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Molecular diffusion in zeolites is often resumed to a random walk between specific adsorption sites
within the channels and cavities of the materials. Several types of correlations between the steps of
the walk come to precise this assumption: kinetic correlations due to the incomplete relaxation of the
molecule in its final site, vacancy correlations arising at high loading because molecules are
blocking each other, and geometrical correlations because zeolite channels and cages can boast
nonsymmetric sites. The first and last correlation effects can be observed at infinite dilution. In this
article we present a way of calculating an exact diffusion coefficient at infinite dilution as a function

of the microscopic rate constants, taking into account both geometric and kinetic correlation effects.
This is achieved by cutting the molecular motion into uncorrelated sequences of jumps, where all
jumps inside one sequence are correlated to each other. This method is applied to study geometrical
correlations of benzene in NaY, comparing with kinetic Monte Carlo data of Sarawdra C.
Saravanan, F. Jousse, and S. M. Auerbach, J. Chem. F0§2162(1998], and both kinetic and
geometrical correlations of ethane in silicalite, comparing with molecular dynamic simulations of
Karger et al. [J. Kager, P. Demontis, G. B. Suffritti, and A. Tilocca, J. Chem. PHyK), 1163

(1999]. © 2000 American Institute of Physids$0021-960800)50502-9

I. INTRODUCTION etries, either theoretically or wusing Monte Carlo
simulationst*®~8 These “vacancy correlations” arise also
According to Le Clairé, the first time that the assump- when studying self-diffusion of guest molecules in zeolite
tion of random displacements in the random walk picture ofchannel$:*° For very high loading, the evaluation of these
diffusion was appreciated to be an oversimplification dategorrelations is similar to that of vacancy correlations in sol-
back to 1935, and concerned the kinetic theory of gasesds. We are not aware of any simple way to calculate these
Indeed, after a collision, the probability that a gas particlecorrelations for arbitrary loading, although relations exist for
retains a component of its velocity along the same directiora number of specific simple geometries and particles inter-
as it was moving before the collision, is larger than the probacting only through excluded volume interactidhs? Re-
ability that its velocity lies in the opposite direction. This lated to these correlations is the effect giving rise to single-
effect was termed “persistence of velocity,” but for our pur- file diffusion, where molecules diffusing inside a
poses we will call it “kinetic correlations” since it relates to unidirectional channel and unable to pass each other must
jump kinetics. Similar kinetic correlations cause double ordiffuse all in the same direction or not at all. This effect has
multiple jumps in adatom diffusioh® Such a type of corre- been extensively studied in the last few ye&rs?>
lation was also considered by Jousseal. for diffusion of Another type of correlation effect observed in some zeo-
butene isomers in theta-1 type zeolifes. lites was recognized by Kager for the case of molecular
In 1951, Bardeen and Herringioted that the vacancy diffusion in ZSM-5*° Indeed, the channel geometry of this
mechanism of atom diffusion in solids gives rise to a similarzeolite restricts the displacements alongs compared to
but opposite correlation effect, since an atom has a largghose alongx andy, so that the diagonal elements of the
probability to move backward to the hole it just vacateddiffusivity tensor should obey the correlation rule
rather than onward. From that moment on, a large body of
work was devoted to the calculation of these correlations, for a2 b2

. e . . i c
different diffusion mechanisms, for a variety of lattice geom- ~ —+ —=—. 1)
Dy Dy D,
dAuthor to whom correspondence should be addressed; electronic mail: )
fiousse@scf.fundp.ac.be Since these correlation effects are caused by the geometry of
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the channel network, we will call them “geometric correla- dence of diffusion. Note, however, that the mean-field ap-

tions.” They arise whenever the probability of jumping out proximation used in the applications assumes that the site-to-

of a given site is nonsymmetric. site rates are not affected by nearby molecules except for site
Different types of correlation can exist at once. For ex-blocking, and therefore are only valid for weak guest-guest

ample, diffusion of some guest molecule in ZSM-5 couldinteractions.

exhibit kinetic correlations if the jumps are not completely ~ The remainder of this paper is organized as follows: Sec-

randomized by thermalization, vacancy correlations if thetion Il outlines the general method of calculation. Section IlI

fractional loading is significantly larger than zero, and geo-presents the example of benzene diffusion in Na-Y, which

metrical correlations due to the channel geometryrgéa  presents strong geometric correlations at low loading. In Sec.

etall” introduced a “two-step” model of diffusion in 1V we treat the example of ethane diffusion in silicalite-1,

silicalite-1 (isomorphous to ZSM-5to account for all these comparing our model to the data of ger et al!’ Finally,

correlation effects. In this model they consider that the probwe conclude in Sec. V.

