereE0

r andDE0

remain finite, i.e., the truncated parabolic barrier. In t
former case, the surface term vanishes ifb\uvF

‡ u,2p, and
the integral becomes

G~T!5
1

2 E2`

`

du eb\uvF
‡ uu/p sech2 u5

b\uvF
‡ u/2

sin~b\uvF
‡ u/2!

511
1

24 S b\uvF
‡ u

p D 2

1
7

5,760S b\uvF
‡ u

p D 4

1
31

967,680S b\uvF
‡ u

p D 6

1¯ , ~2.13!

which is well known from the work of Wigner,14 Bell,15 and
Hernandez and Miller.8 In the truncated parabola case, th
following expansion arises:

G~T!511 (
n51

`
1

n! S b\uvF
‡ u

p D nF u0
n

11e2u0

1
1

2 E2`

u0
du un sech2 uG , ~2.14!

whereu0 is given by Eq.~2.11!. Although this expansion is
formally different from that in Eq.~2.13!, as evidenced by
the odd powers of (b\uvF

‡ u/p) in Eq. ~2.14!, the two expan-
sions are nearly identical up to then59 term in Eq.~2.14!
when using the high level electronic structure parameters
culated in Paper I. Conceptually, then50 term represents
classical mechanics at the top of the barrier, which is va
for high temperatures, while higher terms in the expans
represent tunneling dynamics at successively lower energ
which become important at lower temperatures. Using
parameters from Paper I, then59 term is the first one that is
sensitive to truncating the parabola, i.e., sensitive to the p
ence of the ground state of reactants.

In the low temperature limit, whereb→`, we can re-
place sech2 u with 4e22u in Eq. ~2.12!, sinceb\uvF

‡ u@2p.

n-
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To simplify the final expression, we also assume t
2p DE0 /\uvF

‡ u@1, which is valid for most systems exhibi
ing rare event dynamics. With these approximations, the
neling correction factor becomes

G~T! →
T→0

G̃~T!5eb DE0
•e22p DE0 /\uvF

‡ uS 11
2p

b\uvF
‡ u D .

~2.15!

It is noteworthy that at low temperatures, our formula f
G(T) becomes proportional toeb DE0, hence eliminating the
classical Arrhenius temperature dependence fromkTST(T),
as is well known from both experiment and theory. Thus,
tunneling correction factor, which derives its behavior fro
the upper bound to the integral in Eq.~2.12!, clearly exhibits
the correct low and high temperature limits, and hence p
vides a qualitatively reliable method for calculating quantu
rate coefficients for nearly separable systems.

III. RESULTS AND DISCUSSION

Armed with the energies and harmonic vibrational fr
quencies at the reactant minimum and transition state f
Paper I, we use Eq.~2.12! to compute both the TST an
SC-TST rate coefficients. The SC-TST calculation is sta
at any temperature because of the upper bound on the
gral in Eq.~2.12!. Figure 2 shows an Arrhenius plot of thes
rate coefficients at temperatures from below 200 to ab
1000 K, for the O~1! to O~4! proton jump in H–Y zeolite.
We use the most accurate input parameters from Paper
calculate G(T), namely DE0597.1 kJ mol21 and un̄F

‡ u
5uvF

‡ u/2pc51570 cm21.

A. Tunneling crossover temperatures

In the high temperature regime, Fig. 2 shows no diff
ence between the SC-TST and the TST rate coefficients
low temperatures, as tunneling becomes more important
classical barrier crossings become more rare, the SC-
rate coefficient develops a very weak temperature dep
dence because of the factor ofeb DE0 in G(T) @see Eq.
~2.15!#. At intermediate temperatures the two approximat
linear sections of this graph join smoothly. We define a tu
neling crossover temperature,Tx , as the point where the two
linear sections would hypothetically intersect; at tempe
tures belowTx tunneling is dominant and at temperatur

FIG. 2. Arrhenius plot ofkTST(T), G(T), andkSC-TST(T) high level elec-
tronic structure results for the asymmetric 3T cluster described in Pape
t
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aboveTx tunneling becomes negligible.4 It is clear that at
Tx , the SC-TST rate coefficient is appreciably larger th
the TST rate coefficient, possibly by more than an order
magnitude@e.g., G(Tx)521.3 in Fig. 2#. Thus,Tx is not a
point at which a distinct change in mechanism occurs,
rather is a point along a continuous but rapid change, plac
a boundary on the temperature regime of applicability
traditional transition state theory.

