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We have developed an analytical expression for the diffusion coefficient of benzene in Na-Y at finite
loadings in terms of fundamental rate coefficients. Our theory assumes that benzene molecules jump
among § and W sites, located near Naons in 6-rings and in 12-ring windows, respectively. We
assume that instantaneous occupancies in different supercages are identical, a mean field
approximation yieldindD ,= tk,a3 wherea,=11 A is the mean intercage jump length anklis

the mean supercage residence time. We showk}watx-k,-P;, whereP, is the probability of
occupyirg a W site k; is the total rate of leavima W site, andk is the transmission coefficient for
cage-to-cage motion. We assume 3 for all loadings, and derive analytical formulas for fhi@and

0 dependencies df; and P, assuming that Sand W site occupancies are either 0 or 1 and that
benzenes do not otherwise interact. Exact expressionB,fam the canonical and grand canonical
ensembles are related for finite systems with a new correspondence ruled</iB, the

S —W—S, process contributes no loading dependende,towhile the §—W—W process gives

an increasing loading dependence of H(26). For 8>3, k,, initially increases due to enhanced W
population, then decreases due to blocking of target W sites. In the article that follows this one we
show that our theory agrees quantitatively with simulation, and agrees qualitatively with experiment
for low to moderate loadings. €997 American Institute of Physid$$0021-9607)51443-7

I. INTRODUCTION we develop a simple analytical theory for the concentration
dependence of benzene diffusion in Na-Y. In the article that
The transport properties of adsorbed molectdgday a  follows, denoted as Paper II, we report the results of kinetic
central role in catalytic and separation procedskat take  Monte Carld*?simulations of benzene in Na-Y to test the
place within zeolite cavitieéAIthough significant effort has accuracy of the analytical formulas derived below.
been devoted to understanding diffusion in the zeolites, Significant effort has been devoted to understanding
several basic questions persist: What are the fundamentgknzene adsorption and diffusion in Na-X and Na~27-31
interactions that control the concentration dependence of difmotivated by persistent discrepancies among different ex-
fusion in zeolites? How does the competition between enperimenta| probes of mob”it%/_We have recently reported
tropy and enthalpy modify diffusion in heavily loaded zeo- the results of analysis and simulation that greatly simplify
lites? Will blocking stable sorption sites tend to increase Olhenzene diffusion in Na-Y at infinite dilution by focusing on
decrease the diffusion coefficient? In the present article anghe dynamics of cage-to-cage motitt>32-3%At finite load-
in the fO”OWing artiCIe, we begin to address these issues b]hgs1 however, benzene diffusion is Compﬁcated by b|ocking
modeling the concentration dependence of benzene diffusiogf stable sites and by intracage benzene—benzene interac-
in Na-Y zeolite. tions that modify adsorption and activation energies. Despite
Dynamics simulations have made a significant impact inhese influences, measured diffusion coefficients for aromat-
this area during the last 10 years’and have been particu- jcs in Na-X and Na-Y exhibit a remarkably gentle concen-
larly useful in modeling rapid diffusion in siliceous zeolites. {ration dependence for low to moderate loadihds:®
While the results from these simulations are often reliable, it | the present article we model benzene in Na-Y at finite
may be difficult to determine which aspects of a given modelgdings by taking site blocking into account, i.e. by assum-
are essential to the simulation results. A complementary anpg that site occupancies are either 0 or 1 and that benzenes
proach is the devglgpmem of simple models amenable g4 not otherwise interact. This site blocking model gives
analytical solutiort>~** Although such an approach may not qualitatively accurate results when binding sites are only
be as predictive as atomistic simulations, analytical mOde"”%oderately perturbed by intracage guest—guest interactions.
can display the physics essential to a process quite clearlyye il address the importance of these interactions in a
Thorough understanding often requires the interplay Ofqrthcoming publicatiof® Comparing results from loading
theory and simulation with experiment. In the present article,,oqels with and without guest—guest interactions will unam-

biguously indicate the relative importance of site blocking
dAuthor to whom correspondence should be addressed. and guest—guest interactions. The simplicity of the site
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blocking model allows us to develop an analytical theory for

the concentration dependence of benzene diffusion in Na-Y
in terms of fundamental rate coefficients. In Paper Il we

show that our analytical formulas agree quantitatively with

simulation results, and agree qualitatively with experiment
for low to moderate loadings.

The remainder of this paper is organized as follows: in
Sec. Il we discuss the assumptions underlying our model
including mean field and site blocking approximations. In
Sec. lll we formulate the derivation, obtain analytical expres-
sions for the factors required, and discuss the resulting con-
centration and temperature dependencies of the diffusion co-
efficient. In Sec. IV we summarize the analytical work,
foreshadow the simulation results in Paper Il, and speculate
on the applicability of our approach for other host—guest
systems.

FIG. 1. §<W minimum energy path with transition state indicated in bold.
Il. GENERAL MODEL

A. Lattice model . N
B. Mean field approximation

We model benzene diffusion in Na-Y by replacing the T . .
zeolite framework with a three dimensional Igtticgof bigding. We. can simplify the motion of benzene in Na-Y by
sites. Such a lattice model is known to reproduce diffusive 1a9ming that—although hop§ re"?‘”y take place amopg S
behavior accurately when site residence times are mucﬁnd w §|tfs—long range ‘r‘notlon !nv%l\ézes Jumps from one
longer than travel times between sifé€.This is indeed the cage site” to an adjacent "cage site. " As such, all the

case for benzene diffusion in cation-containing faujasites be= tlruaz:r:SrZVo?I:ﬁeSf:r:C;u:iate;mg\]Irnar? dZ?r??Ngﬁ(C&Toeus Lhilg-]:(e rrr:ill
cause of the strong charge—quadrupole interactions betwe 9 ' 9

Nall) ions and benzerf® as demonstrated by the two- Jﬂjces to hopping on the tetrahedral lattice of supercages,
dimensional exchange NMR experiments of Wilhelm shown in Fig. 3. The diffusion coefficient is then determined

et gl 4344 by cage residence times and cage-to-cage hopping distances.

