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Correlation effects in molecular diffusion in zeolites at infinite dilution
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Molecular diffusion in zeolites is often resumed to a random walk between specific adsorption sites
within the channels and cavities of the materials. Several types of correlations between the steps of
the walk come to precise this assumption: kinetic correlations due to the incomplete relaxation of the
molecule in its final site, vacancy correlations arising at high loading because molecules are
blocking each other, and geometrical correlations because zeolite channels and cages can boast
nonsymmetric sites. The first and last correlation effects can be observed at infinite dilution. In this
article we present a way of calculating an exact diffusion coefficient at infinite dilution as a function
of the microscopic rate constants, taking into account both geometric and kinetic correlation effects.
This is achieved by cutting the molecular motion into uncorrelated sequences of jumps, where all
jumps inside one sequence are correlated to each other. This method is applied to study geometrical
correlations of benzene in NaY, comparing with kinetic Monte Carlo data of Saravananet al. @C.
Saravanan, F. Jousse, and S. M. Auerbach, J. Chem. Phys.108, 2162~1998!#, and both kinetic and
geometrical correlations of ethane in silicalite, comparing with molecular dynamic simulations of
Kärger et al. @J. Kärger, P. Demontis, G. B. Suffritti, and A. Tilocca, J. Chem. Phys.110, 1163
~1999!#. © 2000 American Institute of Physics.@S0021-9606~00!50502-9#
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I. INTRODUCTION

According to Le Claire,1 the first time that the assump
tion of random displacements in the random walk picture
diffusion was appreciated to be an oversimplification da
back to 1935, and concerned the kinetic theory of ga
Indeed, after a collision, the probability that a gas parti
retains a component of its velocity along the same direc
as it was moving before the collision, is larger than the pr
ability that its velocity lies in the opposite direction. Th
effect was termed ‘‘persistence of velocity,’’ but for our pu
poses we will call it ‘‘kinetic correlations’’ since it relates t
jump kinetics. Similar kinetic correlations cause double
multiple jumps in adatom diffusion.2,3 Such a type of corre-
lation was also considered by Jousseet al. for diffusion of
butene isomers in theta-1 type zeolites.4

In 1951, Bardeen and Herring5 noted that the vacanc
mechanism of atom diffusion in solids gives rise to a simi
but opposite correlation effect, since an atom has a la
probability to move backward to the hole it just vacat
rather than onward. From that moment on, a large body
work was devoted to the calculation of these correlations,
different diffusion mechanisms, for a variety of lattice geo

a!Author to whom correspondence should be addressed; electronic
fjousse@scf.fundp.ac.be
1530021-9606/2000/112(3)/1531/10/$17.00
f
s
s.
e
n
-

r

r
er

f
r

-

etries, either theoretically or using Monte Car
simulations.1,6–8 These ‘‘vacancy correlations’’ arise als
when studying self-diffusion of guest molecules in zeol
channels.9,10 For very high loading, the evaluation of thes
correlations is similar to that of vacancy correlations in s
ids. We are not aware of any simple way to calculate th
correlations for arbitrary loading, although relations exist
a number of specific simple geometries and particles in
acting only through excluded volume interactions.11,12 Re-
lated to these correlations is the effect giving rise to sing
file diffusion, where molecules diffusing inside
unidirectional channel and unable to pass each other m
diffuse all in the same direction or not at all. This effect h
been extensively studied in the last few years.13–15

Another type of correlation effect observed in some ze
lites was recognized by Ka¨rger for the case of molecula
diffusion in ZSM-5.16 Indeed, the channel geometry of th
zeolite restricts the displacements alongz as compared to
those alongx and y, so that the diagonal elements of th
diffusivity tensor should obey the correlation rule

a2

Dx
1

b2

Dy
5

c2

Dz
. ~1!

Since these correlation effects are caused by the geomet
il:
1 © 2000 American Institute of Physics
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the channel network, we will call them ‘‘geometric correl
tions.’’ They arise whenever the probability of jumping o
of a given site is nonsymmetric.

Different types of correlation can exist at once. For e
ample, diffusion of some guest molecule in ZSM-5 cou
exhibit kinetic correlations if the jumps are not complete
randomized by thermalization, vacancy correlations if
fractional loading is significantly larger than zero, and ge
metrical correlations due to the channel geometry. Ka¨rger
et al.17 introduced a ‘‘two-step’’ model of diffusion in
silicalite-1 ~isomorphous to ZSM-5! to account for all these
correlation effects. In this model they consider that the pr
ability of an event depends on the preceding one, so
instead ofn uncoupled jumps there aren/2 coupled events
each corresponding to a double jump. For ethane diffusio
the zigzag channels of silicalite-1~along they axis!, they
find from molecular dynamics~MD! simulations that the
probability to jump backward is larger than the probability
jump forward, so that the diffusion coefficient is decreased
compared to what would be expected from a simple rand
walk ~RW!. Below we confirm that indeed the two-ste
model gives results much closer to MD data than the sim
RW. However, the two-step model considers that e
coupled double-jump isuncoupledfrom the others, so tha
we expect it to underestimate the total influence of corre
tions. This will be shown below, where we will see that in
cases the diffusion coefficient from the two-step model alo
the zigzag channels is larger than the MD one.

