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ABSTRACT
We investigate the ability of a reactive model of silica to build crystalline zeolite frameworks with
an enhanced sampling approach based on replica exchange Monte Carlo (REMC) simulations. In our
implementation of REMC, the silica hydrolysis/condensation equilibrium constant controlling network
formation is chosen as the index parameter characterising each replica. We show that improving the
performance of the REMC method by increasing its efficiency in producing zeolite crystals allows zeolites
with larger unit cells to be constructed. In particular, we perform an efficiency case study on the sodalite
structure, containing 12 tetrahedra per unit cell and then apply the resulting enhancements to construct a
significantly larger zeolite. We have improved our simulations in two ways; first, we have analysed the roles
of the Monte Carlo parameters on the efficiency of this REMC method. Second, we have implemented an
adaptive protocol that resets the values of the hydrolysis/condensation equilibrium constants among the
replicas, ‘on the fly’ of each simulation, to optimise replica exchange for the purpose of constructing zeolite
crystals. Finally, we show that by applying these enhancements, the REMCmethod can produce the crystal
structure of zeolite AWW, a nanoporous material with 24 tetrahedra per unit cell.
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1. Introduction

Zeolites are crystalline microporous materials that consist of a
networkof corner-sharing tetrahedra, eachwithT-atoms (Si,Al,
P or other metals) in the centre and four oxygens at the vertices.
Zeolite materials enjoy substantial technological relevance, as
shape-selective catalysts and as molecular sieves for green sepa-
rations, and are scientifically important as platforms to study the
dynamics of confined systems [1]. There is significant interest
in understanding more fully how zeolites form microporous
crystals, both for technological control of zeolite pore structures
and crystalline architectures, and to understand the science
of hierarchical structure formation [2]. Molecular modelling
stands to play an important role in elucidating zeolite formation,
because the sizes of zeolite nuclei likely fall into the nanoscale
blindspot between IR/NMR and XRD characterisation meth-
ods. In previous work, we reported a replica exchange (RE),
reaction ensemble (Rx) Monte Carlo (RE-RxMC) simulation
procedure for building structures of zeolite crystals using a
reactive model of silica polymerisation [3]. We note that RE-
RxMC trajectories are optimised to equilibrate rapidly and thus
do not follow physical trajectories, especially when barriers sep-
arate thermodynamically stable structures or phases. RE-RxMC
nonetheless represents an important computational approach
for materials discovery, by determining the crystalline phases
consistent with our reactivemodel of silica. The initial studywas
limited to zeolites with small unit cells due to the restrictions
of the methodology. In the present work, we extend this RE-
RxMC method to larger zeolites by exploring enhancements in
the efficiency of the RE-RxMC approach.

CONTACT Scott M. Auerbach auerbach@chem.umass.edu; Peter A. Monson monson@ecs.umass.edu

Computational scientists havemade strikingprogress inmod-
elling the structure of crystalline materials from the knowledge
of their composition during the last 30 years [2]. In the field of
zeolites, significant progress has beenmade in predicting the ex-
istence of new structures.Using graph theory and combinatorial
tiling theory, millions of energetically feasible structures have
been found during the last decades [4]: Deem et al., Treacy et al.
andYi et al. have generateddatabases of hypothetical zeolites [5–
7]. However, amore completemolecular-level understanding of
the zeolite synthesis process remains elusive. Computational
simulations of silica polymerisation have been recently per-
formed by Malani et al. [8,9]. These simulations accurately
reproduced the evolution of silica network formation as deter-
mined experimentally by 29SiNMR,whichmeasures theQnmo-
lar fraction distribution as a function of time. The simulations
of Malani et al. accomplished this agreement by performing
Reaction Ensemble MC simulations (RxMC) in combination
with the silica tetrahedron model proposed by Astala et al. [10].
This model was originally devised to reproduce the mechanical
properties of crystalline silica solids and represents silicic acid
molecules through flexible and unbreakable tetrahedra. Chien
et al. later extended this silica polymerisation model to study
silica nanoparticles [11] and zeolite crystallisation [3]. Because
of the glassy nature of silica, applying this model with avail-
able computational resources to find zeolite crystals required a
specialised sampling procedure: Replica ExchangeMonte Carlo
(RE-MC) [12].

RE-MC [12] is a useful technique for simulating systems
with rugged energy landscapes like zeolites, where the system
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may get stuck in metastable structures far from the equilibrium
state. The key of this method is to simultaneously perform
independentMC simulations ofN parallel replicas of the system
considering a slightly different index parameter (e.g. tempera-
ture, pressure, chemical potential) value for each replica. The
maximum and minimum index parameter values are chosen
to lead to different MC equilibration times and thus, by pe-
riodically exchanging configurations between the replicas, the
slowest equilibrating replica will more rapidly reach the equi-
librium state. Hence, this technique increases the efficiency of
sampling near the equilibrium state, allowing the system to
rapidly escape from metastable local minima. In this work, as
we did in our previous contribution [3], we have adapted a
Replica Exchange (RE) technique to Reactive Ensemble (Rx)
Monte Carlo simulations (RE-RxMC) [13]. We have chosen
the equilibrium constant controlling silica hydrolysis reactions
(Khyd) as the index parameter that varies from one replica to
another. Large values of Khyd promote disassembly of silica
networks, important for avoiding glassy states, and small values
ofKhyd drive the system to form silica networks. Thus, a suitably
chosen grid of Khyd values avoids glass formation and forms
silica crystalline states.