ability of an event depends on the preceding one, so that

instead ofn uncoupled jumps there aré2 coupled events,

each .corresponding toa d'().ublle jump. For ethan_e diffusion iy sENERAL MODEL

the zigzag channels of silicalite{along they axis), they

find from molecular dynamic§MD) simulations that the In the random walk picture of diffusion, the self-

probability to jump backward is larger than the probability to diffusion coefficient along a given direction, e.g., thaxis,

jump forward, so that the diffusion coefficient is decreased ass related to the second moment of the propagator by Ein-

compared to what would be expected from a simple randorstein’s equation

walk (RW). Below we confirm that indeed the two-step

model gives results much closer to MD data than the simple DX=£<x2(t)), )

RW. However, the two-step model considers that each 2t

coupled double-jump isincoupledfrom the others, so that where(x(t)) is the mean-square displacem¢MSD) of a
we expect it to underestimate the total influence of correla-given molecule moving along the-axis andt is the obser-

tions. This will be shown below, where we will see that in all \ 4tion time. If we suppose a jump diffusion mechanism, the
cases the diffusion coefficient from the two-step model along\sp pecomes

the zigzag channels is larger than the MD one.

In this article we present an alternative and generally ) N 2
applicable method for treating kinetic and geometrical corre- (x4(t)= Z’l Xi
lation effects of molecular diffusion in zeolites. The method
we describe here allows us to write an analytical expression N N N =i
for the self-diffusion coefficient on aarbitrary lattice, given = Z (X*)stept 22 Z (XiXi+})stepr (4)
the fundamental rate factor. Such an expression is particu- =t ot
larly useful to study the relation between the rates and thevhere ()., indicates that the average is performed over a
global diffusivity. Rate constants can be evaluated usingingle step, andN(t) is the total number of steps in tinte
simple energy minimization techniqdr more elaborate When there is a single type of site and no correlations, we
free-energy simulation’s,and determined experimentally us- have that(X;X; + ;) steg= 0, SO that
ing, e.g., solid-state NM&? The global diffusivity, on the i )
other hand, can be evaluated by molecular dynar(iid) (D) =N(®a’, ®)
simulations or accelerated Mi,and measured using quasi- wherea is the unit displacement along and N(t) is the
elastic neutron scatterinQENS?? or pulsed-field gradient average number of jumps during tirtte N(t) =t/ , wherer
NMR.Z If the temperature dependence of the rate factor iss the average residence time in the site. The existence of
known, such an analytical expression provides a simpleorrelation between jumps complicates this equation, as the
theory for the temperature dependence of diffusion at infiniteeross terms no longer vanish on average. In the case where
dilution. Furthermore, it allows us to study externally the correlations are only geometric, several general ways of
influence of a change in topology or connectivity of the ad-dealing with these cross terms exist, either with linear alge-
sorption sites onto the guest diffusivity. bra applied to stochastic matriéésor through Laplace-

Getting such an analytical expression involves lots ofFourier transform$é>2® These methods of calculation should
probabilistic calculations, and can be cumbersome in thevork for all systems presenting geometric correlations at in-
general case. The method we present here allows us to makiaite dilution. In a recent paper, Braun and Shbéxtended
these calculations somewhat simpler. To show the readdhe Laplace-Fourier transform method to calculate exact self-
how this can be achieved, we treat exhaustively two particudiffusion tensors in generalized lattice-gas models with in-
lar examples: diffusion of benzene in NaY, and diffusion oftrinsic non-Markov behavior, equivalent to what we term
ethane in silicalite-1. By excluding vacancy correlations, wekinetic correlations. These methods in general involve quite
confine ourselves in principle to diffusion at infinite dilution. heavy matrix algebra that can sometimes hide the underlying
However, using mean-field theory in addition to our methodphysical meaning of the parameters. We wish to present in
for treating geometrical and kinetic correlations is expectedhis article another way of calculating the geometric correla-
to give qualitatively reasonable trends for the loading depentions, allowing also the evaluation of kinetic correlations.
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Our method is limited to a class of systems where there
are uncorrelated sequences of steps. Writing the total dis-
placement as a sum over these uncorrelated sequences rather
than over single jumps, we have

(1)) =Naod ) (X seqp (6)

where nowNg(t) is the total number of uncorrelated se-

quences during and(xz)seo| the average MSD during one

sequence. This equation is the strict equivalent of &g.

and general treatments applied to Eg). such as mean-field

approximations, can also be used to study @®g. Although

in general there is no reason why the diffusion of a guest

molecule in a zeolite should present uncorrelated sequences,

in practice, however, this is found to be the case for numer-

ous systems. For example, geometric correlations disappear

if the sum of all jump vectors out of a given site is zéro.