In this article we present an alternative and genera
applicable method for treating kinetic and geometrical cor
lation effects of molecular diffusion in zeolites. The meth
we describe here allows us to write an analytical express
for the self-diffusion coefficient on anarbitrary lattice, given
the fundamental rate factor. Such an expression is part
larly useful to study the relation between the rates and
global diffusivity. Rate constants can be evaluated us
simple energy minimization techniques18 or more elaborate
free-energy simulations,19 and determined experimentally u
ing, e.g., solid-state NMR.20 The global diffusivity, on the
other hand, can be evaluated by molecular dynamics~MD!
simulations or accelerated MD,21 and measured using quas
elastic neutron scattering~QENS!22 or pulsed-field gradien
NMR.23 If the temperature dependence of the rate facto
known, such an analytical expression provides a sim
theory for the temperature dependence of diffusion at infin
dilution. Furthermore, it allows us to study externally t
influence of a change in topology or connectivity of the a
sorption sites onto the guest diffusivity.

Getting such an analytical expression involves lots
probabilistic calculations, and can be cumbersome in
general case. The method we present here allows us to m
these calculations somewhat simpler. To show the rea
how this can be achieved, we treat exhaustively two part
lar examples: diffusion of benzene in NaY, and diffusion
ethane in silicalite-1. By excluding vacancy correlations,
confine ourselves in principle to diffusion at infinite dilutio
However, using mean-field theory in addition to our meth
for treating geometrical and kinetic correlations is expec
to give qualitatively reasonable trends for the loading dep
-
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dence of diffusion. Note, however, that the mean-field a
proximation used in the applications assumes that the site
site rates are not affected by nearby molecules except for
blocking, and therefore are only valid for weak guest-gu
interactions.

The remainder of this paper is organized as follows: S
tion II outlines the general method of calculation. Section
presents the example of benzene diffusion in Na-Y, wh
presents strong geometric correlations at low loading. In S
IV we treat the example of ethane diffusion in silicalite-
comparing our model to the data of Ka¨rger et al.17 Finally,
we conclude in Sec. V.

II. GENERAL MODEL

In the random walk picture of diffusion, the sel
diffusion coefficient along a given direction, e.g., thex-axis,
is related to the second moment of the propagator by E
stein’s equation

Dx5
1

2t
^x2~ t !&, ~2!

where^x2(t)& is the mean-square displacement~MSD! of a
given molecule moving along thex-axis andt is the obser-
vation time. If we suppose a jump diffusion mechanism,
MSD becomes

^x2~ t !&5K S (
i 51

N(t)

xi D 2L ~3!

5(
i 51

N(t)

^x2&step12(
i 51

N(t)

(
j 51

N(t)2 i

^xixi 1 j&step, ~4!

where ^&step indicates that the average is performed ove
single step, andN(t) is the total number of steps in timet.
When there is a single type of site and no correlations,
have that̂ xixi 1 j&step50, so that

^x2~ t !&5N~ t !a2, ~5!

where a is the unit displacement alongx and N(t) is the
average number of jumps during timet: N(t)5t/t, wheret
is the average residence time in the site. The existenc
correlation between jumps complicates this equation, as
cross terms no longer vanish on average. In the case w
correlations are only geometric, several general ways
dealing with these cross terms exist, either with linear al
bra applied to stochastic matrices24 or through Laplace-
Fourier transforms.25,26 These methods of calculation shou
work for all systems presenting geometric correlations at
finite dilution. In a recent paper, Braun and Sholl27 extended
the Laplace-Fourier transform method to calculate exact s
diffusion tensors in generalized lattice-gas models with
trinsic non-Markov behavior, equivalent to what we ter
kinetic correlations. These methods in general involve qu
heavy matrix algebra that can sometimes hide the underly
physical meaning of the parameters. We wish to presen
this article another way of calculating the geometric corre
tions, allowing also the evaluation of kinetic correlations.
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Our method is limited to a class of systems where th
are uncorrelated sequences of steps. Writing the total
placement as a sum over these uncorrelated sequences
than over single jumps, we have

^x2~ t !&5Nseq~ t !^x2&seq, ~6!

where nowNseq(t) is the total number of uncorrelated s
quences duringt and ^x2&seq the average MSD during on
sequence. This equation is the strict equivalent of Eq.~5!,
and general treatments applied to Eq.~5! such as mean-field
approximations, can also be used to study Eq.~6!. Although
in general there is no reason why the diffusion of a gu
molecule in a zeolite should present uncorrelated sequen
in practice, however, this is found to be the case for num
ous systems. For example, geometric correlations disap
if the sum of all jump vectors out of a given site is zero1

Note that this also holds for any spatial direction indep
dently of the others, that is, geometric correlations alon
given axisx vanish if the sum of the projection of all jum
vectors along this axis is zero:( j xi j 50 for site i . The idea
to partition the correlated displacement into uncorrelated
quences is not new and has been used, e.g., by Kidson28 or
Koiwa29 to study vacancy diffusion in solids. This metho
allows the development of simpler equations than the gen
matrix methods, and thus is easier to apply. Of course
method loses in generality what it gains in simplicity.