The limitations of RE-MC methods for systems with many
degrees of freedom are well known [14], especially when sam-
pling phase changes that are separated by free energy barriers.
Various optimisation approaches have been proposed for RE-
MC to cross free energy barriers, particularly in the field of pro-
tein folding. Most of these methods emphasise the importance
of the distribution of index parameter values among the replicas,
yielding an efficient exchange protocol. While most other work
on RE-MC uses the temperature as the index parameter, giving
so-called ‘parallel tempering’ Monte Carlo [12], we aim for an
optimal grid of Khyd values. The simplest distribution of index
parameters, proposed in Ref. [15], is a grid defined by a geo-
metric progression (i.e. Khyd,i+1 = constant× Khyd,i). However,
this approach has been shown to be inefficient when a phase
transition is present within range of index parameter values
[14]. Some authors, aware of the bottleneck around the phase
transition, use an adaptive grid of index parameters yielding
an equal acceptance probability of replica exchanges [16–18].
On the other hand, other authors emphasise the importance
of maximising the diffusion of configurations near the phase
transition [19–21]. Towards this end, they advocate using an
adaptive grid that yields a peaked distribution (which we have
parametrised with a Gaussian function) of replica exchange
probabilities around the bottleneck. In the present work, we
have compared the effectiveness of these three different distri-
butions: (i) a fixed geometric distribution, (ii) an adaptive grid
that yields a nearly constant probability of replica exchanges and
(iii) an adaptive grid that yields a peaked probability of replica
exchanges. Below we show that using adaptive grids of Khyd is
essential for enhancing the performance of RE-RxMC.

Zeolites we have assembled so far with RE-RxMC are among
those with the smallest unit cells. The goal of this article is to
enhance the performance of this RE-RxMC method to build
zeolites with larger unit cells. First, we identify MC parameters
that can be varied to speed up the simulations and to polymerise
silica more efficiently. Second, we develop and test fixed and
adaptive grids of Khyd values to optimise replica exchange as

discussed above. These enhancementswere tested in a case study
on the RE-RxMC construction of the sodalite (SOD) zeolite
framework. With 12 tetrahedra per unit cell, SOD is the largest
zeolite framework found in our previous work [3]. SOD is not a
trivial system but its size allows us to perform a large number of
test simulations. Finally, we show how enhancing the method
with SOD makes possible the RE-RxMC construction of the
AWW framework, with 24 tetrahedra per unit cell.

The present article is organised as follows. Section 2 describes
the model and method we are using; Section 3 shows the results
of the enhancements made to RE-RxMC and how they impact
the probability of finding the crystalline states of SOD and
AWW; finally, in Section 4 we summarise the main findings
of this work and we discuss the outlook for additional progress
with this approach.

2. Model andmethods

Here we describe the model and methods behind our Replica
Exchange Reactive Ensemble Monte Carlo (RE-RxMC) simula-
tions, which produce crystalline structures of zeolites through
the self-assembly of SiO4 tetrahedra. The goal of this work is
to improve, and if possible to optimise, the performance of the
RE-RxMC method – to push this approach to the assembly
of zeolites with larger unit cells than those studied previously
[3]. In our previous work, we applied this method to produce
nonporous andnanoporous crystals for systemswith simulation
cells containing between 5 and16 SiO4 tetrahedra. Below,weuse
the all-silica sodalite (SOD) system as the basis for a case study
to improve the RE-RxMC approach. SOD contains 12 SiO4
tetrahedral [22], and as such is both tractable and sufficiently
challenging to test ourmethod.We then apply the improvedRE-
RxMC to search for crystals of zeolites with 24 SiO4 tetrahedra
with attention on the AWW framework [22].

We have focused on improving two aspects of the method:
the RxMC parameters controlling frequencies of attempted re-
active and non-reactive moves, and the grid of hydrolysis equi-
libriumconstants {Khyd} among the replicas inREMC. For com-
putational efficiency, we have used the best (adaptive) {Khyd}
grid when improving the RxMC parameters, and the best set
of RxMC parameters when adapting the grid of {Khyd} values.
Equilibration is not guaranteed due to the glassiness of the
silica model; for this reason we have performed 20 statistically
independent RE-RxMC runs (2million steps each) in the case of
SOD and 5 independent RE-RxMC runs (10 million steps each)
for AWW. To quantify how improving RxMC parameters and
adapting {Khyd} grids improve RE-RxMCperformance, we have
counted the fraction of simulations that yield crystal structures,
denoted as Ncrystals/Nruns in Section 3.

2.1. Reactivemodel of silica polymerisation

The details of our ‘spring-tetrahedron’ model have been exten-
sively described in our previous work [10]; as such, we outline
only its main features here (see Figure 1). Silicon atoms are
located in the centres of SiO4 tetrahedra and are represented
by hard spheres of diameter σSi−Si = 2.0 Å. Two oxygenic
species are considered: hydroxyl groups (OH) if they are the
terminal group, and bridging oxygens (BO) if they connect two
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Figure 1. (colour online) Silica tetrahedral model: Silicon atoms (yellow) are in
the centres of the tetrahedra. Oxygenic species are terminal hydroxyls (white) and
bridging oxygens (red). Tetrahedral shape and flexibility are ensured by springs
between all vertices.

tetrahedra. Harmonic springs between BO and/or OH groups
ensure structural integrity and flexibility of each tetrahedron.
The potential energy due to the distortion of each tetrahedron
is given by U1 = ∑3

i=1
∑4

j=i+1 kS(|r i − r j| − r0)2/2. Here kS
is the spring constant set to 851 kJ mol−1Å−2 in Ref. [10], r0 is
the equilibrium distance between oxygenic species (r0 = 2.61 Å
based on the Si–O bond length of 1.6 Å and the tetrahedral SiO4
geometry [10]), and r i is the position of the ith OH/BO vertex.