Note that this also holds for any spatial direction indepen-

dently of the others, that is, geometric correlations along a

given axisx vanish if the sum of the projection of all jump FIG. 1. S;hematic view on the structure of zeolite Nay, showiqg the ad-

vectors along this axis is ZeI’Einj —0 for sitei. The idea sorption sites of benzene and the possible jumps between the sites.

to partition the correlated displacement into uncorrelated se-

quences is not new and has been used, e.g., by Kitison

Koiwa® to study vacancy diffusion in solids. This method |ost. Therefore we can write the total displacement as a sum

allows the development of simpler equations than the generaver uncorrelated sequences of -WS2—...—S2—W,

matrix methods, and thus is easier to apply. Of course ouherein the brackets represent an unbroken series-ofS2

method loses in generality what it gains in simplicity. jumps. Since all axes are equivalent, we can write the MSD
In this paper, we present the example of benzene diffualongx as

sion within the supercages of NaY, and of ethane diffusion in

the channels of silicalite-1 to show how a total displacement  (x?(t))= Ny,(t)(X*)cage (7)

can be cut into uncorrelated sequences. In the latter case, we

will consider the existence of kinetic correlations on top ofwhereNy(t) is the number of times a molecule hops to a

geometrical correlations, as found byrigeret al.in arecent  window duringt, and(xz)cageis the average MSD between

article!’ two visits to a window. By definition, this displacement can
only span a single cage. Consider the schematic definition of
IIl. BENZENE DIFFUSION IN NaY a NaY supercage presented in Fig. 2, and suppose a molecule

jss initially at W,. Then its MSD during one sequence inside
a cage depends on whether its next window visit will be to
Wi, W,, W, or W, More specifically, if the molecule
goes to W or W3, (x%)caqe=0, while if it visits W, or W,

The NaY framework presents a series of large cage
separated by 12-membered ri(i2-T) windows arranged on
a tetrahedral lattic? Benzene molecules diffuse on two
types of sites in this lattice: S2 sites, where they face dlNa
cation inside a supercage; and W sites, where they sit in the
plane of a 12-T window 32 see Fig. 1 for a schematic rep-
resentation of the possible jumps of benzene in NaY. Auer-
bachet al. have extensively studied the dynamics of benzene
on this lattice of site€;}833-3%y transforming the complex
problem of diffusion on two heterogeneous types of sites into
a simpler problem of diffusion from cage to cage. This is in
the same spirit as our present work, but the exact treatment
was slightly different, as they did not determine the diffusion
constant explicitly from the mean-square displacement.

At infinite dilution, the problem can be solved exactly by
considering the geometric correlations observed inside a
cage. Indeed, in an S2 site the benzene molecule sits next to
the cage wall; therefore the next jump will necessarily have a
component in the direction opposite to the cage wall. If the
molecule keeps jumping back and forth in the cage between
S2 sites, all jumps in this sequence will be correlated to each
other. On the other hand, as soon as a benzene molec ?G 2. Schematic view on a supercage of NaY, showing the arrangement of
reaches a 12-T window, it has exactly the same probability t6he window sites W W,, W5, W,, and of the S2 sites,SS,, S, and § as
jump forward as backward, so that all correlations will beused in the text.
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<X2>cage: a®. Writing p(W,), the probability that a molecule The total probability to. find th_e molecule at\ér W, after
goes to the site \Weither directly or after an unbroken series any number of S2:S2 jumps in between, thus becomes

of S2—S2 jumps, we have that 2
2 — 942 1
(x >cage 2a7[p(W,) +p(W,) ], (8) P(W,) + p(W,) = p%v_{_ %/ 5

where the factor of 2 arises because there are two symmetri-

cal cages in which the molecule can hop. We now define 1
Pww: Pws,» Pss, andpsy as the probabilities that a mol- 0
ecule at a 12-T window hops to another window, to an S2 ~ 1| pws
. . . n-2
site, and that a molecule at an S2 site goes to another S2 site X 22 M 176 (16)
or to a window, respectively, angl,(W;) as the probability " 1

that the molecule is in site Wafter n jumps, so thap(W,) _ _
=37 .pn(W;). After the first jump, we obtain Using the fact thal;_,M"=(1-M)~*, we finally get the
mean-square displacement inside a single cage,

p
P1(Wa) +p1(Wy) = %\I 9 5 2,
<X >cage:§a

2+p
PwwT pws3+—pzj . (17)