. . .. We have previously shown that for diffusion in Na-Y at in-
In, this system benzene has two predominant binding; ;o diIuti%n Dzé)lia2 wherea=11 A is the mean inter-

sites!*?833|n the primary site, denoted as, Sbenzene is ) , ; .
P y §S cage jump length and R/is mean cage residence tirfie2

facially coordinated to a supercage 6-ring, 2.70 A above " : S . ) i .
Na(ll). In the secondary site, denoted as W, benzene is Ceil’_hls result is interesting because we obtain the simple-cubic

tered in the 12-ring window separating adjacent supercagegesu“ even though the simple-cubic partitioning of Na-¥ is

~5.3 A from the § site. Binding sites at N&, Na(l’) and ivalid at the cage-to-cage length scale. Furthermore, simu-

. : . lating the diffusion coefficient vik anda rather than from
Na(lll) are not included in our model because(Ng is neg- mean square displacements provides an overwhelming com-
ligibly occupied in Na-Y (Si:AE2.0), and because benzene d P P g

cannot enter the smaller sodalite cages or hexagonal prisnlljsu'{é1t|ona| speedup. This is because calculakirgda only

containing N&@’) and Ndl) cations, respectively. Figure 1
shows a minimum energy hopping path connecting the S
and W sites? Figure 1 also demonstrates that the Na-Y su- -30 —
percage contains four tetrahedrally arranged Nans and L d
four tetrahedrally arranged 12-ring windows connecting ad-
jacent supercages. Thus, the lattice of benzene binding sites
in Na-Y contains four tetrahedrally arrange¢ Sites and
four tetrahedrally arranged, doubly shared W sites per super-
cage.

Because of the strong Na—benzene interaction jh&t8
is much more stable than the W site. Indeed, recently re-
ported docking calculatiohi$® of benzene at the,Sand W
sites in Na-Y suggest that the, Site is more stable by
~25 kJ mol'%, indicating thatk (S, —W)<1 for loadings L s
of fewer than four molecules per supercage. Figure 2 shows ‘80_10 5 0 5 10
our recently calculated hopping path energies for the-%/ Reaction coordinate (angstroms)
jump* For a detailed discussion of these binding sites and
hopping paths, please see Refs. 14 and 33. FIG. 2. §+<W energetics with 41 kJ mot activation energy.

-1

Energy (kJ mol )
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of random walkers in the starting cage and in adjacent cages.
As such there are an enormous number of distinct jump pro-
cesses to consider at finite loadings. One might envision in-
corporating configuration dependent fundamental jump prob-
abilities into Eq.(2.1)," i.e. pj-—pi=(¥j,%), wherey;
and vy, are the random walker configurations in the starting
and target cages, respectively. One might then Boltzmann
average over an M-cage configuration spacey
=(Y1,Y2,Y3:-..-,ym) With a lattice gas Hamiltoniaf?,
H(y), to yield a random walk distribution generalized for
finite loadings. Unfortunately this level of sophistication is
difficult to treat analytically, although it can be simulated
with kinetic Monte Carlo as demonstrated in Paper II.

We can make this problem more analytically tractable
with the following mean field approximation: by applying
the configurational average directly to each configuration de-

FIG. 3. Tetrahedral connectivity of supercages in the Na-Y unit cell. Ballspendent jump probability, we find that
represent supercage ‘“sites” and sticks represent cage-to-cage jumps.

e_BH('V)

(v a'}’k)>:2y 008 Pi+(¥ Y =Pi==1,

scales a3\ whereas calculating mean square displacements (pi=

scales adN?, whereN is the number of Monte Carlo steps. B
We can extend this analytical approach to the study of (2.2

diffusion in Na-Y at finite loadings by making a mean field

approximation. To explore this we briefly review how we

obtain the infinite dilution diffusion fOfmUlaD:%kaz. This since all cages are identicah average The resu|ting ran-

follows from the Bernoulli distribution foN hops on a tet-  dom walk distribution for finite loadings is identical to that

rahedral lattic€” given by: for infinite dilution, and yields (R2(N))=Na’=kta2
=6Dt, and henceD ,= ékgaf9 where ¢ is the fractional
(N/2)! loading, and X, and a, are the loading dependent mean
1=1,15= 2' —p”l+...p”4+ id . d - . | h i
ALBT he Nyilongt Pax 4+ cage residence time and mean intercage jump length, respec
Lrometat tively.
, (N/2)! N g This mean field approximatiofMFA) is extremely use-
nl_zm_ N, 1N, | Pp= Py (2.0 fyl pecause it serves as thmsatzfor the analytical theory

derived below. The MFA does, however, neglect effects that
are occasionally important. The MFA neglects statistical cor-
imply thaIEf‘:lnH:Ef‘:lni,:N/Z. The probability distri- _relation bet_ween jumps when, e.g., a random walker jumps
bution in Eq.(2.1) results because the tetrahedral lattice is"t© & W site separating nearly empty and full cages. The
composed of two interpenetrating BCC lattices, denoted herBeXt jump for that random walker, although uncorrelated
as sublattices A and B. Duriny jumps, N/2 jumps visit f.rom the Iastjump in the sense of Poisson statistics, is more
each sublattice since a random walker must alternate bdlkely to end up in the nearly empty cage. An extreme mani-
tween sublattices at each jump. Each cage in sublattice A hdgstation of this effect is a percolation thresh$id.e. a load-
four allowed jumps, labeled by (@,2+,3+,4+); while Ing above which the diffusion coefficient precipitously de-
each cage in sublattice B has four allowed jumps, labeled b§reases. Percolation effects may be important at very high
(1—,2—,3—,4—), which are obtained by reversing the A loadings through hysteresié,or for binary or higher mix-
jump directions. The alternation between sublattices causdyres with very different mobilities® Furthermore, the MFA
the Bernoulli distribution for a tetrahedral lattice to separatégnores anomalous diffusion, e.g. single file diffusion in one
into an A factor ad a B factor as seen in E¢2.1). Using dimensional channel zeolité&;*°since the mean square dis-
this random walk distribution we find thdR?(N))=Na?  placement turns out to be linear in time.
=kta?=6Dt, and henceD:%kaZ. For more details please Despite these issues, the MFA is likely to be qualita-
see the appendix in Ref. 32. tively accurate when normal diffusion holds. Moreover, the
Equation(2.1) is strictly valid only at infinite dilution MFA conveniently allows an analytical treatment of the con-
where all target cages are empty and hence identical, so thaentration dependence of diffusion in zeolites, which serves
the fundamental cage-to-cage hopping probabilities satisfas an important complement to simulation. We note that the
pi.=pi_=1fori=1,..,4. At finite loadings, however, the expressiorD ,= tk,a? is sometimes assumedb be exact.
fundamental jump probabilities depend upon the specifiéVe will address the accuracy of this mean field approxima-
jump process in addition to the instantaneous configuratiotion in a forthcoming publication®