Ourmodel accounts for theflexibility of tetrahedral networks
using an angular harmonic potential that restricts the Si–O–Si
angles in the range of the observed values in silica materials:
130◦-180◦ [23]. This angular term is expressed as follows:U2 =
kA( cos θ−cos θ0)2/2,where kA is the angular force constant (set
to 226.74 kJ mol−1 Å−2 in Ref. [10]), θ0 is the Si–O-Si reference
angle (determined to be 155◦ by periodic DFT calculations in
Ref. [23]), and θ is the Si–O–Si angle between each pair of
connected tetrahedra. The model parametrisation used herein
has been shown to reproduce structures and bulk moduli of
many all-silica zeolites [10], as well as structures of nanoporous
phosphates [3].We note that a re-parametrisation of this model
may be required when heteroatoms such as B or Ge with very
different bond lengths and angles are present in the system [24].

2.2. Reactive EnsembleMonte Carlo

To represent the polymerisation process among tetrahedra, we
haveperformedMonteCarlo simulationsusing the ‘spring tetra-
hedron’ model [8,9] in the Reactive Ensemble (RxMC) [25].
As with our spring-tetrahedron model, our implementation of
RxMC has been described in detail in previous publications
[8,9] (see in particular Section 1.2 in Ref. [9]); here we briefly
outline our RxMC approach. This sampling method includes
tetrahedral rotations; translations of OH/BO species, tetrahedra
centres-of-mass and entire clusters; and reactive moves that
are essential for simulating network formation. Reactive moves
reproduce the condensation and hydrolysis reactions that occur
during the silica polymerisation process: ≡ Si − OH + HO −
Si ≡ � ≡ Si − BO − Si ≡ + H2O. Although explicit water
molecules are not present in our simulations, water influences
the energetics of silica condensation and hydrolysis reactions
[26], which in turn establish physically meaningful Khyd values
[3].

Condensations may be inter- or intra-cluster, depending on
whether the pair of OH/BO involved belong to different clusters

or to the same cluster, respectively. Force bias Monte Carlo
moves are performed to relax highly distorted structures that
result after each intra-cluster condensationmove. The force bias
moves are described in Ref. [9]. The success of this model and
sampling approach has been established by comparison with
various structural data such as distance and angle data from
detailed molecular dynamics simulations [27], ring-size distri-
butions as determined by reverse Monte Carlo [28], and the
evolution of network formation probed by the time-dependent
Qn distribution as measured by 29Si NMR [29].

Tuning the attempt probabilities for the various kinds of
MC moves in RxMC, and the various maximum displacement
values, has proved to be essential for improving the efficiency of
the RE-RxMCmethod for constructing zeolite crystals. In Table
1, Section 3.1, we show the set of RxMC parameters we have
found to yield the best performance of the RE-RxMC method
for generating crystals of SOD.

2.3. Replica exchange reactive ensembleMonte Carlo
(RE-RxMC)

We showed in our previous article [3] how RxMC simula-
tions find crystalline phases of alumino-silicate and alumino-
phosphate zeolites using the ‘spring-tetrahedron’ model along
with the Replica Exchange protocol, reported by Turner et al.
[13], for traversing rough energy landscapes of silica systems.
The protocol to exchange adjacent replicas and its probability
is given in Appendix 1 of the present article. In particular, we
perform Replica Exchange and Reactive EnsembleMonte Carlo
moves with probabilities of 0.01 and 0.99, respectively.

The hydrolysis equilibrium constant, Khyd, controlling net-
work formation is taken as the index parameter characterising
the replicas, as was done in Ref. [3]. The meaning of Khyd as an
index parameter can be conceptually seen as serving roughly like
an effective temperature in this Replica Exchange approach: at
high Khyd values, the likelihood of silica polymerisation is low
and the system is formed by disconnected tetrahedra; at low
Khyd values, the polymerisation probability is higher and the
system forms connected networks. Khyd is distributed among
the m replicas as follows: Khyd,1 < Khyd,2 < · · · < Khyd,m. The
minimum and maximum values in our simulations are fixed to
the values used in our earlier work, chosen to drive network for-
mation (Khyd,min=10−6) and silica hydrolysis (Khyd,max=537),
respectively.

Optimising the distribution of the intermediate Khyd val-
ues among the replicas is essential to ensure efficient diffusion
throughout the replica space. For this reason, we have imple-
mented twoadaptivemethods for resetting the indexparameters
among the replicas, on the fly of the RE-RxMC simulations,
to reproduce a certain replica exchange acceptance ratio as a
function of the index parameter, denoted as acctarget(Khyd). We
have considered the following three Khyd grids:

• Constant geometric gridofKhyd along the replicas:Khyd,i+1
= c×Khyd,i. For consistency with previous work, we have
taken c = 4 and i = 1, . . ., 16).

• Adaptive Khyd grid leading to uniform replica exchange
acceptance probabilities. In this case acctarget(Khyd) was
set to 0.4, constant for all Khyd values.
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Figure 2. (colour online) Description of the adaptive RE-RxMC method. The system is allowed to equilibrate during Neq Reactive Ensemble Monte Carlo steps at the
corresponding Khyd value of each replica. Afterwards, information will be transferred between the replicas and statistics will be collected during NRE−RxMC Replica
exchange reactive ensemble MC steps. The index parameter, Khyd , is redistributed along the replicas on the fly to generate the desired probability of exchange between
each pair of replicas, acctarget,ij .