After n jumps, we obtain e
For infinite dilution, we have

Psw

Pn(W2) +pn(Wy) = T[an—l(sl)"'pn—l(sz) ~ kww
Pww=j—— — (18
Ww WS
+2pn-1(S3) +pPn-1(Sa) ], (10 K
WS
wherep,,_1(S) is the probability to find the molecule at a Dwszm, (19
site § at the end of the preceding jump. In matrix form, this S
can be written as _ Ksw 20
2 Psw™ kswtKss'
Psw( 1 k
Pa(Wa) +Po(Wa) = —2=| 5 | Pr1. (12) PSS i (21)
1 SW SS
and,
wherePﬁ is the vector containing the probabilities to be at a 1k
given sitg $ at stepn after an unbroken series of S&52 Ny(t) = —ﬂv(GkWWnL Bkwot, (22)
jumps. It is easy to see that 2 kws
Pn(Sy) wherek,; is the fundamental rate constant for a jump from
site « to site 8, wherea, 8=S,W. Combining Eqs(17) and
Pa(S,) A p 9=
P§= pn(Sg) =MP§_1, (12 (22) gives the complete expression for the diffusion coeffi-
" cient at infinite dilution,
Pn(Sa)
+
with M the connectivity matrix between S2 sites inside a D=Kkg 2 kWW+ 2Ksw 3ksj_ (23
single cage, completely describing the topology of the al- kws ~ 3Kswt4ks
lowed jumps of benzene in a cage, In Ref. 35, Auerbactet al. show that the diffusion coef-
o 13 13 1/ ficient for benzene diffusion in NaY at infinite dilution can
be written
1/3 0 13 1/3 3 12T
|13 3 o w3Pss a3 D=2 i ), (24)
1/3 13 13 0 ¢ _ o
where is the average residence time in a cage,
By recurrence these relations lead to
PS=M""1p5, (14) e 3 kyrwrt Kurg) (25

whereP? is the vector containing the probabilities to find the andb(T) a temperature-dependent kinetic length describing
molecule at any given S2 site in the supercage after the firghe average cage-to-cage jump distance. Comparison with

jump, our expression of the diffusion coefficient shows that this
0 kinetic length can be written as
1/6 k 2kgwt 3kss| Y2 [ kst 2kys| M2
pS— . 15 _ Ww swT 9Kss) 7T [ KswT Kws
' 1/6 | Pws 15 b(T)=v2a kws+ 3kswt4ks kwwT Kws

1/6 (26)
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FIG. 3. Kinetic length for the cage-to-cage jumps of benzene in NaY, cal-
culated from Eq(26) using temperature-dependent rates from Ref. 34, and {48 L L L L

determined by direct Monte Carlo simulations in Ref. 34. 0 10 20 30 40 50
molecules / 8 supercages

. : : . FIG. 4. Diffusion coefficient for benzene in NaY using a site blocking
Figure 3 compares the kinetic Iength from Ea6) with the model with single occupancy of the sites. Solid line: present analytical treat-

results of the Monte Carlo simulation reported in Ref. 34,ment; dashed line: same analytical treatment, without considering geometric
using the temperature-dependent rates given in the same rebrrelations; points: results of a kinetic Monte Carlo simulation of Sara-
erence. There is a very good agreement between the analyygnanet al. (Ref. 9.
cal expression of the kinetic length and the MC data. We see
that it is an increasing function of temperature, starting fromd
V3a=10.76 A 4 0 K and increasing te=11.6 A at 1000 K. 9w __ _Ns _Nw
) ) D € 0=—6nykywg 1 +3ngksyl 1 . (33
The expressions derived above arpriori valid only for dt Ns Ny

iqfinite di_lution. To ext_end its use _to fini_te Iqading, we con- Figure 4 presents a comparison between the analytical
sider a simple mean-field expression with site-blocking, i.e.;esyits derived here and the kinetic Monte CafkMC)
allowing at most single occupancy at each site. Then Eqssimylation at 300 and 400 K of Saravaneral® The agree-
(18) to (22) become ment is exact at infinite dilution, and remains very good at
W( W) nonzero loading. An apparent step around 32 molecules/8

supercages is an artifact due to the small size of the system

Pww , (27)  used in the KMC simulation¥ The other differences be-
k w(l— Wik g(l— E) tween analytical formulas and simulated points stem from
W W . . . .
Nw Ns vacancy correlations, which are ignored by the mean-field
n results presented here. For comparison we also show in
kws( 1- N—S) dashed lines the theoretical curves obtained without includ-
S

Puws= , (28) ing geometrical correlat.ions. Apoye 32 molec.ules/8 super-
K w(l— Nw K s(l— E) cages, the overwhelming majority of all displacements

w w comes from window-to-window jumps. Since these jumps do

not present geometric correlations, the computation with and

ksw(l_ n_W) without correlations gives the same result. Below 32 mol-

_ Ny ecules in 8 supercages, however, the influence of geometrical

Psw= Ny ns\|’ (29 correlations is important since it reaches more than one order
kSV{ 1- N_) + k55< 1- N_) of magnitude at 300 K and infinite dilution.