We prefer for numerical convenience to obtainTx by
analyzingG(T). In particular, Fig. 2 shows that in both th
high and low temperature limits, logG(T) vs 1/T is nearly a
straight line. Consistent with our previous definition ofTx ,
we obtainTx as the temperature wherethesetwo linear sec-
tions intersect. The high temperature limit ofG(T) is 1,
while the low temperature limit ofG(T) is given in Eq.
~2.15!. As such, the temperature for whichG̃(T)51 isTx . In
practice, we calculateTx as the root of the equation lnG̃(T)
50, using the bisection method.35

The crossover temperature obtained in this way fr
Fig. 2 is 368 K. It is worth noting the sensitivity ofTx to
changes in bothDE0 and un̄F

‡ u by their respective uncertain
ties, as determined in Paper I. Changing the barrier heigh
610 kJ mol21 alters the slope of the exponentially depende
portion of G(T), but only changesTx to 366 K ~larger bar-
rier! or 369 K ~smaller barrier!. Changing un̄F

‡ u by
6200 cm21, however, produces crossover temperatures
415 K ~larger un̄F

‡ u) or 319 K ~smallerun̄F
‡ u). Thus, changes

to the system that facilitate tunneling will raiseTx ; increas-
ing uvF

‡ u and, to a much lesser extent, decreasingDE0 in-
creases bothTx and the tunneling probability.

To estimate the kinetic isotope effect on jump rates
acidic zeolites, we recalculated all the harmonic frequenc
for a cluster model of D–Y zeolite, givingDE0

5100.7 kJ mol21 and un̄F
‡ u51135 cm21. As expected, the

ZPVE corrected barrier increases because the ZPVE of
reaction coordinate in the reactant well is reduced upon
topic substitution. Also as expected, the barrier frequenc
reduced from the H–Y value by a factor ofca. 1/&. TST
and SC-TST jump rate coefficients for H–Y and D–Y a
compared in Fig. 3, showing clearly that at room tempe
ture, tunneling is more important for proton transfer than i
for deuteron transfer. Indeed, the tunneling crossover t
perature for D–Y obtained from Fig. 3 is 264 K, also r

I.
FIG. 3. Kinetic isotope effect of proton and deuteron transfer in zeolite
H–Y data shown as solid lines, D–Y data shown as dash–dotted lines
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TABLE I. Absolute rate coefficients and tunneling correction factors for 3T clusters using high level electronic structure results.

T~K!

Symmetric 3T Symmetric 3T Asymmetric 3T BestDE0

RSi-Si55.8 Å RSi-Si56.0 Å RSi-Si55.93– 5.96 Å ~see the text!
k(T)(s21) G(T) k(T)(s21) G(T) k(T)(s21) G(T) k(T)(s21) G(T)

200 3.453103 2.743107 3.1631022 4.3131013 2.56 2.1431010 6.4631022 4.0431011

300 1.183104 2.673102 8.1431022 5.643104 8.40 1.833103 2.1231021 3.803103

400 1.813105 6.90 1.22 1.883101 2.453102 8.56 9.15 8.71
500 3.373106 2.74 1.513102 3.68 1.603104 2.92 1.143103 2.93
600 3.073107 1.19 6.853103 2.24 3.613105 1.98 3.983104 1.98

