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ABSTRACT: Platinum-based materials play an important role as electrocatalysts
in energy conversion technologies. Graphene-supported Pt nanoclusters were
recently found to be promising electrocatalysts for fuel-cell applications due to their
enhanced activity and tolerance to CO poisoning as well as their long-term stability
toward sintering. However, structure−function relationships that underpin the
improved performance of these catalysts are still not well understood. Here, we
employ a combination of empirical potential simulations and density functional
theory (DFT) calculations to investigate structure−function relationships of small
PtN (N = 2−80) clusters on model carbon (graphene) supports. A bond-order
empirical potential is employed within a genetic algorithm to go beyond local
optimizations in obtaining minimum-energy structures of PtN clusters on pristine as
well as defective graphene supports. Point defects in graphene strongly anchor Pt
clusters and also appreciably affect the morphologies of small clusters, which are
characterized via various structural metrics such as the radius of gyration, average bond length, and average coordination number.
A key finding from the structural analysis is that the fraction of potentially active surface sites in supported clusters is maximized
for stable Pt clusters in the size range of 20−30 atoms, which provides a useful design criterion for optimal utilization of the
precious metal. Through selected ab initio studies, we find a consistent trend for charge transfer from small Pt clusters to
defective graphene supports resulting in the lowering of the cluster d-band center, which has implications for the overall activity
and poisoning of the catalyst. The combination of a robust empirical potential-based genetic algorithm for structural optimization
with ab initio calculations opens up avenues for systematic studies of supported catalyst clusters at much larger system sizes than
are accessible to purely ab initio approaches.

1. INTRODUCTION

Platinum clusters and nanoparticles are widely used as
electrocatalysts and play an important role in the development
of clean energy technologies such as hydrogen-based or
methanol-based proton-exchange membrane fuel cells.1−3

Typically, industrial Pt electrocatalysts are prepared by
dispersing Pt powders as small as a few nanometers on
conductive carbon black supports,4 which results in a high
electrocatalytically active surface area. However, it is well-
known that traditional Pt/C catalysts are easily poisoned by
intermediates, most notably CO, produced during the
methanol oxidation reaction at the cathode.5−7 In addition,
these Pt/C systems suffer from poor long-term stability arising
from the corrosion of the carbon support and dissolution or
aggregation of Pt on the support surface.1,8−10 Graphene has
been shown to be an excellent support for transition-metal-
based electrocatalysts, impacting many of the issues above
through its strong interactions with a broad range of
materials,11 high electronic conductivity,12 and potential for
beneficial modification of the electrochemical properties of
supported clusters.13 However, Pt/graphene nanostructures
remain poorly understood, making it challenging to optimize
these electrocatalytic systems. In this article, we apply advanced

optimization methods with force fields benchmarked by first-
principles theory to gain insights into Pt/graphene geometrical
and electronic structures.
Several experiments have demonstrated the superior

performance of Pt/graphene nanocatalysts in direct-methanol
fuel cells,5,7,14 proton-exchange membrane fuel cells (for the
oxygen reduction reaction),15 and hydrogen fuel cells.16 Such
improved performance has been quantified via metrics such as
electrocatalytic activity, tolerance to CO poisoning, and long-
term stability toward catalyst sintering. Investigators typically
attribute such improvements in catalytic performance to the
synergistic interactions between the Pt catalyst and the
graphene support, mediated by defects and functional groups
in the graphene support that act as strong binding sites for
catalyst nanoparticles.5,15,17−21 Computational studies corrob-
orate this interpretation and show strong binding of Pt clusters
at support defects in graphene, accompanied by a significant
modification of the morphology and electronic structure of the
clusters.9,22−30 In particular, ab initio studies indicate a

Received: February 5, 2016
Revised: April 23, 2016
Published: May 19, 2016

Article

pubs.acs.org/JPCC

© 2016 American Chemical Society 11899 DOI: 10.1021/acs.jpcc.6b01288
J. Phys. Chem. C 2016, 120, 11899−11909

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
M

A
SS

A
C

H
U

SE
T

T
S 

A
M

H
E

R
ST

 o
n 

Se
pt

em
be

r 
24

, 2
01

8 
at

 2
0:

30
:0

2 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/JPCC
http://dx.doi.org/10.1021/acs.jpcc.6b01288


noteworthy correlation between the binding energy of a Pt
cluster at support defect and the d-band center of cluster, which
suggests an additional pathway for optimizing catalytic activity
through defect engineering of supports.9,28,29 In the present
work, we compare pristine and defective graphene supports to
better understand how support structure alters Pt/graphene
binding properties.
It is well accepted that the structure of catalyst particles plays

a significant role in their catalytic performance,31,32 and
achieving a detailed understanding of structure−activity
relationships is hence an issue of much current interest. For
example, in recent work Fampiou and Ramasubramaniam6