W S In the case of benzene in NaY, the existence of only two

S( ns) types of sites, only one of which presents geometrical corre-

Ng lations, simplifies the treatment and allows us to get easily

Pss= Ny s’ (30 the expression of the self-diffusion coefficient. It is clear that

ksw( 1- N + k55< 1- m) when there are more types of sites, the derivation of an ana-

lytical expression becomes more complicated. Nonetheless,
and the present approach is very general and can be applied, at

least in principle, to the calculation of any self-diffusion co-
Ny Ny Ns
NW(t)IW[GkWW(].—m +6|(W5(1—N—S>

t. (31 efficient exhibiting geometrical correlations. We will see in
the next section how the same method can be used to account
In these equations,, and ng are the average number of also for kinetic correlations.
molecules in window and S2 sites, respectively, for a given
loading ofn molecules, and\,y andNg are the total number V. CORRELATED DIFFUSION OF ETHANE IN
of available sitesn,y and ng are given by the mean-field SILICALITE-1
master equations,

The channel network of the all-siliceous analog of
n=ny+ng, (320  ZSM-5, silicalite-1, is presented in Fig. 5. There are two
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FIG. 6. A sequence oN jumps arranged im series going in the same
direction.

diffusion of benzene in NaY. These correlations have been
recognized by Keger and used to develop the correlation
FIG. 5. Schematic view on the channel network of silicalite-1. rule for random walk diffusion in silicalite-12 Their evalu-
ation will be discussed later.

We define six different probabilities representing the
correlations: (i) p;C is the probability that, the preceding
or zigzag channel in thaz plane, running along. Suffi- jump being in a straight channel, the next jump occurs in the

. . .. b .
ciently large adsorbed molecules diffuse through this netS@me forward direction(ii) ps., the probability that, the
work via a jump diffusion mechanism between the channePréceding jump being in a straight channel, thezcnext jump
intersection

types of channels, a straight channel algrand a sinusoidal

46.17.40,41 occurs in the opposite backward directiofiij) pse, the
Karger et al}” have shown using molecular dynamics probability tha_lt, the preced_ing jump being in gstraflight chan-

simulations that diffusion of ethane in silicalite-1 presentsn€l: the next jump occurs in a zigzag chanri@) p;, the

correlated motions, even at infinite dilution. In particular, theProbability that, the preceding jump being in a zigzag chan-

probability to jump twice in the same direction in a sinu- nSI, the next jump occurs in the same forward direction;

soidal channel is much smaller than the probability to jumpPzc: the probability that, the preceding jump being in a zig-
backward. Although these correlations are most likely ki-229 channel, the next jump occurs in the opposite backward

netic correlations, there are also geometrical correlations dugirection; and(vi) pzc. the probability that, the preceding

to the confinement of the channel along theirection’® Let ~ JUMP being in a zigzag channel, the next jump occurs in a
us first consider kinetic correlations. straight channel. Of coursgl .+ pgc+pse=1 and pjc+ pd.

At infinite dilution, all correlations with any preceding T Pzc=1. Consider a series of exactly jumps in a single
jump will be lost as soon as the guest molecule turns from straight channel; the pr(_)bablllty of _suc_h a series of events is
straight into a sinusoidal channel, or from a sinusoidal chanP(N) =AB(N), whereA is a normalization constant and
nel into a straight channel, sincerd?2 turn on the right has P(N)=p(z0) X pSS(p.+p2)NpZe, (39)

exactly the same probability asm?2 turn on the left. There- ) - o )
fore, we can cut the molecule’s displacement ihtg, se- wherep(zc) is the probability to be inside a zigzag channel

quences of jumps, where each sequence is composed only Bgfore the serie;c, the probability to jump into a straight
jumps occurring inside the same straight or sinusoidal charhannel, angygc, the probability to jump to a zigzag channel
nel. Following our previous reasoning, the displacement irt the end of a sequence. Since there are no series of 0 jumps,
each sequence is uncorrelated with the preceding ones, §¢ normalization constant is A=[={_;p(N)]"*
that we can write =[p(z0)p3Api.+P2)1 ", so that the average number of
o ) jumps in one sequence along a straight channel becomes
(X*(1)) = Nsed t) X (X) seqy (34) .

where Ng{t) is the total number of sequences of jumps (N)ge= E Np(N)=(p29 1. (39
duringt, and<x2>seqthe average mean-square displacement N=1
during one sequence. In fact, the geometry of silicalite al-The total time a guest molecule has spent in the zeolite can

lows us to write forx andy, be written as
G) =Nz, %9 Neeq Ny At o+ (N) LA o) (40)
t= scAtset 2ALz0),
(Y2(1))=NS(t)(y*)sc. (36) 2 (W N

where NZ¢ and NS¢ are the number of sequences in zigzagthus allowing us to write explicitiiNs.qas a function of time.

and straight channels, respectively, the displacemgel)s, ~ Note that we have supposed here for generality thet

and(z?),. are counted in zigzag channels only, ggd),.in ~ #At,., although we consider only one type of site in the

straight channels only. Since all sequences are alternate [gystem.

definition, we have thalNZ¢=Ns°= Nseq/2. For thez-axis, We are left with the calculation (3(f><2>zC and other simi-

the existence of correlations between sequences implies lar terms. Let us first examine what happens along a straight

channel. Consider a series Nfjumps occurring inside the

same straight channel, such as the one presented in Fig. 6.