In this paper, we present the example of benzene di
sion within the supercages of NaY, and of ethane diffusion
the channels of silicalite-1 to show how a total displacem
can be cut into uncorrelated sequences. In the latter case
will consider the existence of kinetic correlations on top
geometrical correlations, as found by Ka¨rgeret al. in a recent
article.17

III. BENZENE DIFFUSION IN NaY

The NaY framework presents a series of large ca
separated by 12-membered ring~12-T! windows arranged on
a tetrahedral lattice.30 Benzene molecules diffuse on tw
types of sites in this lattice: S2 sites, where they face a Na~II !
cation inside a supercage; and W sites, where they sit in
plane of a 12-T window31,32; see Fig. 1 for a schematic rep
resentation of the possible jumps of benzene in NaY. Au
bachet al.have extensively studied the dynamics of benze
on this lattice of sites,9,18,33–39by transforming the complex
problem of diffusion on two heterogeneous types of sites i
a simpler problem of diffusion from cage to cage. This is
the same spirit as our present work, but the exact treatm
was slightly different, as they did not determine the diffusi
constant explicitly from the mean-square displacement.

At infinite dilution, the problem can be solved exactly b
considering the geometric correlations observed insid
cage. Indeed, in an S2 site the benzene molecule sits ne
the cage wall; therefore the next jump will necessarily hav
component in the direction opposite to the cage wall. If
molecule keeps jumping back and forth in the cage betw
S2 sites, all jumps in this sequence will be correlated to e
other. On the other hand, as soon as a benzene mole
reaches a 12-T window, it has exactly the same probabilit
jump forward as backward, so that all correlations will
e
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lost. Therefore we can write the total displacement as a s
over uncorrelated sequences of W→~S2→...→S2!→W,
wherein the brackets represent an unbroken series of S2→S2
jumps. Since all axes are equivalent, we can write the M
alongx as

^x2~ t !&5NW~ t !^x2&cage, ~7!

whereNW(t) is the number of times a molecule hops to
window duringt, and^x2&cage is the average MSD betwee
two visits to a window. By definition, this displacement ca
only span a single cage. Consider the schematic definitio
a NaY supercage presented in Fig. 2, and suppose a mole
is initially at W1. Then its MSD during one sequence insid
a cage depends on whether its next window visit will be
W1, W2, W3, or W4. More specifically, if the molecule
goes to W1 or W3, ^x2&cage50, while if it visits W2 or W4,

FIG. 1. Schematic view on the structure of zeolite NaY, showing the
sorption sites of benzene and the possible jumps between the sites.

FIG. 2. Schematic view on a supercage of NaY, showing the arrangeme
the window sites W1, W2, W3, W4, and of the S2 sites S1, S2, S3, and S4 as
used in the text.



s

e
n

l-
S
s

a
is

t a

a
a

e
fir

m

ffi-

n

ing
with
his

1534 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Jousse, Auerbach, and Vercauteren
^x2&cage5a2. Writing p(Wi), the probability that a molecule
goes to the site Wi either directly or after an unbroken serie
of S2→S2 jumps, we have that

^x2&cage52a2@p~W2!1p~W4!#, ~8!

where the factor of 2 arises because there are two symm
cal cages in which the molecule can hop. We now defi
pWW, pWS, pSS, and pSW as the probabilities that a mo
ecule at a 12-T window hops to another window, to an
site, and that a molecule at an S2 site goes to another S2
or to a window, respectively, andpn(Wi) as the probability
that the molecule is in site Wi after n jumps, so thatp(Wi)
5(n51

` pn(Wi). After the first jump, we obtain

p1~W2!1p1~W4!5
pWW

3
. ~9!

After n jumps, we obtain

pn~W2!1pn~W4!5
pSW

3
@2pn21~S1!1pn21~S2!

12pn21~S3!1pn21~S4!#, ~10!

wherepn21(Si) is the probability to find the molecule at
site Si at the end of the preceding jump. In matrix form, th
can be written as

pn~W2!1pn~W4!5
pSW

3 S 2
1
2
1
D Pn21

S , ~11!

wherePn
S is the vector containing the probabilities to be a

given site Si at stepn after an unbroken series of S2→S2
jumps. It is easy to see that

Pn
S5S pn~S1!

pn~S2!

pn~S3!

pn~S4!

D 5MPn21
S , ~12!

with M the connectivity matrix between S2 sites inside
single cage, completely describing the topology of the
lowed jumps of benzene in a cage,

M5S 0 1/3 1/3 1/3

1/3 0 1/3 1/3

1/3 1/3 0 1/3

1/3 1/3 1/3 0

D pSS. ~13!