investigated the thermodynamic and electronic properties of
Pt13 isomers on graphene supports by examining both high-
symmetry cluster morphologies and low-symmetry ones
(derived from molecular dynamics annealing). They observed
appreciable differences with respect to cluster binding energies
on the support, cluster d-band centers, adsorbate binding
energies, and overall charge redistribution with different cluster
morphologies (isomers). While those studies were limited to a
relatively small set of candidate structures, they nevertheless
established the need for careful initial selection of cluster
morphologies prior to subsequent studies of catalytic reactions
on clusters. Indeed, for computational studies of cluster
catalysis, it is reasonable to invest initial effort in ascertaining
thermodynamically (or kinetically) favored structures, as these
are the most probable structures under experimental con-
ditions.33 While ground-state cluster morphologies might, in
principle, be gleaned from experiments, e.g., via fluorescence
spectroscopy techniques for vacuum Pt clusters,34,35 such
studies are extremely challenging and hence limited in number
and scope. In contrast, computational studies of the energetics
of Pt clusters in vacuum, using both quantum mechanics and
empirical potential modeling, are more extensive.5,36−42

However, to the best of our knowledge, there are as yet no
systematic investigations of the ground-state energetics and
morphologies of Pt clusters on graphene supports. In other
words, the influence of Pt−graphene binding interactions on
cluster morphology and the resulting effects on cluster activity
still remain to be systematically understood.
The primary goal of this paper is to present a robust

methodology for identifying thermodynamically favorable
structures of Pt clusters on graphene supports and to draw
clear correlations between cluster energetics and catalytically
relevant metrics such as the d-band center and Pt cluster charge
transfer. The high-dimensional potential energy surface (PES)
for the Pt/graphene system is extremely complex and a brute
force search for energy minima at the first-principles level is
computationally infeasible. Therefore, we carefully test and
validate a Pt−C empirical potential, which we then employ
within a genetic algorithm (GA)43−45 to facilitate rapid and
thorough identification of minimum energy PtN (N = 2−80)
clusters on defect-free and defective graphene supports.
Optimized structures are then studied more thoroughly with
density functional theory (DFT) calculations to test the
structural accuracy and energetic ordering of the empirical
potential predictions. Finally, ensembles of unsupported and
supported near-minimum energy Pt13 isomers are subjected to
detailed electronic structure analyses via DFT calculations to
identify clearly the role of support defects and cluster energetics
on the potential catalytic activity of the Pt clusters. Overall, by
combining an inexpensive empirical potential-based GA with ab
initio calculations, we establish a tractable approach for

systematic exploration of supported clusters at system sizes
that are experimentally relevant and yet inordinately expensive
for brute force ab initio calculation alone.

2. COMPUTATIONAL METHODS
2.1. Genetic Algorithm for Optimization of Unsup-

ported and Supported Clusters. Structural optimization of
nanoparticles/clusters entails the nontrivial task of efficiently
identifying the global minimum on a complex PES by
performing unbiased sampling. Several global optimization
techniques have been developed to address this challenge,
including basin-hopping,46−50 particle-swarm optimization,51,52

and genetic algorithms.53,54 In this work, we chose to
implement a genetic algorithm55 (GA) to determine low-
energy structures of unsupported and supported Pt clusters.
Local energy optimization was implemented using the
LAMMPS package.56 In general, the GA produces child clusters
from parent clusters by splitting parents in half and cross-
mating to form children. At each new generation, local
optimization is performed to drain high energies that arise
from mating. Promising child clusters then become the parents
for the next iteration of the GA, continued until the energies of
promising clusters converge within a given tolerance. The
specific approach followed here, in particular for optimization
of supported clusters, follows the spirit of the pioneering work
of Ho and co-workers;57 the individual steps of the GA are
discussed in detail below.

Initial Population. For a given cluster PtN, initial
configurations for the starting generations are randomly
generated with a minimum Pt−Pt distance of 1.7 Å to avoid
biased searching. The distance of 1.7 Å was obtained from
numerical testing; of course, no cutoff is necessary, but setting a
reasonable one avoids calculating structures that will be rejected
due to very short bond lengths. The quality of the ith cluster
with energy Ei is determined by its fitness f i, which is calculated
by a linear function55

ρ= −f 1 0.7i i (1)

where the scaled energy ρi is normalized as

ρ = − −E E E E( )/( )i i min max min (2)

and where Emin and Emax are the lowest and highest energies of
the initial configurations. The scaled energy ρi for each
configuration is thus always between 0 and 1; as such, the
fitness values corresponding to the lowest and highest energies
are 1.0 and 0.3, respectively.

Selection. A selection operator is used to choose candidates
from the current generation for mating. Here, we use the
roulette wheel method of selection:55 a configuration is chosen
at random and selected for mating if its fitness value f i is greater
than a randomly generated number between 0 and 1.
Otherwise, another configuration is chosen at random and
tested for mating. This process is continued until two
configurations are chosen for mating.