<22(t)>=NZC(t)<22>20+221 ;1 (2iZi+j)zc- 7 such a se?ies can be cut into smaller frggments duringg
which the molecule always goes in the same direction, either

These correlations between sequences atostgm from the 1 oy y— . The probability for such a series is
geometry of the channel network, and are therefore geo-

metrical correlations akin to what has been computed for the  P=P3dPs)™ (2" Pas, (41

NZC NZC—j
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whereinn—1 appears because the first term of each fragin this expressionp=p’+ p® is the total probability that the
ment is a backward jumf@xcept for the first term of the first molecule’s next jump will be in the same channel, irrespec-
fragment which is a zigzag straight jump and all others are tive of the direction. We call it the “channel probability.”
forward jumps. Note that no series can have 0 fragment or = (p'—p°)/(p°+pf) is the correlation coefficient:;y

jump. = —1.0 indicates that the molecule always jumps backward,
The probabilityp(n, ,n_) that a molecule makes, x=0.0 is the normal uncorrelated random walk, agd
jumps towardy+ andn_ jumps towardy— in this series = +1.0 indicates that the molecule always jumps forward.

has already been calculated by Joussel” to represent the We can verify that in the casg=0, Eq. (44) gives the
correlated diffusion of butene in theta-1, and can be writtensimple result{n?);(x=1)=(pz9) 1. If there are no corre-
oK lations, necessariljt .= At,. so that using Eq¥34), (39),

b s b
p(n,,n_)= %r(pf)N[ZkEO (T) Ii (%r and (40) gives
i 1A0) 1, fb|?
Sl m \[s|(pP\ 2t STl y=5 1~ 2KP 5] (49)
2 <k+1)(k)<_f) & (k)
k=0 P k=0 wherek=N/t is the total rate constant for a jump so that
s pb) 21 (1/2)kps¢ represents the rate for a jump through a straight
X(k+1) —f) ]; (42)  channel, which is the usual uncorrelated result.
P We can write the same equation @} for the MSD

p(n.,0=p(0n_)=(pHN\. (43) (x?),¢ by replaczingb with a in Eq. (;14), 'and' using 'Fhe same
expression ofn®)seq. The case ofz7), is slightly different,

Here,N=n,+n_, m=n,—1, s=n_—1, and we assume gand in fact much simpler. Indeed there is no important dif-
here thatm=s (a symmetric expression is found whem  ference with the calculation in the case of normal random
<s). Since this expression is valid for any type of sequenceyalk treated by Keger!® Each sequence of jumps in a zig-
we only write the forward and backward probability and  zag channel will result in a displacement-6t/2, —c/2, or
p® without indication of a specific channel. The total prob- 0: 0 if the sequence has an even number of jumps/2 if it
abilitiesp(n. ,n_) in Egs.(42) and(43) are not normalized. has an odd number of jumps, depending on the channel it is
In contrast with the treatment in Ref. 4, we have kept thQn, indeed, some intersections can On|y gH./e/Z displace_
term (p)" that proves important in the present case. Indeedments and other-c/2 displacements. The first term of Eq.
in theta-1 the diffusion is unidirectional so that correlation is(37) is simply the probability that there is an odd number of

never lost and we can pi{—c in Eqgs.(42) and(43), re-  jumps in the sequence along the zigzag channel. Writing this
sulting in huge simplifications. However, in the present caseprobability £, , we have

correlations are lost after only a feM and it is necessary to ,
keep the full expression. The MSD is calculated from Eqgs. (z-2> :(E) ¢ 50
(42) and (43) by evaluating i12c=| 5] Co-

2 We need to recognize, as doesréer, that if a molecule

(¥2)se=(P)sed 5 (44 | intersection, it wi i
Y )sc seq o - starts at a given type of intersection, it will be found in the
same type of intersection if there has been an even number of
{mps in between and at the other type if there has been an
odd number of jumps. Suppose a first sequence in a zigzag
S¢S mL.—n_)2p(Nn. .n_ channel results in a displacement #fc/2; then ajth se-

n =0Zn, =o(N+ )°p(n,,n_)

- i , (45) quence afterward will also present a displacement-@f2
(provided it has an odd number of jumpfthe total number
gf jumps in thej—1 sequences along the straight channel

where the 1 in the denominator accounts for the fact that th A - .
termn, =n_=0 has to be excluded from the sum, since nofi”d thej —1 sequences along the zigzag channel in between

series can have 0 jump. Calculating these series requird$ €Ven; a displacement 6fc/2 in the opposite case. Intro-

some effort. We need to recognize that the different sum§ucing&o (£e=1—£,, respectively, the probability that a
can be rearranged, so that, sequence in a zigzag channel is made of an odd number of

.. s o . jumps (even, respectively and o, (0.=1—0,, respec-
PIDIDIEDIED IR
s=m k=0 s=0 m=s+1 k=0

<n2>3eq represents the average MSD during one sequence,
terms of jumps,

2 —
n I E3 B3
< >seq En7=02n+=0p(n+!n*)_l

0

i 2 tively), the probability that a sequence along a straight chan-
o

)

“ & e (46) nel is made of an odd number of jumf@ven, respectively
. we see that
Using the fact that, fofx|<1,% ,
c .