• Adaptive Khyd grid leading to a maximum of the replica
exchange acceptance probabilities around the transition
region determined. In this case, acctarget(Khyd) is the fol-
lowing Gaussian function with parameters a = 0.35, b =
0.01638 and c = 1.01:

acctarget(Khyd) = ae−
(Khyd−b)2

2c2 + 0.25 (1)

The adaptive method that resets the Khyd values along them
replicas to reproduce a certain acctarget(Khyd) works as follows
(see also Figure 2):

(1) Neq RxMC steps are performed to equilibrate the system
at the correspondingKhyd value of each replica.We have
considered Neq = 10, 000 steps for SOD and Neq =
20, 000 for AWW.

(2) During Nrun RE-RxMC steps, configurations are
exchanged between the replicas, in addition to the var-
ious RxMC moves, and statistics are collected. In par-
ticular accave,ij, that is the probability of accept replica
exchanges between replicas i and j. We have considered
Nrun = 50, 000 steps for SOD and Nrun = 100, 000 for
AWW.

(3) New K ′
hyd values are determined as follows:

K ′
hyd(i) = K ′

hyd(j)
(Khyd(i)
Khyd(j)

)(1+�)2

(2)

where� = accave,ij−acctarget,ij, for each pair of replicas i
and j = i+ 1, and with the constraint that Khyd,min=10−6

and Khyd,max=537.
Thus, if the resulting accave,ij is smaller than acctarget,ij
then � < 0 and replicas i and j come closer in Khyd
values; otherwise � > 0 and replicas i and j become
further separated in Khyd-space.

(4) We repeat this process n times, until the end of the
simulation.

All RE-RxMC simulations were initiated with random con-
figurations and performed under three-dimensional periodic
boundary conditions. The dimensions of each simulation box
and the number of tetrahedra were fixed given the unit cell
and the density of each target zeolite: SOD has 12 tetrahedra in
a cubic unit cell (8.9561Å × 8.9561Å × 8.9561Å), and AWW
has 24 tetrahedra in a tetragonal unit cell (13.634Å×13.634Å×
7.627Å) [22].

RE-RxMC simulations were performed in parallel using a
different number of replicas for each system, varying from 16 to
28 – large enough to yield the desired acctarget. The temperature
was kept fixed at T = 300K for all replicas. In future work, we
will examine the effects of increasing temperature, which allows
for more distorted silica tetrahedra, on the Monte Carlo con-
struction of zeolites. Simulation length depends on the system
under study: 2 million steps was found to be sufficient for the
case of study SOD, and10million stepswere required forAWW.
Crystals found using RE-RxMC were relaxed using 5 million
MC steps in the canonical ensemble at a lower temperature,
T = 50K, to reduce thermal distortions from ideal crystal
structures before analysing the resulting structures. We have
computed theX-raydiffractionpatterns of the crystalswe found,
and compared them with those of the target zeolites obtained
from the IZA database [22]. In both cases, we used Debyer
software [30] on 25 × 25 × 25 periodic extensions of unit cells
to compute the XRD patterns.

3. Results and discussion

Our aim in this article is to improve the efficiency of RE-RxMC
simulations in constructing zeolite crystals. To do so, we have
enhanced the parameters and RE-RxMC protocols used in Ref.
[3]. First, we have tuned the RxMC parameters with the aim
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Table 1. Probabilities of attempt for each of the RxMC moves: displacement of
OH/BO, tetrahedra and clusters, rotationof tetrahedra, condensation andhydrolysis
reactions. Left column corresponds to the set of parameters used in Ref. [3] and
Right column to the set of parameters we have found to give the best results, i.e.
leading to the formation of more crystals.

MC move Chien et al. [11] Improved

Probability of Attempt
OH/BO displacement 0.1515 0.05
Tetrahedra displacement 0.3030 0.075
Tetrahedra rotation 0.0 0.075
Cluster displacement 0.1515 0.05
Tetrahedra displacement in Cluster 0.3637 0.075
Tetrahedra rotation in Cluster 0.0 0.075
Condensation 0.01515 0.30
Hydrolysis 0.01515 0.30

MaximumDisplacement
OH/BO displacement 0.01Å 0.025Å
Tetrahedra displacement 0.01Å 0.2Å
Tetrahedra rotation 0.00◦ 0.02◦
Cluster displacement 0.01Å 0.1Å
Tetrahedra displacement in Cluster 0.01Å 0.025Å
Tetrahedra rotation in Cluster 0.00◦ 0.02◦

Ncrystals/Nruns
SOD (after 2MMC steps) 2/20 19/20

of achieving faster equilibration for each replica. Second, we
have modified the replica exchange protocol to improve the
transfer of information between the replicas. Finally, we show
that only by implementing both enhancements are we able to
find the emergence of a zeolite with a significantly bigger unit
cell: AWW zeolite. As an aside, we note that other zeolites with
24 SiO2 units per unit cell could also be studied; we will discuss
others in a forthcoming article on the role of structure directing
agents.

3.1. Reactivemoves

Reactive moves (condensation and hydrolysis) are essential to
achieve silica polymerisation, and to reach the equilibriumof the
system at a certain Khyd value. We increased the number of at-
tempted condensation and hydrolysis reactions by multiplying
by 20 the attempt probability of reactionmoves used in our pre-
viouswork [3]. As a result, the attempt probabilitieswere chosen
as 60% for reactivemoves and 40% for translation and rotations.
In addition, the maximum allowed atomic displacements have
been increased to more efficiently sample configuration space.
Table 1 shows the parameters used by Chien et al. [3] and the
new set of enhanced parameters we have implemented herein.
We note that other parameters were studied, but for brevity we
only indicate the best set we have found.