By recurrence these relations lead to

Pn
S5Mn21P1

S , ~14!

whereP1
S is the vector containing the probabilities to find th

molecule at any given S2 site in the supercage after the
jump,

P1
S5S 0

1/6
1/6
1/6
D pWS. ~15!
tri-
e

2
ite

l-

st

The total probability to find the molecule at W2 or W4 after
any number of S2→S2 jumps in between, thus becomes

p~W2!1p~W4!5
pWW

3
1

pSW

3 S 2
1
2
1
D

3F (
n52

`

Mn22GS 0
1
1
1
D pWS

6
. ~16!

Using the fact that(n50
` Mn5(12M )21, we finally get the

mean-square displacement inside a single cage,

^x2&cage5
2

3
a2S pWW1pWS

21pSS

31pSS
D . ~17!

For infinite dilution, we have

pWW5
kWW

kWW1kWS
, ~18!

pWS5
kWS

kWW1kWS
, ~19!

pSW5
kSW

kSW1kSS
, ~20!

pSS5
kSS

kSW1kSS
, ~21!

and,

NW~ t !5
1

2

kSW

kWS
~6kWW16kWS!t, ~22!

wherekab is the fundamental rate constant for a jump fro
sitea to siteb, wherea, b5S,W. Combining Eqs.~17! and
~22! gives the complete expression for the diffusion coe
cient at infinite dilution,

D5kSWa2S kWW

kWS
1

2kSW13kSS

3kSW14kSS
D . ~23!

In Ref. 35, Auerbachet al. show that the diffusion coef-
ficient for benzene diffusion in NaY at infinite dilution ca
be written

D5
1

6

b2~T!

tc
, ~24!

wheretc is the average residence time in a cage,

tc5
112kWS/kSW

3~kWW1kWS!
, ~25!

andb(T) a temperature-dependent kinetic length describ
the average cage-to-cage jump distance. Comparison
our expression of the diffusion coefficient shows that t
kinetic length can be written as

b~T!5&aS kWW

kWS
1

2kSW13kSS

3kSW14kSS
D 1/2

•S kSW12kWS

kWW1kWS
D 1/2

.

~26!
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Figure 3 compares the kinetic length from Eq.~26! with the
results of the Monte Carlo simulation reported in Ref. 3
using the temperature-dependent rates given in the same
erence. There is a very good agreement between the an
cal expression of the kinetic length and the MC data. We
that it is an increasing function of temperature, starting fr
)a510.76 Å at 0 K and increasing to'11.6 Å at 1000 K.

The expressions derived above area priori valid only for
infinite dilution. To extend its use to finite loading, we co
sider a simple mean-field expression with site-blocking, i
allowing at most single occupancy at each site. Then E
~18! to ~22! become

pWW5

kWWS 12
nW

NW
D

kWWS 12
nW

NW
D1kWSS 12

nS

NS
D , ~27!

pWS5

kWSS 12
nS

NS
D

kWWS 12
nW

NW
D1kWSS 12

nS

NS
D , ~28!

pSW5

kSWS 12
nW

NW
D

kSWS 12
nW

NW
D1kSSS 12

nS

NS
D , ~29!

pSS5

kSSS 12
nS

NS
D

kSWS 12
nW

NW
D1kSSS 12

nS

NS
D , ~30!

and

NW~ t !5
nW

n F6kWWS 12
nW

NW
D16kWSS 12

nS

NS
D G t. ~31!

In these equationsnW and nS are the average number o
molecules in window and S2 sites, respectively, for a giv
loading ofn molecules, andNW andNS are the total numbe
of available sites.nW and nS are given by the mean-field
master equations,

n5nW1nS , ~32!

FIG. 3. Kinetic length for the cage-to-cage jumps of benzene in NaY,
culated from Eq.~26! using temperature-dependent rates from Ref. 34,
determined by direct Monte Carlo simulations in Ref. 34.
,
ef-
yti-
e

.,
s.

n

dnW

dt
50526nWkWSS 12

nS

NS
D13nSkSWS 12

nW

NW
D . ~33!

Figure 4 presents a comparison between the analy
results derived here and the kinetic Monte Carlo~KMC!
simulation at 300 and 400 K of Saravananet al.9 The agree-
ment is exact at infinite dilution, and remains very good
nonzero loading. An apparent step around 32 molecule
supercages is an artifact due to the small size of the sys
used in the KMC simulations.36 The other differences be
tween analytical formulas and simulated points stem fr
vacancy correlations, which are ignored by the mean-fi
results presented here. For comparison we also show
dashed lines the theoretical curves obtained without incl
ing geometrical correlations. Above 32 molecules/8 sup
cages, the overwhelming majority of all displacemen
comes from window-to-window jumps. Since these jumps
not present geometric correlations, the computation with
without correlations gives the same result. Below 32 m
ecules in 8 supercages, however, the influence of geomet
correlations is important since it reaches more than one o
of magnitude at 300 K and infinite dilution.

In the case of benzene in NaY, the existence of only t
types of sites, only one of which presents geometrical co
lations, simplifies the treatment and allows us to get ea
the expression of the self-diffusion coefficient. It is clear th
when there are more types of sites, the derivation of an a
lytical expression becomes more complicated. Nonethel
the present approach is very general and can be applie
least in principle, to the calculation of any self-diffusion c
efficient exhibiting geometrical correlations. We will see
the next section how the same method can be used to acc
also for kinetic correlations.