Crossover. Crossover refers to the process by which
“genetic” information (coordinates) from two parent clusters
is combined to generate offspring. The computational
approaches for crossovers are quite different for supported
and unsupported clusters. For unsupported (vacuum) clusters,
the centroids of the two parent clusters are shifted to the origin,
after which the parents are subjected to random rotations. The
plane at z = 0 is used to cut each parent cluster into two parts;
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the top half of parent 1 and bottom half of parent 2 are then
“glued” together to form a new child. (To conserve particle
number between parents and offspring, the cutting plane might
require a slight offset from the z = 0 position.) A minimum
separation of 1 Å is maintained between the glued cluster halves
to avoid artificially high energies and/or forces on atoms. For
supported clusters, in addition to the steps noted above, the
child clusters need to be positioned appropriately relative to the
graphene sheet. From numerical testing, a minimum cluster−
support distance of 2 Å was found to be a good initial guess for
rapid convergence.
Natural Selection. In natural evolution, individuals with

higher fitness are more likely to survive and pass on their genes.
In our GA, clusters with lower energies have higher fitness (eqs
1 and 2) and are chosen with higher probability for
reproduction. The energy evaluation is performed using the
LAMMPS package. To facilitate rapid initial relaxation of
randomly generated offspring, we employ low-temperature
molecular dynamics at 100 K for 0.1 ps using a 1 fs time step.
Thereafter, conjugate-gradient minimization is performed for a
minimum of 100 iterations or until the norm of the energy
gradient on each atom is less than 10−3 eV/Å. The new
offspring is accepted if its energy falls below an acceptance
threshold

= + ΔE E N Eaccept min Pt (3)

where Emin is the lower energy of the two parents, NPt is the
number of Pt atoms in the cluster, and ΔE is a numerical
parameter. The smaller the value of ΔE the more stringent is
the acceptance criterion; from numerical testing, ΔE = 0.1 eV
was found to be a useful choice for this parameter because this
value caused the algorithm to efficiently produce valid ground
states. We note that this parameter (ΔE) is system-specific and
can be ascertained through a small initial set of calibration runs.
Elite Species. The population size is maintained at 30

individuals throughout the optimization process. To avoid loss
of high quality species, within any generation, we always
maintain 20% of fittest individuals from the previous
generation.
Convergence. The GA was deemed to have converged if the

lowest energy clusters in each generation remained unchanged
for 20 generations or if the total number of generations
exceeded 1000.
2.2. Empirical Potential Models. In this work, we employ

a Pt interatomic potential developed by Albe et al.58 based on
the reactive bond-order Tersoff−Brenner form.59 In addition to
Pt−Pt interactions, Albe et al.’s potential also incorporates C−
C and Pt−C interactions, which makes it ideally suited for
describing Pt clusters on carbon supports. In previous work,
Fampiou and Ramasubramaniam9 showed that the potential of
Albe et al. is remarkably accurate relative to DFT in describing
supported cluster morphologies, albeit with limited sampling.
Here, we carry out a more extensive investigation of the fidelity
of this potential for unsupported clusters and show that this
potential is generally in very good agreement with DFT
structural models. We also perform careful tests of Albe et al.’s
potential for supported clusters and demonstrate that the
potential is indeed capable of delivering accurate low-energy
structures for further electronic structure analyses. All empirical
potential simulations are performed using the LAMMPS
simulation package.
2.3. Density Functional Theory Calculations. DFT

calculations are performed to study the thermodynamic and

electronic properties of selected low-energy structures using the
Vienna Ab initio Simulation Package (VASP).60,61 Core and
valence electrons are described using the projected augmented
wave method.62,63 The Perdew−Burke−Ernzerhof (PBE)64−66
form of the generalized-gradient approximation is employed to
describe electron exchange and correlation. A kinetic energy
cutoff of 400 eV is used for the plane-wave basis set, and the
conjugate gradient algorithm is used to relax ions into their
ground state until the force on any atom is smaller than 0.01
eV/Å. Brillouin zone sampling is performed using a single
Gamma point for unsupported clusters. For supported clusters
(128 C atoms in pristine support), a 2 × 2 × 1 Γ-centered k-
point mesh is found to provide accuracy for energy calculations
to within 0.5 meV/graphene atom. From convergence tests, at
least 10 Å of vacuum is used to eliminate spurious interactions
between periodic images of unsupported and/or supported
clusters.

2.4. Simulation Procedure. Unsupported PtN (N = 2−80)
clusters are optimized using our GA code employing Albe et
al.’s empirical potential. To ensure better sampling, we run
three GA simulations for each particle size, and the geometry
with the lowest energy from all simulations is chosen as the
global minimum. In almost all cases, the geometries obtained at
the end of these three simulations are identical, indicating the
robustness of GA. We also perform GA optimization of PtN (N
= 2−80) clusters on defect-free (pristine) and defective
(vacancy and divacancy defects) graphene supports using
Albe et al.’s potential. In all supported cluster calculations, we
use an 8 × 8 graphene supercell (128 C atoms in pristine
graphene), which is sufficiently large to eliminate long-ranged
interactions between Pt80 clusters (the largest clusters studied
here). From the converged GA results, various structural
properties of clusters such as the radius of gyration,
coordination numbers, and average bond lengths are calculated.
By extensive exploration with the GA, we establish an

ensemble of minimum and near-minimum energy PtN isomers;
Pt13 isomers are chosen as a convenient example for further
investigation with DFT studies. We choose five isomers of Pt13
clusters on pristine, vacancy, and divacancy graphene supports.
These structures are subjected to additional relaxation in DFT
calculations followed by electronic structure analyses.