The resulting configuration after each intra-cluster conden-
sation move may have a very high energy associated with
stretched spring bonds (Ucond = Ui − U0 is the energy change
after an intra-cluster condensation). Force bias (FB) moves are
essential for intra-cluster polymerisation and ring formation
because they relax the distorted structure by draining the en-
ergy excess (Urelax = Uf − Ui is the energy reduction after the
FB cluster relaxation, see Figure 3). The problem is that FB
moves are highly time-consuming. We have investigated the
number (NFB) and maximum displacement (drFB) of FB moves
to obtain more efficient simulations. We seek to maximise the
amount of energy drained per Force Bias move, Urelax/NFB; to

Figure 3. (colour online) Diagram showing the energy relaxation process through
the Force Bias mechanism. U0 is the initial energy of the system, Ui is the energy
after the highly distorting intra-cluster condensation move, and Uf is the final
energy after the FB relaxation process.

Table 2. Ability of the FB method to reduce the energy (Urelax ) of the highly
distorted configuration obtained after an intra-cluster condensation move for
different number of Force Bias moves (NFB) and different maximum displacement
values (drFB). The CPU time spent and the probability to accept the condensation
moves (acccond) are also useful to decide the best choices.

NFB drFB (Å) CPU time (s) Urelax (kJ/mol)/NFB acccond

500 0.01 25.1 0.83 0.025
200 0.1 13.0 1.95 0.039
200 0.2 8.0 1.86 0.092
50 0.1 3.0 6.79 0.034
50 0.2 2.7 9.077 0.093
20 0.1 0.78 21.6 0.0094
20 0.2 0.72 22.34 0.029

minimise CPU time required; and to maximise the probability
of accepting the intra-cluster condensation move (see results
in Table 2). After this analysis, we have concluded that 50 FB
attempts and 0.2 Åmaximumdisplacement are the best choices.

The RxMC parameters used in Ref. [3] were inspired by
previous research on reproducing silica network formation ki-
netics [8,9] in comparison with NMR data [29]. Here we are
concerned about speeding up the network formation to achieve
the crystalline zeolite state in a minimum amount of time. We
have found that performing more reactive moves during the
simulation allows each replica to reach its equilibrium degree of
polymerisation more easily. The bottom row of Table 1 shows
that this feature is directly reflected in the probability of finding
the crystal state. In particular, the number of RE-RxMC sim-
ulations that produce crystals was found to increase from 2,
with the old parameters, to 19 with the new ones, an increase of
nearly a factor of 10 in crystallising efficacy.

3.2. Optimisation of the Khyd distribution

We have developed a feedback method for resetting the Khyd
values among the replicas during the RE-RxMC simulation to
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Figure 4. (colour online) Probability of replica exchange acceptance as a function of the index parameter Khyd of SOD in comparison with (a) other zeolites of different
size and (b) the final value of Q4 molar fraction (see text for definition) for each replica. All results correspond to a constant geometric distribution of Khyd values among
16 replicas.

Table 3. 20 statistically independent simulations of SOD were performed
considering the parameters and method from Ref. [3] (first row), and for the three
Khyd distributions presented in this article (next three rows).Nreplicas is the number
of replicas considered in each case; Ncrystals is the number of simulations leading
to the SOD crystalline structure; and Ntrips is the number of times a replica goes
from Khyd,max to Khyd,min or vice versa, a measure of replica exchange efficiency.

Nreplicas Ncrystals/Nruns Ntrips

Chien et al. [3] 16 0/20 13.9
Constant geometric 16 11/20 31.5
Constant geometric 20 7/20 37.7
Adaptive Uniform fitting 16 15/20 35.3
Adaptive Gaussian fitting 20 19/20 51.9

obtain the desired acceptance ratios of replica exchanges. We
have compared the ability of our method to find SOD crystals
using three Khyd distributions: constant geometric distribution,
an adaptive grid leading to a uniform distribution of proba-
bilities, and an adaptive grid giving a Gaussian distribution of
probabilities.

The constant geometric distribution gives rise to a low replica
exchange probability in the transition region. This behaviour
is shown in Figure 4(a) where replica exchanges near Khyd =
0.016 are quite rare, as indicated by the minimum in the replica
exchange probability. Different lines in Figure 4 correspond to
three different zeolites: EDI (5 tetrahedra per unit cell), SOD
(12 tetrahedra per unit cell) and AWW (24 tetrahedra per unit
cell), showing how this bottleneck in the replica exchanges
became worse as the system size increases. Figure 4(b) shows
that replicas at the lowest and highest Khyd values correspond
to two different phases characterised by the Q4 molar fraction,
which is the fraction of tetrahedra that are fully connected with
all four oxygens as bridging oxygens. We see that at high Khyd
values there are no tetrahedra connected (Q4 = 0), and at
low Khyd tetrahedra are highly connected, meaning network
formation is occurring (Q4 > 0).