IV. CORRELATED DIFFUSION OF ETHANE IN
SILICALITE-1

The channel network of the all-siliceous analog
ZSM-5, silicalite-1, is presented in Fig. 5. There are tw

l-
d

FIG. 4. Diffusion coefficient for benzene in NaY using a site blockin
model with single occupancy of the sites. Solid line: present analytical tr
ment; dashed line: same analytical treatment, without considering geom
correlations; points: results of a kinetic Monte Carlo simulation of Sa
vananet al. ~Ref. 9!.
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types of channels, a straight channel alongy and a sinusoida
or zigzag channel in thexz plane, running alongx. Suffi-
ciently large adsorbed molecules diffuse through this n
work via a jump diffusion mechanism between the chan
intersections.16,17,40,41

Kärger et al.17 have shown using molecular dynami
simulations that diffusion of ethane in silicalite-1 prese
correlated motions, even at infinite dilution. In particular, t
probability to jump twice in the same direction in a sin
soidal channel is much smaller than the probability to ju
backward. Although these correlations are most likely
netic correlations, there are also geometrical correlations
to the confinement of the channel along thez direction.16 Let
us first consider kinetic correlations.

At infinite dilution, all correlations with any precedin
jump will be lost as soon as the guest molecule turns from
straight into a sinusoidal channel, or from a sinusoidal ch
nel into a straight channel, since ap/2 turn on the right has
exactly the same probability as ap/2 turn on the left. There-
fore, we can cut the molecule’s displacement intoNseq se-
quences of jumps, where each sequence is composed on
jumps occurring inside the same straight or sinusoidal ch
nel. Following our previous reasoning, the displacemen
each sequence is uncorrelated with the preceding one
that we can write

^x2~ t !&5Nseq~ t !3^x2&seq, ~34!

where Nseq(t) is the total number of sequences of jum
during t, and^x2&seq the average mean-square displacem
during one sequence. In fact, the geometry of silicalite
lows us to write forx andy,

^x2~ t !&5Nzc~ t !^x2&zc , ~35!

^y2~ t !&5Nsc~ t !^y2&sc , ~36!

whereNzc and Nsc are the number of sequences in zigz
and straight channels, respectively, the displacements^x2&zc

and^z2&zc are counted in zigzag channels only, and^y2&sc in
straight channels only. Since all sequences are alternat
definition, we have thatNzc5Nsc5Nseq/2. For thez-axis,
the existence of correlations between sequences implies

^z2~ t !&5Nzc~ t !^z2&zc12(
i 51

Nzc

(
j 51

Nzc2 i

^zizi 1 j&zc . ~37!

These correlations between sequences alongz stem from the
geometry of the channel network, and are therefore g
metrical correlations akin to what has been computed for

FIG. 5. Schematic view on the channel network of silicalite-1.
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diffusion of benzene in NaY. These correlations have be
recognized by Ka¨rger and used to develop the correlatio
rule for random walk diffusion in silicalite-1.16 Their evalu-
ation will be discussed later.

We define six different probabilities representing t
correlations:~i! psc

f is the probability that, the precedin
jump being in a straight channel, the next jump occurs in
same forward direction;~ii ! psc

b , the probability that, the
preceding jump being in a straight channel, the next ju
occurs in the opposite backward direction;~iii ! psc

zc , the
probability that, the preceding jump being in a straight cha
nel, the next jump occurs in a zigzag channel;~iv! pzc

f , the
probability that, the preceding jump being in a zigzag cha
nel, the next jump occurs in the same forward direction;~v!
pzc

b , the probability that, the preceding jump being in a z
zag channel, the next jump occurs in the opposite backw
direction; and~vi! pzc

sc , the probability that, the precedin
jump being in a zigzag channel, the next jump occurs in
straight channel. Of coursepsc

f 1psc
b 1psc

zc51 and pzc
f 1pzc

b

1pzc
sc51. Consider a series of exactlyN jumps in a single

straight channel; the probability of such a series of event
p(N)5Ap̃(N), whereA is a normalization constant and

p̃~N!5p~zc!3pzc
sc~psc

f 1psc
b !Npsc

zc , ~38!

wherep(zc) is the probability to be inside a zigzag chann
before the series,pzc

sc , the probability to jump into a straigh
channel, andpsc

zc , the probability to jump to a zigzag chann
at the end of a sequence. Since there are no series of 0 ju
the normalization constant is A5@(N51

` p̃(N)#21

5@p(zc)pzc
sc(psc

f 1psc
b )#21, so that the average number o

jumps in one sequence along a straight channel become

^N&sc5 (
N51

`

Np~N!5~psc
zc!21. ~39!

The total time a guest molecule has spent in the zeolite
be written as

t5
Nseq

2
~^N&scDtsc1^N&zcDtzc!, ~40!

thus allowing us to write explicitlyNseqas a function of time.
Note that we have supposed here for generality thatDtsc

ÞDtzc , although we consider only one type of site in th
system.