3. RESULTS AND DISCUSSION
3.1. Structure and Energetics of Unsupported Pt

Clusters. Several DFT-based studies have focused on the
structure and energetics of unsupported Pt clusters,37,67−69

thereby providing a basis for evaluating both the quality of the
empirical potential used in this work as well as the robustness
of the GA. Thus, we focus first on unsupported clusters and
present a critical evaluation of our simulation methods. A
common shortcoming in studies of clusters is that the methods
for generating low-energy structures do not use global search
algorithms, relying instead on less robust techniques such as
simulated annealing. Adopting high-symmetry shapes based on
geometric shell models is usually incorrect for small transition-
metal clusters as has been well documented in the
literature.37,67,68 Combining global search algorithms, such as
GAs, with inexpensive yet reliable empirical potentials thus
offers a significant advantage for reliable and efficient sampling
of the PES.
Figure 1 displays the lowest energy structures of PtN (N = 2−

80) found by our GA implementation using Albe et al.’s bond-
order potential. Figure 1 shows that Pt clusters are planar up to
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N = 8 atoms, which is consistent with the DFT study reported
by Kumar et al.37 Furthermore, none of the minimum-energy
structures exhibit high symmetry, calling into question common
assumptions about enforcing symmetry made in cluster
catalysis studies. To examine the accuracy of the empirical
potential in greater detail, we focus on N = 7 clusters as a
specific example. For Pt7 clusters, the GA predicts a centered
six-member ring as the lowest energy structure (see Table 1).

However, both Kumar et al.’s and our DFT results show that
side-capped isomers turn out to be lower in energy than the
centered ring. Of these side-capped structures, only one is even
stable as per the empirical potential (see Table 1), and the
energy is appreciably higher (∼0.6 eV) than that of the
centered-ring structure. Of course, the GA prediction can only
be as good as the underlying model, and to this extent, the
discrepancy between the empirical potential and DFT points to
shortcomings of the former. It should be noted, though, that
the centered-ring structure is fairly close in energy to the side-
capped ground state at the DFT level (within 0.06−0.08 eV).
The efficacy of the combined empirical-potential and DFT

approach becomes much more apparent when searching for
minimum-energy structures of large clusters. As examples, we
consider so-called “magic-number” Pt13, Pt55, Pt147, and Pt309
clusters, which have been studied widely in their high-symmetry
cuboctahedral (Oh) and icosahedral (Ih) structural motifs.

40,70,71

As before, we use the GA to find minimum-energy structures
for these various cluster sizes and then further relax the
minimum-energy structures in DFT (Figure 2). The energies of

the DFT-relaxed structures are then compared with corre-
sponding DFT energies for the high-symmetry Oh and Ih
structures; total energy differences relative to the minimum-
energy structure for each cluster size are reported in Table 2.

These results show clearly that the high-symmetry structures
are not the lowest-energy structures, as was also shown in
previous DFT studies of Pt13 and Pt55 clusters.

40,69 Indeed, the
results obtained here for larger clusters are particularly striking
and prompt interesting questions regarding typical sizes at
which transitions from low-symmetry to high-symmetry
clusters may be expected to occur in faceted crystals of Pt
nanoclusters; such issues will be discussed elsewhere.
It is also apparent from these results that the performance of

Albe et al.’s empirical potentialin terms of relative energetic
ordering of structuresis surprisingly good when compared
with DFT calculations, especially considering that the potential
was parametrized for bulk properties. The lowest-energy
structures found by the GA essentially resemble defective
icosahedra that are approximately 0.01−0.1 eV/atom lower in
energy (across the entire range of sizes) than the perfect
icosahedra. Cuboctahedral structures are in general higher in
energy than both the GA-optimized structures and the perfect
icosahedra.
Overall, the benchmarking studies presented here lead us to

two principal conclusions. First, Albe et al.’s bond-order

Figure 1. Minimum-energy structures of unsupported Pt clusters as
predicted by our GA implementation using Albe et al.’s bond-order
potential.

Table 1. Relative Total Energies (in eV) of Pt7 Isomers from
Kumar et al.’s37 and Our DFT Calculations (PBE
Functional; PW91 Results in Parentheses) as Well as Albe et
al.’s Empirical Potential (EP)a

aEnergies are relative to the lowest energy isomer for each level of
theory.

Figure 2. Geometries of low-energy “magic-number” Pt isomers in
vacuum. The first two rows display high symmetry cuboctahedral (Oh)
and icosahedral (Ih) clusters. The third row displays minimum-energy
structures found by the genetic algorithm with an empirical potential.