wherep;, =p;_=3fori=1,...,4 and the primed summations
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C. Review of infinite dilution D. Site blocking model

In a previous study we obtained an exact, analytical In order to model the concentration dependence of self
formula for the cage-to-cage rate coefficiekt, at infinite  diffusion we must incorporate the effect of guest—guest in-
dilution in terms of fundamental hopping rate coefficients.teractions. On a very qualitative level, repulsive guest—guest
We review this derivation because it provides the frameworlforces modify sorption by blocking favorable sorption sites.

for the finite loading diffusion theory derived in Sec. lll. In Attractive guest—guest forces modify sorption sites and en-
what follows the W and Ssites are denoted sites 1 and 2, ergies, ultimately giving rise to phenomena such as capillary
respectively. condensation. It is not obvious, however, how guest—guest

We imagine a trajectory executed by a single benzenéorces modify transport properties. Moreover, it is of great
molecule through Na-Y, hopping among 8nd W sites. In  fundamental interest to determine the relative importance of
the limit of averylong trajectory, mean residence times gt S attractive and repulsive guest—guest forces in controlling the
and W sites can be used to calculate hopping rate coefficientoncentration dependence of diffusion.
and equilibrium coefficients in accord with the ergodic We can disentangle these effects by considering two dif-
hypothesis? The mean supercage residence tirig,), is  ferent models; in the present paper we construct a model in
then given by which binding site occupancies are either 0 or 1, and where

fundamental hopping rate coefficients calculated at infinite

T 1 dilution are used? This site blocking modelSBM) will
(1e)= N~ N—(T1+T2) demonstrate how blocking,Sand W sites influences diffu-
o sion in Na-Y, while ignoring medium to long range interac-
T, [T+, ™= T, tions. We will address the importance of these interactions in
= N_cc( T, ) — N—CC[1+ Ked1—2)], a forthcoming publicatioi® The SBM is motivated by the

fact that benzene binding sites in Na-Y are only moderately
(2.3 perturbed by benzene—benzene interactions, as demonstrated

by the optimized geometries shown in Fig. 4 using the Na-
whereT=T,;+T, is the total time of the trajectoryl; and  Y—benzene potential in Ref. 14 and the benzene—benzene
T, are the total residence times at W angd stes, respec- potential in Ref. 53. Window site geometries are likewise
tively, andN, is the number of cage-to-cage jumps during only moderately perturbed by benzene—benzene interactions.
the trajectory. The long time limit in E¢2.3) ensures con- |t seems plausible then that simple site blocking should play
vergence of T,/T; to the equilibrium coefficient an important role in determining the concentration depen-
Ke1—2)=2k;_,/k,_.1, wherek; ., andk,_,; are funda-  dence of benzene diffusion in Na-Y. The SBM is particularly
mental rate coefficient&f. Figs. 1 and 2 and the factor of  convenient because its simplicity allows the development of
2 arises because each W site is shared between two adjacentully analytical diffusion theory.

supercages. The long time limit alloWs to be expressed as In the present study, as in former orté<>32=34ye es-
timate rate coefficients at infinite dilution using the Arrhen-
T, Too N NE ius formula, in whichk=ve™ #Ea where v and E, are tem-

T,=N*% mzN*-(q) _ k—=m, perature independent. We assume that the Arrhenius
! =17 M=2 prefactors{v} resemble typical vibrational frequencies, of or-
(24 der 183s L. We believe these rate coefficients are suffi-
ciently accurate for the purpose of drawing qualitative con-
clusions. The calculated hopping activation energies and

W site residence timek, =1/ ;) is the total rate of leaving . . .
the W sitek,_,1 is another fundamental rate coefficient, and hypotheycal _Arrhemus prefactors reported in Ref. 14 are
summarized in Table .

the factor of 6 counts available target sites in the Na-Y su-
percage structure. The long trajectory limit allows one fur-
ther simplification, namely thatl..=N*/2. The factor of}
accounts for randomizing in the W site which halves the
probability to leave the cage. A. General formulation
Putting these results together, we have

whereN* is the number of visits to W siteér;) is the mean

IIl. ANALYTICAL THEORY FOR FINITE LOADINGS

In Sec. Il we found thab ,= %k(,af, within the mean field
approximation(MFA). The mean intercage jump lengt,
1+2ky o/ko g =11 A, depends very weakly upon temperatérend load-
3(ki_1+kio) ' ing since this quantity is largely determined by the Na-Y

(2.5 framework structure. We thus focus our attention on the con-
centration dependence of the mean cage residence time,
which represents an exact, analytical solution of the mastefr.)=1/k,. The theory for 7.) is obtained by recasting Egs.
equation determining cage-to-cage motion in terms of fundaf2.3)—(2.5) in language appropriate for finite loadings. Since
mental hopping rate coefficients. Equatid@s3)—(2.5 serve  our ultimate goal is comparing an analytical formula ax)
as the starting point for the concentration dependent diffuwith canonical kinetic Monte Carlo simulations, our theory
sion theory derived below. for (7.) begins by fixingN=number of guest moleculey,