DE0562.8 kJ/mol DE05105.9 kJ/mol DE0586.1 kJ/mol DE0597.1 kJ/mol
un̄F

‡ u51548 cm21 un̄F
‡ u51695 cm21 un̄F

‡ u51570 cm21 un̄F
‡ u51570 cm21

Tx5367 K Tx5397 K Tx5369 K Tx5368 K
er
in
a
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.
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as
are
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ar-

f-
a

ults
er

s of

ab-
m-
duced from the H–Y value of 368 K by a factor ofca. 1/&.
It is interesting that variations inDE0 and un̄F

‡ u produce
qualitatively different changes inTx . The same qualitative
sensitivity is exhibited by the simple rectangular barri
where the logarithm of the tunneling probability depends l
early on the barrier width, but only depends on the squ
root of the barrier height.32 An analysis of our low tempera
ture tunneling correction factor,G̃(T) in Eq. ~2.15!, quanti-
tatively accounts for the sensitivities found above forTx . In
particular, if we ignore the surface term in Eq.~2.12! when
deriving G̃(T), we arrive at Eq.~2.15!, except with the last
factor replaced by (2p/b\uvF

‡ u). Using this simpler version
of G̃(T) would give Tx5\uvF

‡ u/2pkB5360 K for our sys-
tem, precisely the temperature at which the purely harmo
theory diverges. The rapidly varying exponentials in E
~2.15! actually makeT* [\uvF

‡ u/2pkB a reasonable initia
guess forTx . If the slowly varying, third factor in Eq.~2.15!
is evaluated atT5T* , the equation lnG̃(T)50 can be solved
analytically forTx , yielding

Tx>T̃x5
\uvF

‡ uDE0 /kB

2p DE02\uvF
‡ u ln 2

. ~3.1!

Equation ~3.1! deserves several remarks. First, o
theory assumes that 2p DE0.\uvF

‡ u ln 2 to makeTx posi-
tive. Indeed, when 2p DE0@\uvF

‡ u ln 2, the crossover tem
perature can be further approximated as

T̃x>
\uvF

‡ u
2pkB

S 11
\uvF

‡ u ln 2

2p DE0
D 5T* S 11

ln 2

2u0
D . ~3.2!

Using the high level parameters from Paper I, which g
T* 5360 K andu0516.2, Eq.~3.2! predictsT̃x5368 K, pre-
cisely that obtained from Fig. 2 and Eq.~2.15!. As such, Eqs.
~3.1! and ~3.2! generalize the purely harmonic theory ofTx

for systems with large butfinite barriers. Second, the sens
tivities of Tx to changes inDE0 and uvF

‡ u can now be esti-
mated using Eqs.~3.1! and ~3.2!, giving

]~kBT̃x!

]DE0
52 ln 2S kBT̃x

DE0
D 2

>2S ln 2

4u0
2D

~3.3!
]~kBT̃x!

]~\uvF
‡ u!

512pS kBT̃x

\uvF
‡ u D

2

>
1

2p
.

,
-
re

ic
.

r

e

Equations~3.3! indicate that](kBT̃x)/]DE0 is very small
and uniformly negative, while](kBT̃x)/](\uvF

‡ u) is larger
and uniformly positive, in complete qualitative and quanti
tive agreement with our findings above. Finally, it is inte
esting to note that, even if\uvF

‡ u were comparable toDE0 ,
T̃x in Eq. ~3.1! would still be much more sensitive to chang
in \uvF

‡ u than it would be to changes inDE0 , because of the
factors of 2p and ln 2. Thus, these factors enforce the ub
uitous quantum mechanical rule that tunneling is control
more by barrier width than it is by barrier height.