We are left with the calculation of̂x2&zc and other simi-
lar terms. Let us first examine what happens along a stra
channel. Consider a series ofN jumps occurring inside the
same straight channel, such as the one presented in Fi
Such a series can be cut inton smaller fragments during
which the molecule always goes in the same direction, eit
y1 or y2. The probability for such a series is

p5pzc
sc~psc

f !N2n~psc
b !n21psc

zc , ~41!

FIG. 6. A sequence ofN jumps arranged inn series going in the same
direction.
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wherein n21 appears because the first term of each fr
ment is a backward jump~except for the first term of the firs
fragment which is a zigzag→straight jump! and all others are
forward jumps. Note that no series can have 0 fragment
jump.

The probability p(n1 ,n2) that a molecule makesn1

jumps towardy1 and n2 jumps towardy2 in this series
has already been calculated by Jousseet al.4 to represent the
correlated diffusion of butene in theta-1, and can be writt

p~n1 ,n2!5
pb

pf ~pf !NH 2(
k50

s S m
k D S s

kD S pb

pf D 2k

1 (
k50

s S m
k11D S s

kD S pb

pf D 2k11

1 (
k50

s21 S m
k D

3S s
k11D S pb

pf D 2k11J ; ~42!

p~n1,0!5p~0,n2!5~pf !N. ~43!

Here,N5n11n2 , m5n121, s5n221, and we assume
here thatm>s ~a symmetric expression is found whenm
,s). Since this expression is valid for any type of sequen
we only write the forward and backward probabilitypf and
pb without indication of a specific channel. The total pro
abilitiesp(n1 ,n2) in Eqs.~42! and~43! are not normalized.
In contrast with the treatment in Ref. 4, we have kept
term (pf)N that proves important in the present case. Inde
in theta-1 the diffusion is unidirectional so that correlation
never lost and we can putN→` in Eqs. ~42! and ~43!, re-
sulting in huge simplifications. However, in the present ca
correlations are lost after only a fewN and it is necessary to
keep the full expression. The MSD is calculated from E
~42! and ~43! by evaluating

^y2&sc5^n2&seqS b

2D 2

. ~44!

^n2&seq represents the average MSD during one sequenc
terms of jumps,

^n2&seq5
(n250

` (n150
` ~n12n2!2p~n1 ,n2!

(n250
` (n150

` p~n1 ,n2!21
, ~45!

where the 1 in the denominator accounts for the fact that
term n15n250 has to be excluded from the sum, since
series can have 0 jump. Calculating these series requ
some effort. We need to recognize that the different su
can be rearranged, so that,

(
m50

`

(
s5m

`

(
k50

s

1(
s50

`

(
m5s11

`

(
k50

m

5 (
k50

`

(
m5k

`

(
s5k

`

. ~46!

Using the fact that, foruxu,1,42

(
n50

` S n1k
n D xn5

1

~12x!k11 , ~47!

we finally get

^n2&seq5
11px

12px

1

12p
. ~48!
-

0

,

,

e
d,

e,

.

in

e

es
s

In this expression,p5pf1pb is the total probability that the
molecule’s next jump will be in the same channel, irresp
tive of the direction. We call it the ‘‘channel probability.’
x5 (pf2pb)/(pb1pf) is the correlation coefficient:x
521.0 indicates that the molecule always jumps backwa
x50.0 is the normal uncorrelated random walk, andx
511.0 indicates that the molecule always jumps forwa
We can verify that in the casex50, Eq. ~44! gives the
simple result:̂ n2&sc(x51)5(psc

zc)21. If there are no corre-
lations, necessarilyDtsc5Dtzc so that using Eqs.~34!, ~39!,
and ~40! gives

Dy5
1

2

^y2~ t !&
t

5
1

2
kpzc

scS b

2D 2

, ~49!

where k5N/t is the total rate constant for a jump so th
(1/2)kpzc

sc represents the rate for a jump through a strai
channel, which is the usual uncorrelated result.

We can write the same equation as~44! for the MSD
^x2&zc by replacingb with a in Eq. ~44!, and using the same
expression of̂n2&seq. The case of̂z2&zc is slightly different,
and in fact much simpler. Indeed there is no important d
ference with the calculation in the case of normal rand
walk treated by Ka¨rger.16 Each sequence of jumps in a zig
zag channel will result in a displacement of1c/2, 2c/2, or
0: 0 if the sequence has an even number of jumps,6c/2 if it
has an odd number of jumps, depending on the channel
in; indeed, some intersections can only give1c/2 displace-
ments and other2c/2 displacements. The first term of Eq
~37! is simply the probability that there is an odd number
jumps in the sequence along the zigzag channel. Writing
probability zo , we have

^zi
2&zc5S c

2D 2

zo . ~50!