(16)=2:(71) - [1+Kef1—=2)]=

J. Chem. Phys., Vol. 107, No. 19, 15 November 1997
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Ty

T, +T,
<Tc>—N—CC

T

LE N L <7'1>
NCC

[1+Keq1—2)],
(3.1

where all the quantities in Eq3.1) are defined as in Eqs.
(2.3—(2.5. We now define the transmission coefficient ac-
cording to k=N/N*. The transmission coefficient is the
probability of cage-to-cage motion for a benzene already oc-
cupying a W site. At infinite dilutionk= 3. With this quan-

tity the mean cage residence time becomes:

<Tc>:<7-71>[1+Ke41*>2)]. (3.2

The benefit of definingc should now be cleafN* and N,
are eliminated in favor ok, a quantity about which we have
insight. The cage-to-cage rate coefficient is thus given by:

1 T,

o=k gz <k lTT,

= K- kl' Pl'
3.3

Equation(3.3) has the following pedagogically attractive in-
terpretation. The rate of cage-to-cage motion is a product of
three concentration dependent factdPs: is the probability

of occupyirg a W site k; is the total rate of leaving a W site,
andk is the probability of cage-to-cage motion when starting
from a W site. Note that settingk=3%, Ked1—2)
=2Kq_2/ky_,1, andk;=6(k;_,1+Kk;_,,) gives the infinite
dilution limit in Eq. (2.5). Below we pursue analytical ex-
pressions for the concentration dependencies of these three
quantities.

K'kl'

FIG. 4. Optimized benzene binding geometries in Na-Y wit{abbve and B. Transmission coefficient
with (below) the influence of benzene—benzene interactions.

The transmission coefficient is a measure of the extent to
which jumps involving W sites are statistically correlated. As
discussed in Sec. IIB, a random walker that jumps into a W
site separating nearly empty and full cages is more likely to
end up in the nearly empty cage. Unfortunately the statistical
correlation determining the transmission coefficient is diffi-
cult to treat analyt(igczaélly, although it can be simulated with
) : ; kinetic Monte Carlo“° as demonstrated in Paper Il. Indeed,
ing 8 supercages and thus 16 W sites and g2ites, so that the ansatzof this article is a MFA exploiting Ft)he fact that

= 7" = v . . . .
Ny =162"andN,= 327 cages are identical on average. To be consistent with our

We now imagine a trajectory executed by a single ben'ﬁrevious MFA, we make a MFA for the tranmission coeffi-

ﬁene_molecule througg \I>lva-\'(t Ioaqre;]d with other benze_r:jes, Aient yielding x = 3 for all loadings. In Paper Il we will see
opping among §an sites. The mean cage residencey i the transmission coefficient simulated Tat 300 K is

time is given by: close to3 for low to moderate loadings, and falls te2 at
nearly full loading.

=volume of Na-Y which in turn controls the number of
available § and W sites, and = (kg8) '=absolute tem-
perature of the system. For a given zeolite voluvh¢here
areN; W sites and\, S, sites. For convenience we choose
the volume of Na-Y to consist oF" unit cells, each contain-

TABLE |. Hopping activation energies and hypothetical Arrhenius prefac-

tors for benzene in Na-Y. Our model predicts that leaving the W site isC' Equilibrium coefficient

relatively facile. We now derive an approximate analytical formula for
: — -1
Activation energy Arrhenius prefactor the (_:Oncentratlon _dependenc.e Q.fl._[l-{_Keq(.lHZ)] .
Jump (kJ mol ) (s keepingN, V andT fixed. The simplicity of the site blocking

model allows us, in addition, to derive exact expressions for

SIH\?\/I Zi 182 Ke1—2) for verifying the accuracy of the approximate
\?VI:S. 16 15° formula. While it is straightforward to formulate an exact

W—W 18 153 canonical expression fdf.(1—2), itis not trivial to evalu-
ate the expression for arbitrarily large volumes. This is im-
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portant for quantifying finite size effects in both our theory fixing ., V andT. As mentioned above, we must be careful
and simulation results. As discussed in the next section, it isvhen comparing averages from grand canonical and canoni-
much more straightforward to calcul#fg (1—2) using the cal calculations for small systems; this issue is addressed
grand canonical ensemble, keepingV andT fixed. How-  below. The grand canonical partition function is given by:
ever, since our ultimate goal is comparison with canonical Nipa

L«neuc Mo_nte Carlo simulations for finite systems, we lneedE(M,V’B): > Q(N,V,8)efsN

o determine a correspondence between grand canonical av- N=0

erages and canonical averagesgy fromthe thermodynamic

max

limit, i.e. away from the limitV—o°. In the next three sec- NitNz M N N -

) ; _ 2 1 2 Ny N=n1_guN
tions we develop foK.{1—2): exact canonical and grand T & i N—n, PP, €
canonical expressions, an approximate canonical formula, n=n

and the correspondence between grand canonical and canoni- (3.9

cal results for finite volumes. _BE , .
where pj=e P& for i=1 and 2. AllowingN to fluctuate

gives a second summation in the partition function. The
double sum can be expressed in termsngf,(,) instead of
(N,n;) wheren,=N-ny, thereby decoupling the partition
function according to:

1. Exact expression

a. Canonical ensemble:The equilibrium coefficient is
given by Ko{1—2)=(ny)/(n;), wheren; andn, are the
fluctuating numbers of molecules at W angl Sites, respec-

tively. In the canonical ensembld=(n;)+(n,), so that _ Ni o Na N1} (N2 00 0, suingsn
Kef1—2)=(N—(ny))/{n;), where(n,) is given by: :(M,V,,B)=n12:0 = ( m)( nz)pl p, e
nTaX
=(1+pePH)Ne. (1+ p,efrNz, (3.9
(ny)= 2 P(ny)-ng, (3.4 (14 Poe™) (1+ ™)
ny=ny"" where Eq.(3.9) results from the binomial theoret.The

average loadingN) , is obtained with the standard thermo-

and the summation limits ar@™"=max(ON—N,) and ) S
! (ON=N,) dynamic derivativé®

max.