“In+k " 1 <Zizi+j>zc: E) gox(a'ogo_Uoge_a'ego"'o'ege)kl

> XN'= 77, (47)

A=o | N (1-x)

. X(06=L0) o, (51
we finally get ] o ] ]

where the first{, indicates that only those jumps with a
(0?0 1+px 1 (48) nonzero displacement are correlated with subsequent jumps,
0 1—py 1-p’ the term in brackets represents the probability to have an
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correlation coefficient
FIG. 7. Plot of(n2>seq as a function of the correlation coefficiegpt= (p'

—p®)/(p'+p?), for different fixed values of the channel probabilify
=p'+p°.

even or odd number of jumps in between, and the last ter
the probability that thgth displacement is nonzero. Putting
back Egs.(50) and(51) into (37) gives

2
{000

C
{o0et {e00

(2= NZ( > (52
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1000 ¢ . . . . ;

I /
100 3 x=1.0 / //x

<n >

x=-1.0

0
0.0 1.0

02 04 06 08
channel probability p
FIG. 8. Plot of(n?)sqas a function of the channel probabilipy=p+ p®

for different fixed values of the correlation coefficieqt=(p’—p®)/(p’
+p®).

rT%\rger, SO tha(nz)Seq also increases, with the exception of

the casey=—1.0. In this case indeed, the molecualevays
jumps backward, so that the maximum displacement is 1.
The largest effect of the correlation is observedderl, that

is, for quasi-unidirectional motion in a channel. The cpse
=1 is treated in Ref. 4. Note that EGL8) is a very general

The probability that a series contains an odd or an even NUMesgyit and can be used for any sequence of jumps.

ber of jumps is easily calculated from E@8), where in
contrast with Ref. 16 no series of zero jumps is allowed,

S ser be=1-4o, (53

with the same equations fer, and o, whereps¢ is replaced
by pZS. This leads to the particularly simple expression,
c\? 1

2] 2= (pZrp3d
When there are no correlations, we have téat- p5c=1 by

definition, so that with Eqs(39) and (40), Eq. (54) trans-
forms into

(2%)=N*qt) (59

1(c)\?
0.5 5| ket 59

that is, the normal random walk result consistent withd<a
er's correlation rulé®

Figure 7 presents a plot Q‘hz)seq as a function of the
correlation coefficienfy for different values of the channel
probability p= p;c+ pgc, as calculated from Ed48). Figure
8 presents a plot o(n2>Seq as a function of the channel
probability p for different values of the correlation coeffi-
cient y, also from Eq.(48). The uncorrelated case corre-
sponds toy= 0.0, while y<1 indicates a larger probability
to go backward angg>1 a larger probability to go forward.
The channel probabilitp indicates the probability that the

While we have already said that the present approach
applies strictly speaking only to infinite dilution, it is never-
theless worthwhile to look at the agreement between theory
and simulations as a function of loading. We therefore per-
formed kinetic Monte Carlo simulations on the model of
ethane diffusion in silicalite, using the jump diffusion model
with correlations presented in Ref. 4, considering only ex-
cluded volume interactions between molecules. The special
caseps.= P,.= 1/2 andk=1 ps is presented here. With only
excluded volume interactionéN)sc, (N)zc, and(n?)seqare
independent of loading, so that the only loading-dependent
quantity isNgeq, Which takes the following simple form:

Nsed €) =Nsed 0)(1-0), (56)

wherec is the fractional concentration of guest molecules.
Figure 9 shows the agreement between theory and kinetic
Monte Carlo simulations, for concentrations of 0, 0.4, 0.8,
and 0.95. Points are KMC simulation results for the self-
diffusion coefficient along, as a function of the correlation
coefficient, while the lines are the corresponding theoretical
curves. The agreement is exact at infinite dilution, but a
slight discrepancy appears with increasing loading. This dis-
crepancy is a measure of the vacancy correlation factor, since
kinetic correlations are already taken into account. Figure 10
presents the corresponding vacancy correlation factor as a
function of loading, defined as the ratio of the diffusion co-
efficient from simulation and from mean-field theory:

next jump will be in the same channel, irrespective of the= DX/D)'Y'F. For small to medium concentratioh,is nearly

direction. Whenp<1, the molecule only jumps once in the
channel before going to another channel, so t{r&ﬁ)seq
—1, whatever the correlation coefficient; whprs1 the se-

independent of the kinetic correlation coefficient. Only for
high loading do we observe an influence yfas positive
kinetic correlations tend to decrease thewhile negative

guence of jumps inside one channel becomes larger antbrrelations increasé.
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1000 T T T TABLE I. Calculated diffusion coefficients using data from Ref. (1.300
K, 1 mol./uc; (2) 300 K, 2 mol./uc;(3) 300 K, 4 mol./uc;(4) 300 K, 6
mol./uc; (5) 400 K, 4 mol./uc;(6) 500 K, 4 mol./uc.