Figure 5 compares RE-RxMC results from the
constant geometric grid of Khyd values, the adaptive constant
probability approach, and the adaptive Gaussian probability
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Figure 5. (colour online) Three different replica distributions considered in this
paper and their correspondent replica exchange acceptance probabilities for
zeolite SOD (average over 20 independent simulations).

method. The black line corresponds to a geometric distribution
(ratio equal to 4) of Khyd values; the red line shows replica
exchange probabilities for the adaptive approachwith a constant
target probability of 0.4; and the blue line shows results for the
adaptive method seeking a Gaussian distribution of exchange
probabilities centred on Khyd = 0.016. Figure 5 shows that both
adaptive methods gather more replicas near the bottleneck at
Khyd = 0.016 to achieve more efficient replica exchanges. We
note in Figure 5 that the replica exchange probabilities associ-
ated with Khyd,min = 10−6 exhibit the largest non-systematic
errors explaining their deviations from target values.

Table 3 shows that the adaptive replica methods enhance
the ability of RE-RxMC to build the crystal structure of SOD.
The first row corresponds to the RxMC parameters and the
RE protocol used in Ref. [3]. We note that no SOD crystal
was found after 2 million RE-RxMC steps across 20 statistically
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independent runs. In our previous publication [3], we needed
asmany as 3.3million RE-RxMC steps to produce SOD crystals.
The next four rows of Table 3 show results using the improved
RxMC parameters given in Tables 1 and 2, along with the three
replica exchange protocols described above. Comparing rows 2
and 3 inTable 3 shows that addingmore replicas to theConstant
geometric grid approach does not enhance the efficiency of the
method. We can see in Table 3 that the number of independent
runs yielding the SOD crystal structure increases to 7–11/20
with a constant grid, 15/20 with a constant probability adaptive
grid and 19/20 with the Gaussian probability adaptive grid. This
result suggests that the Gaussian probability is optimal among
those studied herein.

The Gaussian adaptive grid causes better diffusion of repli-
cas along the Khyd range, which is reflected in how often a
replica travels from Khyd,max to Khyd,min or vice versa. We have
measured this feature by counting how many times the hy-
drolysis equilibrium constant characterising each replica goes
from the highest to the lowest value or vice versa during the
simulation (Ntrips) and compared this number, averaged over
the 20 statistically independent runs, in the last column of
Table 3; this shows how the enhancements implemented here

have improved the RE-RxMC diffusion efficiency. In addition, a
visual representation of the diffusion of replicas along the Khyd
range is shown in Figure 6. We have plotted in this figure how
the replica starting at the minimum value of Khyd traverses the
Khyd space for all the 20 independent RE-RxMC runs. Panels
(a), (b), (c) and (d) in Figure 6 correspond to rows 1, 2, 4 and 5,
respectively, in Table 3. Figure 6 shows visually the progressive
improvement in replica diffusion from (a) to (b) to (c) to (d),
consistent with the progressive larger number of crystals in
Table 3. In particular, the substantial gaps in Figure 6(a) explain
why no crystal emerged in these simulations; while Figure 6(d)
shows the most complete diffusion, consistent with generating
the most crystals in Table 3.

In addition to the case study on SOD, we have reproduced
the self-assembly of the following structures also found in Ref.
[3]: EDI and ATT [22]. By implementing improved RxMC
parameters and more efficient replica exchange, we have found
more efficient crystallisation during RE-RxMC. In particular,
the EDI structure was found in Ref. [3] after 3 million RE-
RxMC steps; SOD required 3.3 million steps; and ATT required
50 million RE-RxMC steps. Using the improved RE-RxMC
approach, these crystals emerge after 0.2, 1.0 and 1.5 million

Figure 6. (colour online) Diffusion of the configuration that started at the lowest Khyd value along the replica space for SOD: (a) Unoptimised simulations corresponding
to our previous publication [3]; Best set of RxMC parameters so far plus (b) constant geometric Khyd distribution; (c) uniform adaptive Khyd grid; and (d) Gaussian adaptive
Khyd grid.
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RE-RxMC steps, respectively, representing substantial speed-
ups in the range of 3.3–33.3.

3.3. Application to bigger systems: AWW

We have applied the RE-RxMC enhancements found in the
case study on SOD – the largest zeolite found in our previous
work with a unit cell volume of 718 Å3 – to AWW zeolite,
a system with 24 tetrahedra in a unit cell of 1418 Å3 (see
Figure 7). In our study applying RE-RxMC to the AWWzeolite,
we investigated the efficacies of all four approaches shown in
Table 3 and Figure 6. We found that only the combination of
improvedRxMCparameters and theGaussian adaptive gridwas
sufficient to generate the AWWcrystal, running five statistically
independent runs, each with 28 replicas for 10 million steps.
Only one out of five RE-RxMC runs produced an AWWcrystal,
whose structure is shown in Figure 7. We note that comparison
simulations on AWW using the constant geometric grid with

28 replicas produced no crystals, indicating that adding replicas
alone does not improve the performance of the method in
constructing crystals.

Figure 8(a) shows average replica exchange probabilities as
a function of Khyd for different Khyd distributions: constant
geometric (black), adaptive grid with uniform fitting (blue) and
adaptive gridwithGaussian fitting (red). Figure 8(a) emphasises
how the adaptive grid approach overcomes the bottleneck in
the transition region by bunching replicas in this region of
Khyd space. Figure 8(b) shows the Q4 molar fraction of the
final structure at each replica, for all three Khyd distributions;
these data correspond to the simulation showing the highest
Q4 value for the lowest Khyd , not the average value over all the
independent simulations. Because theQ4 molar fractiondenotes
the number of Si atomsbonded to four bridging oxygens divided
by the total number of Si atoms,Q4 equals 1 only if the structure
is fully connected. Figure 8(b) shows that only the Gaussian
adaptive grid can produce such a fully connected structure, the

Figure 7. (colour online) Snapshots a 2× 2× 2 periodic extensions of (a) SOD and (b) AWW frameworks. Unit cell boundaries are drawn in blue.
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Figure 8. (colour online) (a) Replica exchange probabilities (averaging over the five independent simulations), and (b) Final value of Q4 mole fraction as a function of Khyd
values, for AWW. Constant geometric distribution (black), adaptive uniform (blue), and adaptive Gaussian (red) data shown.
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Figure 9. (colour online) XRDpatterns for AWWstructure.We compare the structure
resulting from RE-RxMC (black solid line) with the experimental coordinates taken
from IZA database (dashed red line).