We need to recognize, as does Ka¨rger, that if a molecule
starts at a given type of intersection, it will be found in th
same type of intersection if there has been an even numb
jumps in between and at the other type if there has been
odd number of jumps. Suppose a first sequence in a zig
channel results in a displacement of1c/2; then a j th se-
quence afterward will also present a displacement of1c/2
~provided it has an odd number of jumps! if the total number
of jumps in the j 21 sequences along the straight chan
and thej 21 sequences along the zigzag channel in betw
is even; a displacement of2c/2 in the opposite case. Intro
ducing zo (ze512zo , respectively!, the probability that a
sequence in a zigzag channel is made of an odd numbe
jumps ~even, respectively!, and so (se512so , respec-
tively!, the probability that a sequence along a straight ch
nel is made of an odd number of jumps~even, respectively!,
we see that

^zizi 1 j&zc5S c

2D 2

zo3~sozo2soze2sezo1seze!
j 21

3~so2zo!zo , ~51!

where the firstzo indicates that only those jumps with
nonzero displacement are correlated with subsequent jum
the term in brackets represents the probability to have
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even or odd number of jumps in between, and the last t
the probability that thej th displacement is nonzero. Puttin
back Eqs.~50! and ~51! into ~37! gives

^z2&5NzS c

2D 2 zoso

zose1zeso
. ~52!

The probability that a series contains an odd or an even n
ber of jumps is easily calculated from Eq.~38!, where in
contrast with Ref. 16 no series of zero jumps is allowed,

zo5
1

22pzc
sc , ze512zo , ~53!

with the same equations forso andse wherepzc
sc is replaced

by psc
zc . This leads to the particularly simple expression,

^z2&5Nzc~ t !S c

2D 2 1

22~psc
zc1pzc

sc!
. ~54!

When there are no correlations, we have thatpsc
zc1pzc

sc51 by
definition, so that with Eqs.~39! and ~40!, Eq. ~54! trans-
forms into

Dz5
1

2 S c

2D 2

kpsc
zcpzc

sc , ~55!

that is, the normal random walk result consistent with Ka¨rg-
er’s correlation rule.16

Figure 7 presents a plot of^n2&seq as a function of the
correlation coefficientx for different values of the channe
probabilityp5psc

f 1psc
b , as calculated from Eq.~48!. Figure

8 presents a plot of̂n2&seq as a function of the channe
probability p for different values of the correlation coeffi
cient x, also from Eq.~48!. The uncorrelated case corre
sponds tox50.0, whilex,1 indicates a larger probability
to go backward andx.1 a larger probability to go forward
The channel probabilityp indicates the probability that th
next jump will be in the same channel, irrespective of t
direction. Whenp!1, the molecule only jumps once in th
channel before going to another channel, so that^n2&seq

→1, whatever the correlation coefficient; whenp'1 the se-
quence of jumps inside one channel becomes larger

FIG. 7. Plot of ^n2&seq as a function of the correlation coefficientx5(pf

2pb)/(pf1pb), for different fixed values of the channel probabilityp
5pf1pb.
m

-

e

nd

larger, so that̂ n2&seq also increases, with the exception
the casex521.0. In this case indeed, the moleculealways
jumps backward, so that the maximum displacement is
The largest effect of the correlation is observed forp'1, that
is, for quasi-unidirectional motion in a channel. The casep
51 is treated in Ref. 4. Note that Eq.~48! is a very general
result, and can be used for any sequence of jumps.

While we have already said that the present appro
applies strictly speaking only to infinite dilution, it is neve
theless worthwhile to look at the agreement between the
and simulations as a function of loading. We therefore p
formed kinetic Monte Carlo simulations on the model
ethane diffusion in silicalite, using the jump diffusion mod
with correlations presented in Ref. 4, considering only e
cluded volume interactions between molecules. The spe
casepsc5pzc51/2 andk51 ps is presented here. With onl
excluded volume interactions,^N&sc , ^N&zc , and^n2&seqare
independent of loading, so that the only loading-depend
quantity isNseq, which takes the following simple form:

Nseq~c!5Nseq~0!~12c!, ~56!

wherec is the fractional concentration of guest molecule
Figure 9 shows the agreement between theory and kin
Monte Carlo simulations, for concentrations of 0, 0.4, 0
and 0.95. Points are KMC simulation results for the se
diffusion coefficient alongx, as a function of the correlation
coefficient, while the lines are the corresponding theoret
curves. The agreement is exact at infinite dilution, bu
slight discrepancy appears with increasing loading. This d
crepancy is a measure of the vacancy correlation factor, s
kinetic correlations are already taken into account. Figure
presents the corresponding vacancy correlation factor a
function of loading, defined as the ratio of the diffusion c
efficient from simulation and from mean-field theory:f
5Dx /Dx

MF . For small to medium concentration,f is nearly
independent of the kinetic correlation coefficient. Only f
high loading do we observe an influence ofx, as positive
kinetic correlations tend to decrease thef while negative
correlations increasef .