T, 100 D/10°° m?s? MD? RWP Two-stef§ Current modé!
2
£ DY 5.7 13.4 8.6 6.4
s DM 131 12.4 12.2 12.6
T 10 D§1> 1.8 2.9 21 1.6
ar D 5.7 14.3 8.2 5.7
D@ 8.3 13.8 12.6 12.6
D?’ 2.0 3.2 2.0 1.5
1 ' : ' DY 55 12.4 7.6 5.5
-1.0 -0.5 0.0 0.5 1.0 )
correlation coefficient i, 8{3, 2; 1; '? lf '; 1f '28
S . . : :
4
FIG. 9. Plot of the self-diffusion constabt as a function of the correlation 3%4; :g 182 ?; ;’g
coefficienty in the zig-zag channet for the model diffusion of ethane in Ya ’ ’ : :
silicalite described in the text, for several loading with excluded volume D; 0.7 2.2 13 0.9
interactions. The following values of the parameter were ugee:p, DY 7 16.7 11.2 8.6
=1/2; k=1.0ps. Points are results of a kinetic Monte Carlo simulation, D?’) 14.7 15.7 15.1 144
lines are the theoretical curves within the mean-field approximation. Circles ] 15 3.7 2.5 1.9
and straight line: infinite dilutiort=0.0; squares and dotted line=0.4; D§6) 8.1 19.9 13.8 10.3
triangles and dashed line=0.8; cross and long-dashed line=0.95. D(® 22.5 21.7 19.1 17.5
Dif” 2.3 4.8 3.4 2.8

3 rom molecular dynamics simulations, values of Ref. 17.

Table | presents a comparison of the diffusion coeffi-°From a simple random walk model, data from Ref. 17.
cients of ethane in silicalite-1, as computed with the currenﬁi’om fht""o's(tjeﬁ’ ’a“dont‘ ‘(’jv"?"kﬂ’:.wde" data from Ref. 17.
model using a probability set calculated from molecular dy- rom e modet presented in IS paper-
namics(MD) simulations in Ref. 17, with the diffusion co-
efficients computed in Ref. 17 from MD, from a simple ran-yy, coNCLUSION
dom walk modelRW), and from the two-step random walk
model (two-step. In almost all cases the current model im- ~ We have shown how to partition the correlated displace-
proves the agreement with the MD diffusion coefficient, for ment of one molecule in a zeolite represented by a lattice of
allD,, Dy, andD,. This is particularly true foD,, which sites into uncorrelated sequences of jumps, in order to allow
exhibits strong negative kinetic correlations in the MD cal-@n easy calculation of the diffusion coefficient at infinite di-
culations(corresponding toy~ — 0.5 to — 0.7, depending on lution. This approach can be used to analyze both geometric
loading and temperaturemaking a forward jump much less correlations due to the nonsymmetric nature of some adsorp-
probable than a backward jump in the zigzag channels. Thition sites in zeolite pores, and kinetic correlations due to an
ShOWS that our mode' hand'es in a much more accurate Wd?sufﬁcient thermalization Of the m0|ecu|e in |tS ﬁnal Site.
these strong kinetic correlations. The agreement remains fairhese correlations can have an important effect on the diffu-
over the range of loadings presented, although we have esion coefficient, resulting in a difference that can range over
plicitly stated that our model is only approximate in theseseveral orders of magnitude for very strong correlations. We
cases: indeed, vacancy correlations show up both inside ave applied this method to two model systems, that is, ben-
sequence of jumps and between sequences. Vacancy cord&ne in NaY and ethane in silicalite. In both cases the ana-

lations, however, remain smallso that this agreement is lytical expressions derived from the model capture the be-
plausible. havior of the self-diffusion coefficient, as compared with

kinetic Monte Carlo simulations as well as molecular dy-
namics simulations. Although the exact analytical expression
of the self-diffusion coefficient as a function of the basic rate
constants is necessarily system-specific, the two examples
presented here provide the reader with a number of methods
and some results allowing one to study generally diffusion of
small adsorbates in cage or channel zeolites. In particular,
Eq. (48) is completely general and applies to any sequence of
kinetically correlated jumps, whatever the system.

This approach can be used to determine the self-
diffusion coefficient as a function of the fundamental rate
constants for any type of guest on a zeolite lattice. Thus it
allows us to study in a simple way the influence of the lattice
geometry and connectivity on the diffusion coefficient. This
type of relation is particularly interesting to link the results

FIG. 10. Plot of the vacancy correlation factor D, /DM as a function of of experimental t?ChniqueS such as pul_sed-field gradient
loading, for several values of the correlation coefficignt NMR or quasielastic neutron scattering, which probe directly
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