ny - =min(N,Ny). The upper limit results because the number

of molecules at W sites cannot be greater than the total num- Jlin= N, N,

ber of molecules or the number of W sites. The lower limit  (N),.= Bw | T1reFEm T I e m

results because the number of molecules at W sites cannot be V.8

smaller than the total number of molecules minus th_g ngmber =(ny),+(N3),. (3.10
of S, sites, i.e.N—N,, whenN—N,>0. The probability in ) ) ] ) )

Eq. (3.4) is given by: Equation(3.10 is formally identical to that obtained for an

ideal gas ofN; fermions with energye,; and N, fermions
with energyE,. This analogy arises becausg &d W sites
can have occupancies of 0 or 1 as in Fermi-Dirac statigtics.
Based on Eq(3.10 the grand canonical equilibrium coeffi-
Igient is given by:

Q(nl)e*ﬁ[nlElﬂN*nl)Ez]
Q(N,V,B) ’

whereE; andE, are the site binding energies at W ang S
sites, respectively, and the microcanonical prefactor is give

P(ny)= (3.5

by: N, 1+ eB(E1—p) ~ 1+ eBEr—n)
N[N, Ked1=2)= Q15 eFEm =2 11 P m-
QMI={ JIN=n, (3.1)
N,! N,! Equation(3.11) shows that the grand canonical equilibrium

= . . (3.6 coefficient within the site blocking model formally depends
Nt (Ng =Nt (N=ng) (N = N+ny)t upon u and B3, but not onV. The results in Eq(3.10 and
In Eg. (3.5, Q(N,V,B) is the canonical partition function (3.11 can be related to the canonical ensemble by inverting
given by: (N), as a function ofu, then evaluating.(1—2) as a
e function of u(N). This invesr(siorais itse(lf dif]f)icult to perform
_ _ analytically, rendering Eq9.3.10 and (3.11) a convenient
QN,V.B)= Zmin Q(ny)e” AnEr(NTnUE, (3.7) numerical approach for determining how the exact grand ca-
M= nonical equilibrium coefficient varies with loading.
EvaluatingK((1—2) analytically using Eqs(3.4)—(3.7) is Before deriving the approximate canonical formula in
difficult because fixingN couples the combinatorial coeffi- the next section, it is instructive to consider various limits of
cients. Although we can evaluaite,{1—2) numerically for ~ the exact canonical and grand canonical equilibrium coeffi-
7"=1 and 8 as shown below, the calculation becomes cunmeients. It is straightforward to show that for any voluivie
bersome for larger volumes because of the combinatorial cahe canonical equilibrium coefficient satisfid§,((1—2)
efficients required. =2e PE"E) for N=1, and Ke(1—2)=2 for N=N;
b. Grand canonical ensembleWe solve this problem +N,. Likewise for any volumé/, the grand canonical equi-
by calculatingK((1—2) in the grand canonical ensemble, librium coefficient satisfiesKeq(l—>2)=2e‘B(E2‘E1) for

J. Chem. Phys., Vol. 107, No. 19, 15 November 1997
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p——0, andKef1—2)=2 for u—=. Although the full than the W site, i.eB(E;—E5)>1, to obtain a simple for-
loading limits correspond between the two ensembles, i.dnula for Ke1—2). We first order the su[nrr;azign in
lim,_.(N),=N;+N,, the infinite dilution limits do not Ed. (3.4 in powers of the small parameter=e~ #(€17E2),
correspond because ljm ..(N),=0, while infinite dilution ~ The canonical equilibrium coefficientKeq(1—2)=(N
for the canonical ensemble meaXs- 1. Thus one has to be —{(N1))/(N1), takes the form:

careful in associatingN from the canonical ensemble with nnax

(N), from the grand canonllcal ensemble. Although the COrK (1-2)= S Q(ny)e™

respondence becomes straightforward when comparing frac- min

tional loadings for infinite systems, i.eA=N/(N;+ N,) ..

when N;+N,—%, we require a correspondence between "1 ,

these grand canonical results and canonical simulations of X(N—ny) > Q(n)eMn;. (3.12

min

finite systems; such a rule is developed below. ny=nj

) o In order to extract an analytical formula from this expres-

2. Leading order approximation sion, we need to specifil to make the summation limits

In the previous section we developed exact expressionsoncrete. Since<<1 the summand decays rapidly, obviating
for the equilibrium coefficient in various ensembles. Wethe need to specify the upper limit. There are thus two cases
would prefer, however, to have an analytical expression foto considerN<N, for which n1""=0, andN>N, for which
Keq(1—2) showing explicit dependencies dhand T. In n""=N-N,.
this section we obtain such a formula using a leading order a. Case 1: N<N,: By dividing numerator and denomi-
approximation in the canonical ensemble. We exploit the fachator in Eqg.(3.12 by the first term in the numerator, the

that at relevant temperatures thg $te is much more stable equilibrium coefficient folN<N, becomes:

ni=n;

N-10(1)  N-20@2) ,  Ni(N-D) NN D(N-D(N-2) ,
K (12)- N Q0)°" N Q0)° _ N,—N+1°" 2(N,—N+1)(N,—N+2)° 319
il Lo 20@, o N NWNcON-Dp o ©
N Q(0)°" N Q(0) Ny—N+1°" (N,=N+1)(N,—N+2)

If we consider only the first nonzero term in numerator andEquation(3.15 shows that increasinty, V or T will make
denominator, an approximation whose validity we discus<€q. (3.14) less accurate. Assuming=1, N=16 and adopt-
below, the equilibrium coefficient becomes: ing the somewhat arbitrary accuracy criterion tRa&0.1,
the leading order approximation is valid for<600 K. As-
No—N+1 Np—N+1 B(E,—Ey sumingT=300 K, N=16 andx;=<0.1, the leading order ap-
Nie N, e : proximation is valid for7’< 140 unit cells.
(3.19 b. Case 2: N>N,: Using the same approach as before,
but now with the lower limitn""=N—N,, the equilibrium
Equation (3.14 provides an analytical expression for coefficient forN>N, becomes:
Keq(1—2) showing explicit dependencies dhandT. Note