FIG. 8. Plot of^n2&seq as a function of the channel probabilityp5pf1pb

for different fixed values of the correlation coefficientx5(pf2pb)/(pf

1pb).
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Table I presents a comparison of the diffusion coe
cients of ethane in silicalite-1, as computed with the curr
model using a probability set calculated from molecular d
namics~MD! simulations in Ref. 17, with the diffusion co
efficients computed in Ref. 17 from MD, from a simple ra
dom walk model~RW!, and from the two-step random wal
model ~two-step!. In almost all cases the current model im
proves the agreement with the MD diffusion coefficient, f
all Dx , Dy , andDz . This is particularly true forDx , which
exhibits strong negative kinetic correlations in the MD c
culations~corresponding tox'20.5 to20.7, depending on
loading and temperature!, making a forward jump much les
probable than a backward jump in the zigzag channels. T
shows that our model handles in a much more accurate
these strong kinetic correlations. The agreement remains
over the range of loadings presented, although we have
plicitly stated that our model is only approximate in the
cases: indeed, vacancy correlations show up both insid
sequence of jumps and between sequences. Vacancy c
lations, however, remain small,1 so that this agreement i
plausible.

FIG. 9. Plot of the self-diffusion constantD as a function of the correlation
coefficientx in the zig-zag channelx for the model diffusion of ethane in
silicalite described in the text, for several loading with excluded volu
interactions. The following values of the parameter were used:ps5pz

51/2; k51.0 ps. Points are results of a kinetic Monte Carlo simulati
lines are the theoretical curves within the mean-field approximation. Cir
and straight line: infinite dilutionc50.0; squares and dotted line:c50.4;
triangles and dashed line:c50.8; cross and long-dashed line:c50.95.

FIG. 10. Plot of the vacancy correlation factorf 5Dx /Dx
MF as a function of

loading, for several values of the correlation coefficientx.
-
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V. CONCLUSION

We have shown how to partition the correlated displa
ment of one molecule in a zeolite represented by a lattice
sites into uncorrelated sequences of jumps, in order to al
an easy calculation of the diffusion coefficient at infinite d
lution. This approach can be used to analyze both geome
correlations due to the nonsymmetric nature of some ads
tion sites in zeolite pores, and kinetic correlations due to
insufficient thermalization of the molecule in its final sit
These correlations can have an important effect on the di
sion coefficient, resulting in a difference that can range o
several orders of magnitude for very strong correlations.
have applied this method to two model systems, that is, b
zene in NaY and ethane in silicalite. In both cases the a
lytical expressions derived from the model capture the
havior of the self-diffusion coefficient, as compared wi
kinetic Monte Carlo simulations as well as molecular d
namics simulations. Although the exact analytical express
of the self-diffusion coefficient as a function of the basic ra
constants is necessarily system-specific, the two exam
presented here provide the reader with a number of meth
and some results allowing one to study generally diffusion
small adsorbates in cage or channel zeolites. In particu
Eq. ~48! is completely general and applies to any sequenc
kinetically correlated jumps, whatever the system.

This approach can be used to determine the s
diffusion coefficient as a function of the fundamental ra
constants for any type of guest on a zeolite lattice. Thu
allows us to study in a simple way the influence of the latt
geometry and connectivity on the diffusion coefficient. Th
type of relation is particularly interesting to link the resu
of experimental techniques such as pulsed-field grad
NMR or quasielastic neutron scattering, which probe direc

,
s

TABLE I. Calculated diffusion coefficients using data from Ref. 17.~1! 300
K, 1 mol./uc; ~2! 300 K, 2 mol./uc;~3! 300 K, 4 mol./uc;~4! 300 K, 6
mol./uc; ~5! 400 K, 4 mol./uc;~6! 500 K, 4 mol./uc.

D/1029 m2/s2 MDa RWb Two-stepc Current modeld

Dx
(1) 5.7 13.4 8.6 6.4

Dy
(1) 13.1 12.4 12.2 12.6

Dz
(1) 1.8 2.9 2.1 1.6

Dx
(2) 5.7 14.3 8.2 5.7

Dy
(2) 8.3 13.8 12.6 12.6

Dz
(2) 2.0 3.2 2.0 1.5

Dx
(3) 5.5 12.4 7.6 5.5

Dy
(3) 9.1 11.0 10.7 10.8

Dz
(3) 1.2 2.7 1.6 1.2

Dx
(4) 2.9 10.0 5.1 3.4

Dy
(4) 5.3 9.4 7.9 7.3

Dz
(4) 0.7 2.2 1.3 0.9

Dx
(5) 7.7 16.7 11.2 8.6

Dy
(5) 14.7 15.7 15.1 14.4

Dz
(5) 1.5 3.7 2.5 1.9

Dx
(6) 8.1 19.9 13.8 10.3

Dy
(6) 22.5 21.7 19.1 17.5

Dz
(6) 2.3 4.8 3.4 2.8

aFrom molecular dynamics simulations, values of Ref. 17.
bFrom a simple random walk model, data from Ref. 17.
cFrom a two-step random walk model, data from Ref. 17.
dFrom the model presented in this paper.
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the guests’ mean-square displacement, to other techni
such as solid-state NMR, which probe the residence-t
distributions and orientational correlation times, and he
the fundamental rate constants.
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