B. Consequences for experimental mobilities in
zeolites

In Paper I we modeled three different clusters w
H3SiOAl~OH!2OSiH3

21 connectivity. Two clusters were con
strained by enforcing a plane of symmetry along the S
AlOSi backbone, and by fixing the distance between the s
con atoms at two characteristic values: 5.8 Å and 6.0 Å. T
third cluster was constructed from H–Y neutron diffractio
data,36 with fabricated SiH and OH bonds that were frozen
space. These clusters represent a sample of characte
substrates for proton transfer in acidic zeolites, and illustr
how variations in local geometry affect the transfer rates

Absolute rate coefficients and tunneling correction fa
tors for proton transfer in our models of H–Y zeolite,
calculated using electronic structure data from Paper I,
tabulated in Table I, along with our best estimates ofDE0 ,
un̄F

‡ u andTx for these clusters. The best available estimate
the barrier height is obtained by adjusting the classical b
rier calculated by Saueret al.,34 which includes long range
interactions, with our treatment of high level correlation e
fects and zero point vibrational energy differences, giving
value of DE0

Embed~MP4!>DV0
Embed~B3LYP!1@DE0

3T(MP4)
2DE0

3T(B3LYP)#1DZPVE3T(MP2)5100.91(86.1276.3)
213.6 kJ mol21597.1 kJ mol21. Using this value forDE0

combined with our best vibrational analysis gives the res
shown in the last column of Table I. We see that a high
barrier lowers the absolute rate coefficient by many order
magnitude, but increases the value ofG(T) by similar
amounts at low temperatures. At high temperatures, the
solute rate coefficients exhibit the classical Arrhenius te
perature dependence, whileG(T) approaches its limiting
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value of unity. The time scales obtained from these rate
efficients are long compared to typical time scales of m
lecular jumps in zeolites at ambient conditions,37 suggesting
that protons may appear static during the time it take
molecule to sample the surface of a zeolite cage or chan
The crossover temperatures in Table I fall in the range 36
397 K.

It is interesting to note from Table I that as the Si–
distance is varied, two competing effects emerge. Lon
Si–Si distances produce larger barriers, which one might
pect to cause a decrease inTx . There is, however, a signifi
cant increase inun̄F

‡ u, creating a barrier that is thinner ne
the transition state despite its increased height. Since tun
ing probabilities are more sensitive to barrier width than th
are to barrier height, the net effect turns out to be anincrease
in tunneling probabilities and also inTx upon increasing the
Si–Si distance. The overwhelming conclusion to be glea
from these results is that, up to and even above room t
perature, the dominant mechanism for proton mobility ab
an acid site is quantum mechanical tunneling through
potential barrier.

The conclusion that proton tunneling in zeolites is im
portant at ambient conditions presents interesting con
quences for the interpretation of proton mobilities measu
near room temperature. In particular, assuming an Arrhe
temperature dependence for measured proton transfer ra
the tunneling regime will underestimate the true ZPVE c
rected barrier. For example, Sarvet al.19 reported proton
transfer rates in H–Y zeolite at 298 K, 478 K, 568 K, a
658 K, a temperature range that we believe overlaps sig
cantly with the tunneling regime. To explore the cons
quences of this, we computed rate coefficients at these
peratures using parameters from the last column in Tab
and forced an Arrhenius fit to these rate data, which in f
show clear non-Arrhenius temperature dependence, e
cially at 298 K. By this procedure we obtain an appare
activation energy of 60.3 kJ mol21, which is in remarkably
good agreement with the experimentally determined valu
61 kJ mol21.19 This level of agreement is likely to involve
fortuitous cancellation of errors, considering the approxim
tions we have made in the electronic structure and dynam
calculations. Nonetheless, this strongly suggests that
proton transfer barriers are being underestimated by neg
ing tunneling when interpreting mobility data. On the oth
hand, our kinetic isotope studies of deuteron transfer
D–Y, which predictTx5264 K, suggest that Arrhenius fit
of deuteron mobilities near room temperature should prov
good estimates of deuteron transfer barriers.