Table 2. Relative Total Energies (in eV) of High-Symmetry
(Cuboctahedral: Oh; Icosahedral: Ih) Pt Clusters and GA-
Optimized, Low-Energy Clusters Calculated Using DFT and
Albe et al.’s Empirical Potential (EP)a

Pt13 Pt55 Pt147 Pt309

DFT EP DFT EP DFT EP DFT EP

Ih 1.3 1.7 3.3 3.4 6.5 5.1 7.7 5.6
Oh 2.0 1.8 5.1 6.4 8.2 12.4 9.7 18.4
GA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aEnergies are relative to the lowest energy isomer for each size and
level of theory.
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potential is of sufficient accuracy to deliver near-minimum
energy structures of unsupported clusters, which can then be
subjected to additional optimization in DFT calculations.
Second, our GA implementation is able to deliver reliable
minimum-energy results for unsupported clusters, which then
lends us confidence in proceeding to the study of supported
clusters, the primary target of this work and the subject of the
next discussion.
3.2. Structure and Energetics of Graphene-Supported

Pt Clusters. We now consider the energetics of PtN clusters on
graphene supports. As model supports, we use graphene sheets
that are either defect-free (pristine) or sheets that contain point
defects (vacancies and divacancies). Point defects in graphene
are known to act as strong anchoring sites for nanoclusters and
have also been shown to modify the electronic structure and
catalytic activity of small clusters.9,28,29 The metrics we adopt
for thermodynamic comparisons are the cluster adsorption
energy and the overall formation energy of the composite Pt/
graphene system. The adsorption energy (Ead) is defined as

= − −+E E E Ead Pt Gr Pt GrN N (4)

where EPtN+Gr is the total energy of the Pt/graphene system, EPtN
is the total energy of the PtN cluster without the support, and
EGr is the total energy of the (pristine/defective) graphene
sheet. The overall formation energy of the composite Pt/
graphene system (Ef) is defined as

= − −+E E ME NEf Pt Gr C PtN (5)

where EPtN+Gr is the total energy of the Pt/graphene system, EPt

is the energy of an isolated Pt atom in vacuum, EC is the energy
of a single C atom in graphene, andM and N are the number of
C and Pt atoms, respectively.
First, to test the performance of our GA, we study supported

PtN (N = 2, 3, 4, 13) clusters and compare our results with
those of Fampiou and Ramasubramaniam,9 who also used Albe
et al.’s bond-order potential but adopted a molecular dynamics
(MD) annealing scheme for energy minimization. The
formation energies for PtN (N = 2, 3, 4, 13) clusters with
pristine and defective graphene supports are reported in Table
3, and the corresponding structures (from the GA) are

displayed in Figure 3. For additional comparison, we also
report formation energies calculated using the empirical
potential in the Supporting Information (Table S1). In all
cases, the GA delivers structures with lower formation energies
than the MD annealing results previously reported. The
differences are particularly noticeable for few-atom clusters. In
the Pt2 case, the GA produces ground states consisting of dimer
orientations parallel to the surface on pristine and defective
graphene supports. MD-based annealing consistently generates

local minima with vertically oriented Pt dimers on pristine
graphene; on defective graphene, the dimers lie parallel to the
support. For Pt3 clusters on pristine graphene, both GA and
MD annealing find the vertical triangle as the ground state; on
defective graphene, the GA finds structures that are appreciably
more stable by 1.0−1.5 eV than those from MD annealing. For
Pt4 clusters, the GA finds a planar cluster that is nearly vertically
oriented to the pristine graphene sheet as the minimum-energy
structure; a tetrahedron is the most stable structure on defective
graphene supports. The MD annealing algorithm is again stuck
in various local minima at higher energies. Finally, for Pt13
clusters on graphene supports, Fampiou and Ramasubrama-
niam showed that the clusters prefer more open structures
instead of high-symmetry ones (Ih or Oh); the GA results
confirm those findings, and the minimum-energy structures are
also energetically very close to those found by MD annealing. It
thus appears that clusters with very small number of atoms
present pathological challenges for the MD annealing
procedure, in particular, capturing the precise orientation and
location of cluster atoms on the support. With increasing
cluster sizes, the energetics appear to be dominated by the
inherent morphology of the cluster itself, with orientational
effects relative to the support being of lesser importance. In any
case, it is clear that a global minimization algorithm, such as a
GA, performs more reliably at finding ground states than ad hoc
procedures such as simulated annealing.
Next, we study the properties of supported PtN clusters over

the size range N = 2−80 analogous to the unsupported cluster
studies. In addition to thermodynamic properties such as
adsorption and formation energies, we also thoroughly
characterize the structural properties of clusters through metrics
such as the radius of gyration, average coordination number,
average bond lengths, and fraction of (potentially) catalytically
active surface atoms, which are variously displayed in Figure 4.
Note that while the catalytic activity of a site on a crystalline
facet (terrace, step, edge, kink) or on a large nanoparticle (face,
edge, corner) can vary significantly due to local coordination,
the nanoclusters considered here are too small to display such
distinguishing morphological features. Thus, we focus on
understanding average properties of surface sites throughout
this work. The various configurations studied here are all
minimum-energy structures obtained via the GA.
Figure 4a displays the radius of gyration (Rg) of PtN clusters

with and without the graphene support. As seen, Rg tends to be
noticeably higher for unsupported clusters and clusters on
pristine graphene supports relative to those on defective