Keg 1—2)=

that the concentration dependence in Eg814 gives the N,—1 Q(N—N,+1)
corr_e_ct.infinite dillultion limit. E_quatior(3.14) is gxactly thg (1o 1+ N, Q(N—N,) .
equilibrium coefﬂqent for a _smgle molecule_ in Na-Y W_|th ed1—2)= N—N, N—N,+1 Q(N—N,+1)

N—1 blocked § sites. This is consistent with the leading + Q e+

order approximation, which considers only single excitations N2 N2 (N=Ny)

to W sites. The equilibrium coefficient decreases with load- (N,—1)(N;+Ny—N)

ing, i.e. becomes less favorable for occupyingsges, be- + N—N.+1 €

cause of the decreasing Bonfigurational entropy associated = N=N 2 ) (3.16
with blockingN—1 §; sites. 2+ (Np+Ny—N)e+---

We can obtain a simple estimate for when we expect Eq. P
(3.14) to be accurate. Considering the lowest order terms in _ _ _ _
that are ignored relative to the terms that are taken, the leadgnoring all but the lowest order terms én the high loading

ing order approximation is valid when: equilibrium coefficient becomes:
NN N,
=__ - o BEI~E)g Ke1l—2)= . (3.17
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10° - 3. Canonical and grand canonical averages
In the previous sections we developed numerical and
107 +— CE-exact ; analytical approaches for determining the concentration de-
g---2 GCE—exact 3 pendence oK¢{(1—2) for use in Eq.(3.3. We found that
= . . the grand canonical ensemble provides a convenient, numeri-
% 10 ~— CE-approx E| cally exact approach for calculatirig{1—2) for any vol-
_ 3 ume V. In addition, the canonical ensemble gives simple
‘!.,’610-3 4 analytical formulas foK¢{1—2) which are valid for a sig-
v 3 nificant range ofT andV. It turns out that Eqs(3.14) and
» 1 (3.17 are valid for anyV as long asT is not too high and
10 - E| N+N,. We would like to use the grand canonical results to
IR : confirm the accuracy of the canonical formulas for arbitrary
107 R E— volumes. Statistical mechanics dictates that averages from
0 10 20 30 40 50

these ensembles will agree in the thermodynamic fiie.
for a given fractional loadin@ asV— «, but not necessarily
for finite systems. In this section we develop a simple corre-

FIG. 5. K¢{2—1) for 7’=1 and T=300 K using exact canonical, exact spondence rule for Comparing averages from these en-
grand canonical and leading order canonical methods. Approximate and
embles for any.

exact canonical agree perfectly, while exact canonical and grand canonic& .
do not. Recall from Eqgs(3.4—(3.11) the correspondence at in-

finite dilution N=1<lim,_,_.(N),=0, and at full loading
N=N;+Nyelim,_.(N),=N;+N,. A rule consistent
with these boundary conditions can be extracted from our

Equation(3.17) predicts thaK(1—2) is independent of  |g5ding order formulas taken to the thermodynamic limit for
for N>N,. Note that the concentration dependence in Eqg given fractional loading:

(3.17 gives the correct full loading limit. Equatiaf3.17) is

Coverage (molec/unit cell)

exactly the equilibrium coefficient foN, occupied $ sites No—N+1 V== N;—N N;—(N),
and N—N, occupied W sites. The equilibrium coefficient Nyie Nee © Npo for N<N,,
decreases with loading, i.e. becomes more favorable for oc- (3.19
cupying W sites, because each new sorbed molecule is
forced to occup a W site. Equatior{3.17) is valid when: N, Voo N, N>
NN, N—NZ@(N>M—N2’ for N>N,.
_NoNitNo = N) ey, (320
X2= N—N,+1 € <l (3.18 Equations(3.19 and (3.20 suggests at finitd/ the corre-
spondence:

Equation (3.18 shows that decreasinly, increasingT or (N),=N—1, for N<N,, (3.21

increasingV will make Eq.(3.17) less accurate. Assuming
7"=1, N=40 andx,<0.1, the leading order approximation (N),=N, for N>N,. (322

is valid for T<525 K. AssumingT=300 K, N=40 andx, For anyN, V andT, Egs.(3.21) and(3.22 indicate how to
=<0.1, the leading order approximation is valid fgr<75  calculatex(N,V,T). The exact canonical equilibrium coef-
unit cells. ficient is obtained by substituting(N,V,T) into Eq.(3.1D.

We have thus found that Eq&8.14) and(3.17) are most  Equations3.21) and(3.22) are consistent with the boundary
accurate for sufficiently lowl andV, and for loadingsN conditions noted above and give fractional loadings that
~N,. In Paper Il we will use Eqs(3.14 and (3.17) to  agree in the thermodynamic limit. Moreover, the fractional
interpret kinetic Monte Carlo results fo’=1 and T loadings forN<N, differ by 2(1/V) in agreement with for-
=300 K. Figure 5 showK(2—1)=1/K.{1—2), aquan- mal statistical mechanic8.lt is interesting thatN),=N for
tity that will soon become important, calculated as a functionrhigh loadings. This is plausible because at such loadings the
of loading for 7’=1 andT=300 K using the exact canoni- overwhelming majority of configurations involve occupan-
cal, exact grand canonical and leading order canonical metlzies only at W sites. The system thus mimics a simple lattice
ods. Figure 5 shows that while our analytical approximatiorwith a single site energy . For such a lattice the canonical
gives essentially perfect agreement with the exact canonicand grand canonical ensembles sample identical fluctuations
results, the exact canonical and grand canonical values denceE=n,E,, i.e. fluctuations in energg and numben;
notagree perfectly; we resolve this discrepancy below. Sincare the same.
our analytical formulas are accurate for low enough tempera-  Figure 6 shows the percent difference between the grand
tures, they serve as a useful complement to simulation metteanonicalK.{2—1) and the exact canonical value for
ods which sample efficiently at high temperatures. In the=300 K, 7'=1 and 8. The grand canonical and canonical
next section we will show that Eqé3.14) and(3.17) turn out  values agree more closely for larger volume, and agree al-
to be accurate for any volumé as long asN#N,,. most perfectly when applying the shift ru{él) ,=N—1 for
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100 — T regard our analytical estimates Kf,(2—1) rather useful
5 4 for determining the concentration dependence of the window
80 - [—— V=1 no shift - population,P,, in Eq.(3.3).
— - | —— V=1 shift 7
& 0 | V=8 no shift 7
4 —— V=8 shift D. Window residence time
;'6‘ We now derive approximate analytical formulas for the
" concentration dependence(af,), the mean W site residence
¥3 time, keepingN, V and T fixed. At infinite dilution, the
~ average in{7;) is over random jump times taken from a
Poisson distribution, P(t)=k,e !, where k;=6(k;_.;
_ . +ki_,»)=1K7y) is the total rate coefficient for jumping
-40 IR [ SR I S T T E— away fran a W site. At finite loadings the calculation ¢f;)
0.0 0.2 0.4 0.6 0.8 1.0 for a given molecule involves, in addition, an average over