AWWzeolite crystal, which appears only in the replica with the
lowest Khyd value.

Figure 9plots theXRDpatterns of theAWWcrystal structure
generatedbyRE-RxMC, comparedwith that of the experimental
XRD found in the IZA database [22]. Figure 9 shows excellent,
essentially perfect, agreement between the IZA structure and
the simulated AWW framework using RE-RxMC.

4. Summary and conclusions

We have presented improvements to the efficiency of replica
exchange reactive ensemble Monte Carlo (RE-RxMC) simu-
lations, applied with our ‘spring-tetrahedron’ model, for con-
structing the crystalline structures of zeolites in a reactivemodel
of silica polymerisation through the self-assembly of tetrahedral
silica units. To investigate improvements to the RE-RxMC ap-
proach, we have engaged in a case study on crystallising the
sodalite (SOD) zeolite, whose unit cell contains 12 tetrahe-
dra. First, we have tuned the parameters of the reactive Monte
Carlo moves to speed up the sampling of silica polymerisation.
Second, we have devised an adaptive protocol that resets the
values of the hydrolysis equilibrium constant, Khyd, among the
replicas to generate certain distributions of replica exchange
acceptance probabilities. Such adaptive grids have proved useful
for enhancing the transfer of configurations between the replicas
and, in turn, the ability of the RE-RxMC method to find the
crystalline states. By enhancing both the reactive Monte Carlo
parameters and the replica exchange protocol, we have found
speed-ups of theMonte Carlo crystallisation in the range of 3.3–
33, depending on the system. In addition, we have extended the
RE-RxMCmethod to crystallise AWW, a zeolite with a unit cell
twice as large as that of SOD.

The ‘spring-tetrahedron’ model taken together with
advanced sampling methods such as RE-RxMC has proved use-
ful for simulating the construction of zeolite frameworks. Such
simulations constitute an important initial step towards a deeper
understanding of how zeolites actually crystallise in labora-
tory experiments. To generate such deeper understanding, the
following next steps need to be considered: (i) the roles of

structure-directing agents in zeolite crystallisation; (ii) more
physically relevant crystallisation pathways obtained by rare
event sampling approaches; and (iii) more industrially relevant
zeolite topologies such as MFI (e.g. ZSM-5) and FAU (e.g. US-
Y), which featuremuch larger unit cells – containing 96 and 192
tetrahedra, respectively. In addition, simulations performed
in a constant pressure ensemble will remove the constraint
of constant volume, and thus will bring our simulations even
closer to providing information about the cell parameters and
crystal structure simultaneously. Altogether this represents a
promising roadmap towards a deeper understanding of zeolite
formation.

Acknowledgements

The authors acknowledge Dr. Szu-Chia Chien for all the assistance with the
RE-RxMC code. We also thank computational resources provided by the
Massachusetts Green High-Performance Computing Center (MGHPCC).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the US Department of Energy [Contract No.
DE-FG02-07ER46466].

References

[1] Auerbach SM, Karrado KA, Dutta PK. Handbook of zeolite science
and technology. New York (NY): Marcel Dekker; 2003.

[2] Auerbach SM, Fan W, Monson PA. Modelling the assembly of
nanoporous silica materials. Int Rev Phys Chem. 2015;34:35–70.

[3] Chien SC,Auerbach SM,MonsonPA.Reactive ensembleMonteCarlo
simulations of silica polymerization that yield zeolites and related
crystalline microporous structures. J Phys Chem C. 2015;119:26682.

[4] Catlow CRA. Modelling and predicting crystal structures.
Interdisciplinary Sci Rev. 2015;40:294–307.

[5] FosterMD,TreacyMMJ.Adatabase of hypothetical zeolite structures.
2006. Available from:http://www.hypotheticalzeolites.net.

[6] Li Y, Yu J. Hypothetical zeolite database. 2003. Available from: http://
mezeopor.jlu.edu.cn/hypo/

[7] Earl DJ, Deem MW. Toward a database of hypothetical zeolite
structures. Ind Eng Chem Res. 2006;45:5449.

[8] Malani A, Auerbach SM, Monson PA. Probing the mechanism of
silica polymerization at ambient temperatures using monte carlo
simulations. J Phys Chem Lett. 2010;1:3219–3224.

[9] Malani A, Auerbach SM, Monson PA. Monte Carlo simulations
of silica polymerisation and network formation. J Phys Chem C.
2011;115:15988–16000.

[10] Astala R, Auerbach SM, Monson PA. Normal mode approach for
predicting the mechanical properties of solids from first principles:
application to compressibility and thermal expansion of zeolites. Phys
Rev B. 2005;71:014112.

[11] Chien SC, Auerbach SM, Monson PA. Modeling the self-assembly of
silica-templated nanoparticles in the initial stages of zeolite formation.
Langmuir. 2015;31:4940–4949.

[12] Earl DJ, DeemMW. Parallel tempering: Theory, applications and new
perspectives. Phys Chem Chem Phys. 2005;7:3910–3916.