Table 3. Formation Energies (eV) of Minimum-Energy Pt
Clusters on Pristine and Defective (Vacancy, Divacancy)
Graphene Supports Identified Using the GA and by
Molecular-Dynamics-Based Annealing (Ref 9)

pristine vacancy divacancy

GA annealing GA annealing GA annealing

Pt2 −5.75 −5.62 −5.33 −5.30 −5.59 −5.25
Pt3 −10.11 −10.06 −9.55 −8.73 −9.88 −8.38
Pt4 −14.24 −13.12 −13.80 −11.69 −14.13 −13.80
Pt13 −55.50 −55.20 −55.16 −55.14 −55.65 −55.67

Figure 3. Minimum-energy structures of PtN (N = 2, 3, 4, 13) on
pristine graphene (upper row) and graphene with single vacancy
(middle row) and divacancy defects (bottom row).
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supports up to N = 12. This is due to 2D morphologies being
preferable both in vacuum and on pristine graphene supports at
these cluster sizes; the presence of point defects in the
graphene support favors 3D structures beginning from the
smallest possible size, Pt4, as seen in Figure 3. For N ≥ 13, the
support effect on cluster morphology is negligibleRg is
approximately the same for supported as well as unsupported
clusters. Physically, this result suggests that the Pt−C
contribution to the total energy becomes less important
compared with the Pt−Pt interaction for larger clusters.
Another important structural metric used to characterize

clusters is the atomic coordination number; Figure 4b displays
the average coordination number (Zavg) of Pt atoms as a
function of cluster size. The precise number of neighbors of an
atom is sensitive to the cutoff distance chosen for bond
counting, and for consistency, we use the same cutoff distance
as that for Pt−Pt interactions in the bond-order potential (3.3
Å). As seen from Figure 4b, the average coordination number
increases monotonically with cluster size, as is to be expected
due to the increase in the bulk-to-surface ratio. For the range of

clusters studied here, Zavg = 8 is the largest value attained; for
reference, we recall that the coordination number of atoms on
the Pt(111) surface is 9 while that in the bulk is 12. This
significant overall degree of undercoordination is to be
expected for such small clusters that are mostly “surface”
rather than “bulk”. Our calculations show that the smallest
cluster size for which at least one atom has a coordination
number of 12 is N = 19.
Figure 4c offers insight complementary to this analysis of

coordination numbers by displaying the average Pt−Pt bond
length (aavg) in the unsupported and supported Pt clusters; the
horizontal dashed line in that figure indicates the bulk, FCC
Pt−Pt bond length (2.77 Å) for comparison. The average Pt−
Pt bond decreases in length with decreasing cluster size, which
once again reflects the increase in the ratio of surface to bulk
atoms as undercoordinated surface atoms exhibit shorter bonds
to compensate for having fewer neighbors. The trends for aavg
are similar for unsupported clusters and for those on pristine
graphene supports, especially at small cluster sizes, reflecting
the relatively small role of the support in the absence of strong

Figure 4. Evolution of structural and energetic properties of global minima of PtN/graphene calculated using the genetic algorithm as a function of
particle number N: (a) radius of gyration; (b) average coordination number of Pt atoms (excluding Pt−C bonds); (c) average Pt−Pt bond length
(dashed line is for bulk FCC Pt); (d) fraction of active surface atoms, defined in eq 6; (e) adsorption energy (Ead) of Pt clusters on graphene; (f)
average contribution of Pt atoms at the Pt−C interface to Ead.
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perturbations such as those arising from point defects. Again,
for larger clusters, the differences in aavg are small, thus
reflecting the relatively minor role of the support on cluster
morphology. For the range of cluster sizes studied here, aavg is
still about 0.1 Å smaller than the bulk FCC value. There are
some systematic deviations in the monotonic growth of Zavg
and aavg in the N = 20−40 as seen from Figures 4b and 4c.
Closer visual inspection of these clusters leads us to attribute
the fluctuations to a competition between hollow-core and
filled-center cluster morphologies.
A structural property of interest and immediate relevance to

cluster catalysis is the number of potentially active Pt atoms on
the cluster surface. Atoms within the interior of the cluster do
not directly participate in surface reactions, and we also assume
that atoms directly bonded to the support are less likely to
participate in surface reactions due to constraints arising from
e.g. steric hindrance and possibly from electronic effects
(saturation of dangling bonds). There are of course exceptions
to such criteria, notably for single-site catalysts bound at point
defects in graphene,72,73 but these are essentially pathological
cases and the proposed criterion is both intuitively appealing
and physically reasonable for larger clusters. Thus, we define
the fraction of active surface atoms ( f Pt