Fractional Loading 6=N/(N,+N,) random walker configurationg, as in Eq.(2.2. Since a

fG 6. p i ¢ arand a2 1) § . _random walker cannot jump to an occupied site, the total rate
- 6. Percent difference of grand canonisg(2—1) from exact canoni- e ficient for a molecule to leave a site depends upon the

cal value forT=300 K, 7"=1 and 8. Grand canonical and canonical values . . . . .

agree more closely for larger volume, and agree almost perfectly whePCCUpancy of potential target sites, i.e. nearest neighbor sites.

applying the shift rule(N),=N—1 for N<N,. The glitch atN=Nj is The mean W site residence time can be expressed as:
numerical error in the exact canonical calculation.

1 ! 1 ’
(ra) <k1(7)> <(6_ﬁ1)k1~>1+(6_ﬁ2)k1~>2> '
N=<N,. The glitch atN=N, is numerical error in the exact (32
canonical calculation, which grows with volume. Figure 6 wheren,,n,=0,...,6 are thenumbers of occupied nearest
demonstrates that we can use grand canonical results to comeighbor W and g sites, respectively, and the primed aver-
firm the accuracy of the analytical formulas for any volume,age omits configurations that gike(y) =0. In what follows
as long as we apply the shift rule. Figure 7 compares ouwe obtain analytical formulas fofr,) making assumptions
analytical formulas foK.{2— 1) with the shifted grand ca- consistent with the mean field-leading order approximations
nonical result forT=300 K and 7’=1500, a system with discussed above. Since there is no exact formulé+#gr, we
accuracy parameters;=1.1 from Eq.(3.19 and x,=2.0  will justify our approach using mathematical and physical
from Eg. (3.18. Even though the analytical formulas are arguments. As with the derivation &f,(1—2), it is useful
being applied outside their proper regimes, Fig. 7 indicateso consider two loading regimebl<N, andN>N,.
that the formulas capture the behavior Kf(2—1) quite

accurately away from the fractional loadimg= 3. We thus
1. Case 1: N=<N,

We begin by assuming that fod<N,, configurations
. with more than one occupied W site contribute negligibly to

10 E Y T v T v T Jr 17 the average in Eq(3.23. We can thus seh; to zero and
i CE-approx ] focus on averaging,. Here it is useful to consider two
10" e GCE-—shifted o limiting cases:(n,)=0 and (n,)=<6, corresponding td\
E 3 =1 andN=<N,, respectively. In the former case, we express
= 10° i 1 (7,) as:
3 E|
% E 3 1 1
= C ] (m1)= =
g -3 [ ] 6(k14)1+k1*}2) l—a1n2/6
. 210 3 T
X g E = =~ \2
3 3 1 aiNy [ a1y
] Tk itk o\ e e ) T
10 ? 1—-1 1—-2
; (3.29
107 T where the prime is omitted becausg=0, and the geometric

0.0 0.2 04 0.6 0.8 1.0

Fractional Loading 6=N/N, +N,) expansion converges becausg=k;_,»/(k;_1+k;_5) and

Nn,/6 are both less than one. Whah=1,n,=0 for all con-

FIG. 7. Comparison of analytical formulas and shifted grand canonical val—lﬂguratlonsl.aﬂc: the mflm_te dilution resu]t IS Ot;;[amed' For
ues forKq(2—1) atT=300 K and7"= 1500, a system outside the accu- oagilngs slightly aboveN=1, we Can_ estimate the C(_)ncen'
racy regimes of the analytical formulas. Excellent agreement is obtainedration dependence dfr;) by truncating the geometric ex-

away from=5. pansion in Eq(3.24) at first order, giving:
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which is precisely the result obtained in Eg8.25 and
(3.27). Although the concentration dependencekefin Eq.
(3.26) is not expected to be as accurate fox=N,/2 as it is

for N=1 andN=<N,, Eq.(3.26 is a very convenient way to
interpolate between these two limits, and is assumed valid
for all loadingsN=<N,.

_ 1 a1(Ny)
<“>:6<km+klﬂz>( 6 )

_ 1 1
~6(Ky 1tk o) ( 1- a1<ﬁ2>/6)
B 1

6Ky +6(1—(N)/6)ky ., 2. Case 2: N>N,

where the second approximation in E§-25 results from To obtain the concentration dependencekgffor N

resumming the truncated geometric expansion assuming N, we use the same approach as fbeN,, except now

(n,)/6<1. We have reduced the problem to determiningwe assume that,=6 andn;+0, since all § sites and some

(n,)/6, the probability of occupying nearest neighbgr S W sites are likely to be occupied. The result is:

sites. Since all S sites are equivalent in the site blocking ,
o X . 1 1

model, the probability of occupying nearest neighbpisies (7'1>=< — > = — , (3.29

is equivalent to the probability of occuping, Sites in gen- (6—nypky .y (6—(Ny) ki1

eral, i.e.(n,)/6=(N—1)/N,, where we have assumed that where we have utilized the general approximation scheme in

N—1 molecules occupy,Ssites and one molecule occupies Eq. (3.28. We have now reduced the problem to determin-

a W site. The total rate coefficient for a molecule to leave dng the probability of occupying nearest neighbor W sites,

(3.2

W site for smallN is thus

1 N—1
1—N_2 klﬂz.

kl:m:6kl~>l+6

(3.2

Equation(3.26 produces the correct infinite dilution limit,

which is equivalent to the probability of occuping W sites in
general, i.e.{n;)'/6=(N—N,—1)/(N;—1). Here we as-
sume that one molecule occupia W site,N, molecules
occupy § sites, andN—N,—1 molecules are distributed
among the remainingl; —1 W sites, potentially blocking a

and predicts thatr,) increases with loading because addingjump out of the initial W site. The total rate coefficient for a

molecules blocks target,ites.