IV. CONCLUDING REMARKS

We have developed a novel semiclassical transition s
theory ~SC-TST! for truncated parabolic barriers, based
the formulation of Hernandez and Miller.8 Our SC-TST rate
coefficient has the formkSC-TST(T)5kTST(T)•G(T), where
kTST(T) is the TST rate coefficient, andG(T) is the new
tunneling correction factor, which is evaluated numerica
G(T) depends on temperature, the zero point vibrational
ergy~ZPVE! corrected barrier,DE0 , and the curvature of the
o-
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barrier at the transition state,uvF
‡ u. Our rate expression is

easy to parametrize and evaluate, and is stable to arbitr
low temperatures. Purely harmonic SC-TST, on the ot
hand, diverges at and belowT5\uvF

‡ u/2pkB . Our rate ex-
pression is stabilized at low temperatures by identifying
maximum possible semiclassical action in the reaction co
dinate, associated with the ground state of the system.

We have analyzed the high and low temperature limit
forms of G(T). For high temperatures, we derive an expa
sion for G(T) in powers of (b\uvF

‡ u/p), which we relate to
formulas reported by Wigner, Bell, and Hernandez a
Miller. For low temperatures, we derive a simple, analytic

approximation forG(T), denotedG̃(T), which is propor-
tional to eb DE0 and thus eliminates the classical Arrheni
temperature dependence fromkTST(T). We define a tunnel-
ing crossover temperature,Tx , as the temperature below
which tunneling becomes dominant and above which tunn
ing becomes negligible. We evaluateTx according to the

equationG̃(Tx)51, which we solve approximately to yield
kBTx>\uvF

‡ uDE0 /(2p DE02\uvF
‡ u ln 2). This formula gen-

eralizes the purely harmonic theory ofTx for systems with
large butfinite barriers.

Based on the high level electronic structure results
ported in Paper I, we have calculated rate coefficients
crossover temperatures for the O~1! to O~4! jump in H–Y
and D–Y zeolites. These rate coefficients suggest that
tons may appear static on molecular diffusion time sca
Our best estimates ofTx are 368 K and 264 K for H–Y and
D–Y, respectively, suggesting that quantum tunneling is
dominant mechanism for proton transfer in H–Y at a
slightly above room temperature.

Forcing an Arrhenius fit to our H–Y rate coefficien
calculated at the temperatures studied experimentally
Sarvet al.19 (T5298– 658 K), yields an apparent activatio
energy of 60.3 kJ mol21 even though our input forDE0 is
97.1 kJ mol21. Because this apparent activation energy is
good agreement with the experimentally determined value
61 kJ mol21,19 we believe that true proton transfer barrie
are being underestimated by neglecting tunneling when
terpreting mobility data. On the other hand, jump rates c
culated for D–Y suggest that Arrhenius fits of deuteron m
bilities near room temperature should provide good estima
of deuteron transfer barriers. In the future, experimental p
ton transfer rates on a wider range and finer mesh of t
peratures, as well as more accurate theoretical calculati
will be required before the importance of proton tunneling
zeolites at ambient conditions is firmly established.

Our uniformly stable version of harmonic SC-TST d
scribed above is expected to give qualitatively reliable
sults when the tunneling dynamics are nearly separable.
forthcoming publication, we will quantify the accuracy o
this approach by comparing with quantum flux correlati
calculations on model gas phase and condensed p
systems.18 We will focus on tunneling dynamics at low tem
peratures, involving tunneling ‘‘paths’’ that are likely to ac
cess regions of configuration space where the local con
vation of harmonic actions can seriously break down.



. H
ca
c

-
ia

ts,

ys.

ro.

nd

ry,

6794 J. Chem. Phys., Vol. 112, No. 15, 15 April 2000 J. T. Fermann and S. M. Auerbach
ACKNOWLEDGMENTS

We thank Professor R. Hernandez and Professor W
Miller for enlightening discussions regarding semiclassi
rate theory. This work was supported by the National S
ence Foundation~CHE-9616019 and CTS-9734153!, a Sloan
Foundation Research Fellowship~BR-3844!, and a Camille
Dreyfus Teacher–Scholar Award~TC-99-041!.