surf) as

= −f N N N( )/Pt
surf

Pt
surf

Pt
C

Pt (6)

where NPt
surf is the number of atoms on the surface of the Pt

cluster and NPt
C is the number of Pt of atoms bonded to the

support. Various criteria may be established for identifying a
“surface” atom; we do so here by assigning an atom with six or
fewer neighbors to be a surface atom. Visual inspection of
several clusters confirms the validity of this coordination
number cutoff. As seen from Figure 4d, f Pt

surf displays rather
interesting behavior. For unsupported clusters all atoms are on
the surface for N < 19; for larger unsupported clusters, most of
the Pt atoms are in the bulk and consequently are not active.
For supported clusters, the fraction of active sites is initially
small as many Pt atoms are bonded directly to the graphene
support; at large cluster sizes, most of the Pt atoms are again in
the bulk and are consequently not active. The optimal value for
f Pt
surf is achieved in the range N = 20−30 irrespective of the
presence or absence of the support defects. This is a key result
as it identifies an optimal range of cluster sizes that maximally
utilizes the precious metal catalyst; to the best of our
knowledge, this result has not been reported before and, in
particular, not for supported Pt clusters.
Finally, Figures 4e and 4f display the total adsorption energy

and adsorption energy per interfacial Pt atom for supported PtN
clusters. It is clear that point defects in the graphene support
bind Pt clusters more strongly than does pristine graphene
across the entire range of cluster sizes; divacancies are also seen
to be stronger binding sites than vacancies due to a higher
number of dangling bonds. In general, the variation in
adsorption energies with cluster size is rather small; similar
results were reported by Ramos-Sanchez et al.,74 who used
DFT calculations to study clusters on graphite in the range of N
= 1−38. The slight decrease in binding strength (less negative
adsorption energies) with increasing cluster sizes (beyond N =
10) is indicative of weaker trapping of larger clusters by the
vacancy/divacancy, thus suggesting the need for larger support
defects to improve the stability of larger Pt clusters against
aggregation.

3.3. Electronic Structure of Pt13 Isomers. It is well-
known that chemisorption of adsorbates on transition metal
surfaces is strongly correlated with the so-called d-band center
energy of the surface.75 Several studies have now extended this
metric to the study of supported clusters and shown similar
correlations.27,29,76 In particular, the influence of cluster
morphology as well as the role of the support in modulating
the d-band center energy are issues of current interest for
rational catalyst design. Our ability to produce low-energy
isomers at low computational expense using the GA now allows
us to examine more broadly the issues of cluster morphology
and support effects on the catalytic activity of clusters (beyond
the limited cases studied in our previous work9,29). As an
example, we focus here on Pt13 clusters; more comprehensive
studies across a range of cluster sizes will be reported elsewhere.
Using the GA, we identified several Pt13 isomers within a 30

meV/atom energy window close to the global minimum for
Pt13 in vacuum or with various support types. All candidates,
supported or otherwise, were imported into VASP and
subjected to conjugate-gradient structural relaxation. For
vacuum Pt13 isomers, an additional 15 candidates were obtained
by simply eliminating the support from the low-energy Pt13/
graphene systems and relaxing the residual Pt13 cluster; such
clusters are merely local rather than global minima, but
including these in our analyses gives us a larger statistical
sample for studying structure−property correlations. From the
angular-momentum-projected density of states, we compute the
d-band center energy (εd) as

∫
∫

ε
ρ

ρ
=

E E

E

d

dd
(7)

where E is energy of each state and ρ is the corresponding
density of d-states. Figure 5a displays d-band center energies as
a function of cluster adsorption energy and formation energy
for supported and unsupported clusters, respectively. For
unsupported clusters, the d-band center energy varies almost
linearly with the formation energy and spans about 0.1 eV
within a formation energy window of width 0.2 eV/atom. In the
presence of the graphene support, εd can be significantly
lowered, especially in the presence of vacancy and divacancy
defects, and once again the lowering of the d-band center is
correlated with the adsorption energy, which was also noted
earlier by Fampiou and Ramasubramaniam.9 In general, for the
various clusters on defective supports, we find that when a Pt
atom occupies the center of the defect (vacancy/divacancy),
the total energy as well as the adsorption energy decrease
significantly, as indicated by the points within the dashed
square in Figure 5a; this decrease in adsorption energy is
accompanied by a drop in the d-band center energy.
Furthermore, for all cases of clusters on defective supports,
the d-band center lies slightly below that for Pt(111),
suggesting comparable or possibly weaker adsorbate binding.
In the absence of point defects, the cluster d-band center
approximately coincides with the calculated value for Pt(111);
for unsupported clusters, the d-band centers are appreciably
higher than that for Pt(111).
As noted in prior work,9,27 the total charge transferred from