[13] Turner C, Brennan J, Lisal M. Replica exchange for reactive Monte
Carlo simulations. J Phys Chem C. 2007 July;111:15706–15715.

http://www.hypotheticalzeolites.net
http://mezeopor.jlu.edu.cn/hypo/
http://mezeopor.jlu.edu.cn/hypo/


462 C. BORES ET AL.

[14] Predescu C, Predescu M, Ciobanu C. The imcomplete beta function
law for parallel tempering sampling of classical canonical systems. J
Chem Phys. 2004;120:4119.

[15] Kofke DA. On the acceptance probability of replica-exchange Monte
Carlo trials. J Chem Phys. 2002;117:6911.

[16] Rathore N, Chopra M, de Pablo JJ. Optimal allocation of replicas in
parallel tempering simulations. J Chem Phys. 2005;122:024111.

[17] Guidetti M, Rolando V, Tripiccione R. Efficient assignment of the
temperature set for parallel tempering. JComputPhys. 2012;231:1524.

[18] Bittner E, Nubaumer A, Janke W. Make life simple: unleash the
full power of the parallel tempering algorithm. Phys Rev Lett.
2008;101:130603.

[19] Predescu C, Predescu M, Ciobanu CV. On the efficiency of exchange
in parallel tempering Monte Carlo simulations. J Phys Chem B.
2005;109:4189.

[20] Katzgraber H, Trebst S, Huse D, et al. Feedback-optimized
parallel tempering Monte Carlo. J Statistical Mech. Theory Exp.
2006;2006:P03018.

[21] Trebst S, Troyer M, Hansmann U. Optimized parallel tempering
simulations of proteins. J Chem Phys. 2006 May;124:174903.

[22] Baerlocher C, McCusker LB, Olson D. Atlas of zeolite framework
types. 6th ed. Elsevier; 2007.Available from: http://www.iza-structure.
org/databases/

[23] Astala R, Auerbach SM,Monson PA. Density functional theory study
of silica zeolite structures: stabilities and mechanical properties of
SOD, LTA, CHA, MOR and MFI. J Phys Chem B. 2004;108:9208–
9215.

[24] Jiang J, Yu J, Corma A. Extra-large-pore zeolites: bridging the gap
between micro and mesoporous structures. Angew Chem Int Ed.
2010;49:3120–3145.

[25] Johnson JK, Panagiotopoulos AZ, Gubbins KE. Reactive canonical
Monte Carlo. A new simulation technique for reacting or associating
fluids. Mol Phys. 1994;81:717–733.

[26] Mora-Fonz MJ, Catlow CRA, Lewis DW. Oligomerization and
cyclization processes in the nucleation of microporous silicas. Angew
Chem. 2005;117:3142–3146.

[27] Garofalini S, Martin G. Molecular simulations of the polymerization
of silicic acid molecules and network formation. J Phys Chem.
1994;98:1311.

[28] Wu MG, Deem MW. Monte Carlo study of the nucleation process
during zeolite synthesis. J Chem Phys. 2002;116:2125.

[29] Devreux F, Boilot JP, Chaput F, et al. Sol-gel condensation of
rapidly hydrolyzed silicon alkoxides: A joint 29Si NMR and small-
angle X-ray scattering study. Phys Rev A. 1990 Jun;41:6901–6909.
doi:10.1103/PhysRevA.41.6901.

[30] Wojdyr M. 2011 [cited July 14th 2017]. Available from: http://debyer.
readthedocs.org/

Appendix 1. Adaptive RE-RxMC protocol

We have used the following protocol to perform RE-RxMC simulations of
a system with Ntet number of tetrahedra andm replicas:

• Randomly choose between a Replica Exchange (RE) move or a
Reactive Ensemble (Rx) move. The best probabilities found so far
are PRE = 0.01 and PRx = 0.99, although other possibilities are
shown in Table A1. A large number of exchanges are important to
ensure good transfer of information, but exchanging replicas too
frequently may prevent each replica from equilibrating, and hence
hindering the emergence of crystals.

• If a Reactive move is chosen, Ntet RxMC moves (displacement of
all species, rotations of tetrahedra, condensations or hydrolyses) are
performed according to their specific attempt probabilities given in
Section 3.1. TheMonte Carlo probabilities of each of thesemoves are
described and derived in [9].

• On the other hand, if a Replica Exchange is selected, we perform
a two-step exchange protocol as in [19]. We try to exchange half
(m/2) of the replicas with their adjacent replica, randomly choosing
between those replicas with odd or even indices. Finally, given the
number of bridging oxygens NBO and the hydrolysis equilibrium
constant Khyd characterising each replica, we calculate the probabil-
ity (see Equation A1) and accept or reject replica exchange for each
pair of replicas.

Table A1. Number of replicas leading to SOD crystal framework, out of 20
independent simulations, depending on the probability of attempting a Replica
Exchange. Probabilities of attempting rotations, displacements, or reactive moves
were 0.9, 0.99 and 0.999 in rows 1, 2 and 3, respectively.

PRE Ncrystals/Nruns

0.1 18/20
0.01 19/20
0.001 13/20

The probability of exchanging adjacent replicas i and j can be found in
[11] and is the following:

Pi,j = min

{
1,

(Khyd,j

Khyd,i

)NBOi−NBOj
}

(A1)

where NBOi and NBOj are the numbers of bridging oxygens, and Khyd,i and
Khyd,i the values of the hydrolysis equilibrium constant, in replicas i and j,
respectively.
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