1A. Corma, Chem. Rev.95, 559 ~1995!, and references therein.
2T. N. Truong, J. Phys. Chem. B101, 2750~1997!.
3M. J. Murphy, G. A. Voth, and A. L. R. Bug, J. Phys. Chem. B101, 491
~1997!.

4W. Siebrand, Z. Smedarchina, M. Z. Zgierski, and A. Ferna`ndez-Ramos,
Int. Rev. Phys. Chem.18, 5 ~1999!.

5W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys.79, 4889
~1983!.

6W. H. Miller, Acc. Chem. Res.26, 174 ~1993!.
7W. H. Miller, Faraday Discuss. Chem. Soc.62, 40 ~1977!.
8R. Hernandez and W. H. Miller, Chem. Phys. Lett.214, 129 ~1993!.
9D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem.35, 159~1984!.

10S. C. Tucker and D. G. Truhlar, inNew Theoretical Concepts for Under
standing Organic Reactions, edited by J. Bertran and I. G. Csizmad
~Kluwer, Dordrecht, 1989!, p. 291.

11G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys.91, 7749
~1989!.

12G. A. Voth, in New Trends in Kramers’ Reaction Rate Theory, edited by
P. Talkner and P. Hanggi~Kluwer, Dordrecht, 1995!.

13W. H. Miller, J. Chem. Phys.62, 1899~1975!.
14E. Wigner, Z. Phys. Chem. B19, 203 ~1932!.
15R. P. Bell, Trans. Faraday Soc.55, 1 ~1959!.
16W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Wille

Chem. Phys. Lett.172, 62 ~1990!.
.
l

i-

17R. P. Bell, Proc. R. Soc. London, Ser. A148, 241 ~1935!.
18S. Su and S. M. Auerbach~in preparation!.
19P. Sarv, T. Tuherm, E. Lippmaa, K. Keskinen, and A. Root, J. Ph

Chem.99, 13763~1995!.
20T. Baba, N. Komatsu, Y. Ono, and H. Sugisawa, J. Phys. Chem. B102,

804 ~1998!.
21T. Baba, N. Komatsu, Y. Ono, H. Sugisawa, and T. Takahashi, Mic

Meso. Mat.22, 203 ~1998!.
22S. M. Auerbach and W. H. Miller, J. Chem. Phys.98, 6917~1993!.
23P. Saalfrank and W. H. Miller, J. Chem. Phys.98, 9040~1993!.
24P. Saalfrank and W. H. Miller, Surf. Sci.303, 206 ~1994!.
25W. H. Miller, J. Chem. Phys.61, 1823~1974!.
26S. M. Auerbach and C. Leforestier, Comput. Phys. Commun.78, 55

~1993!.
27S. M. Auerbach and W. H. Miller, J. Chem. Phys.100, 1103~1994!.
28D. Chandler, J. Chem. Phys.68, 2959~1978!.
29D. Chandler,Introduction to Modern Statistical Mechanics~Oxford Uni-

versity Press, New York, 1987!.
30U. Manthe and W. H. Miller, J. Chem. Phys.99, 3441~1993!.
31S. C. Miller and R. H. Good, Phys. Rev.91, 174 ~1953!.
32E. Merzbacher,Quantum Mechanics~Wiley, New York, 1970!.
33W. H. Miller, Adv. Chem. Phys.25, 69 ~1974!.
34J. Sauer, M. Sierka, and F. Haase, inTransition State Modeling for Ca-

talysis, No. 721 in ACS Symposium Series, edited by D. G. Truhlar a
K. Morokuma~ACS, Washington, DC, 1999!, Chap. 28, pp. 358–367.

35W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne
Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd
ed. ~Cambridge University Press, New York, 1992!.

36M. Czjzek, H. Jobic, A. N. Fitch, and T. Vogt, J. Phys. Chem.96, 1535
~1992!.

37J. Kärger and D. M. Ruthven,Diffusion in Zeolites and Other Mi-
croporous Solids~Wiley, New York, 1992!.