the cluster to graphene is an important factor in shifting the
cluster d-band center. Thus, we also perform a Bader charge
analysis77,78 to evaluate the total charge transferred from the
cluster to the graphene support. Figure 5b displays the
transferred charge with respect to the adsorption energy, and
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the trends are similar to that of the d-band analysis. Similar to
previous reports,9 we observe that stronger binding of clusters
to the support results in greater depletion of charge from the
cluster, which then leads to a lowering of the d-band center of
the cluster. A complementary and chemically intuitive view of
bonding at the Pt−C interface can also be obtained from a
natural bond orbital (NBO) analysis,79,80 which we present in
the Supporting Information. Broadly speaking, the NBO
analysis does not show any significant bonding between Pt13
clusters and pristine graphene; for the defective graphene
supports, a predominantly covalent nature is found for C−Pt
bonds at the defect center with clear polarization toward the C
atoms, which bolsters the picture of charge transfer from Pt to
graphene obtained from the Bader analysis.
The electronic structure analysis presented here is essentially

in agreement with previous work by Fampiou and Ramasu-
bramaniam,9 among others,27 although with much better
statistics and more careful attention to computational
procedures for generating low-energy structures. The role of
the support is relatively clear in our studies: defective supports
appreciably lower the d-band centers, at least of small Pt
clusters, and consequently have implications for adsorbate
binding and reaction barriers.28,29 In terms of proper selection
of structures for electronic structure analyses and/or studies of
reaction pathways, it would appear that small deviations from
the minimum-energy cluster morphology are unlikely to lead to
large deviations in the energies of the surface states at least for
small clusters. Thus, we expect that any reasonably robust
method for generating low-energy morphologies ought to result
in plausible predictions of catalytic behavior from subsequent
electronic structure studies.
Finally, data for adsorption energies of several clusters of

varying sizes on defective and defect-free graphene supports are

displayed in the Supporting Information (Figure S1), as are the
charge transfer data associated with these various cases (Figure
S2). As shown there, the adsorption energy of PtN clusters to
the graphene supports increases weakly (i.e., binding becomes
less strong) with increasing cluster size. Associated with this
inverse correlation between adsorption energy and cluster size,
we also see that the extent of charge transfer is also reduced at
larger cluster sizes. Additional electronic structure analyses to
investigate these results with more extensive statistical sampling
are underway and will be reported elsewhere.

4. CONCLUSIONS

We have implemented an empirical-potential-based genetic
algorithm for structural optimization of unsupported and
supported Pt nanoclusters. Using a bond-order potential for
the Pt−C system developed by Albe et al., we explored the
morphological properties of PtN (N = 2−80) clusters
considering unsupported clusters as well as those supported
on pristine or defective graphene supports. A key finding from
the structural analysis is that the fraction of potentially active
surface sites for supported Pt clusters is maximal for 20−30
atom clusters irrespective of the presence or absence of support
defects; this result provides a useful synthetic target for optimal
utilization of the precious metal catalyst. Selected ground-state
clusters from the GA process were subjected to structural
relaxation with DFT calculations and compared with
corresponding high-symmetry icosahedral and cuboctahedral
clusters. For all “magic number” clusters, the GA optimization
process produced cluster morphologies that are lower in energy
than their high-symmetry counterparts (at both the empirical
potential and DFT levels). The inclusion of the graphene
support is found to influence cluster morphologies at very small
sizes; beyond ∼10 atoms, the cluster morphology is essentially
dominated by Pt−Pt interactions with minimal perturbations
from the support, at least for the cases considered here with
small point defects in the support. The effect of the support
more precisely support defectson the electronic properties of
Pt clusters is more pronounced. For the cases of supported Pt13
clusters studied here, the cluster d-band energy is downshifted
relative to the Fermi level in direct proportion to the strength
of binding of the cluster to the support. Cluster adsorption
energies on the support and the attendant d-band shifts are
sensitive to the precise details of bonding at the cluster−
support interface, especially for small clusters, requiring careful
structural optimization.
By integrating computationally inexpensive empirical-poten-

tial-based GAs for global structural optimization with DFT
modeling for local minimization and electronic structure
analyses, we have demonstrated a viable approach for
systematic studies of supported catalyst nanoclusters. While
this work was restricted to the Pt−C system, there is no
fundamental impediment to applying similar approaches to
multicomponent catalyst clusters on various supports as long as
appropriate interatomic potentials, preferably of low computa-
tional complexity, are available for the systems of interest.
Advances along such directions for supported alloy nano-
clusters will be reported in future work.
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Figure 5. Position of d-band center (εd,Pt) relative to the Fermi level
(a) and net charge transferred (b) to Pt13 isomers in vacuum and on
graphene support. Data for Pt13 clusters in vacuum and on support are
plotted with respect to the formation energy (Ef) per atom and the
adsorption energy (Ead), respectively. The horizontal dashed line
represents εd,Pt for the Pt(111) surface. Other dashed lines are guides
to the eyes. Points inside dashed square correspond to structures with
Pt atoms occupying the center of the defect.
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