We now consider the other limiting case fbi<N,,
namely thatn,)=<6 corresponding tdl<N,. Using the ap-
proach developed in Eg$3.24 and (3.25, and defining
ar=k;_,»/k;_,1, we obtain:

1 1
<Tl>_6k1_‘l 1_a2(1_ﬁ2/6)

I U P M| %,
Tk, AT e T[T e

1 (M)
=G |1tz 1- 5

" Bk 61 (M) IBIK, ;| (329

a final result identical to that in Eq3.25. As a result, the
total rate coefficient for a molecule to lema W site forN

=N, is the same as that fdé=1 in Eq.(3.26). The fact that
identical results are obtained fof=1 andN=<N, is physi-
cally plausible for the following reason. Whéih=1 a mol-
ecule leavig a W site is likely to have all target,Ssites
empty. Likewise, whemN=<N, a molecule leavig a W site

is likely to have all target Ssites occupied. Thus, in both

cases the distribution ovér, values is very narrow, giving

(n%y=(N,)* for all powers k. The mathematical conse-

guence of this is:

1 _ 1
<1—aﬁ2>= 1—a<ﬁ2>’ (328)

molecule to leag a W site forN>N, is thus

N—N,—1
ki=— = I S—
t(n) N,—1 [

Equation(3.30 produces the correct full loading result, i.e.
k;=0 for N=N;+N,, and predicts thafr,) increases with
loading for N>N, because adding molecules blocks target
W sites.

6l 1 (3.30

E. Summary of analytical results

We can now assemble the concentration dependence of
the cage-to-cage rate coefficiekp= k- ki-P,. For N<N,
we find that:

k=2 6| k - N, !
025- 14>l+ N2 1-2|"° N2_N+1
1+
N18
3 N,—N+1 N,
=_ —B(E1—Ep)
2(k1ﬂ1+ N klﬁz) N-NT1°
(3.3)
3 N2 kl*?l
_§<N2—N+l'k1_,2+1 Ky 1 (3.32
V—o 3 2 klél

Equation(3.31) results becausi{(1—2)>1 for N<N,.
In Eq. (3.32 we substitutek, ;/k, ., for e #(E1"E2) and
in Eq. (3.33 we take the thermodynamic limit.

Several remarks can be made about E§31)—(3.33.
As discussed above, Eg®8.32 and(3.33 give the correct
infinite dilution limit, consistent with Eq(2.5). The singu-
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larity in Eq. (3.33 at §=2, foreshadowed in Fig. 7, is a Equations(3.35 and (3.36 predict the correct full loading
pathological aspect of the leading order approximation folimit, i.e. k,=0 for §=1, and give a new apparent activation
Ke(1—2) in the very local neighborhood of= £, The energy for high loadings, namel,=E,(1—1). As a re-
cage-to-cage rate coefficient is proportionalkg(2—1), sult, the site blocking model predicts that diffusion is faster
which is why we plot this quantity in Figs. 5 and 7. The for >3 than it is for #<3 by a factor roughly equal to
apparent activation energy &f, is nearlyE,(2—1) when e #(27Ed since at high loadings molecules are forced to
E.(1—1)=E,(1—2), as is the case in Table I. occupy higher energy W sites. Equatiof®35 and (3.39
Equation(3.33 predicts a weak, monotonic increase of predict an initial increase ik, for =3, resulting from en-
k, with <3 resulting from a balance among different hanced W population. At higher loadingg reaches a maxi-
trends. To see this more clearly, we note that the leadinghum, then decreases kg decreases due to blocking target
order approximation includes two mechanisms of cage-toW sites. Equatior{3.36) indicates that diffusion is fastest at
cage motion ford< 3, namely $—W—S, and $—W—-W 6=0.82, corresponding approximately to foug Sites and
jumps. Both mechanisms are enhanced by increasing W sitene W occupied per supercage.
population, P;, which increases with loading as 1/(2 In Paper Il we report the results of kinetic Monte Carlo
—36). However, k; decreases with loading for the simulations on benzene in Na-Y within the site blocking
S,—W—S, jump as 2-36, exactly compensating the W model to test the accuracy of the analytical formulas derived
population enhancement. Thus thg-9W—S, mechanism above. We also compare our theory and simulation results
carries no loading dependence in our model, as indicated bggainst available experimental data. It is shown in Paper I
the second term in Eq$3.32 and(3.33. On the other hand, that our analytical formulas agree quantitatively with simu-
k, is independent of loading for the,SSW—W process, lation results, and agree qualitatively with experiment for
giving the residual loading dependence of 1{26) for that  low to moderate loadings.
process, and the only loading dependenck,inAs a result,
if kq_1/kq_»<<1, our model predicts essentially no concen-
tration dependence for self-diffusion at low to moderate'v' CONCLUDING REMARKS
loadings. Alternatively, ifk,_;/k;_.,%1, weak concentra- We have developed an analytical expression for the dif-
tion dependence is predicted. fusion coefficient of benzene in Na-Y at finite loadings in
An interesting effect is predicted by E(B.33 for load-  terms of fundamental rate coefficients. Our theory assumes
ings just belows= 4. At T=300 K andf=0.65, our analyti- that a collection of benzene molecules jump amopcasd
cal approximation remains accurate using the data in Table i/ binding sites, located near Naons in 6-rings and in
In this case 2/(2-36)- (ki_1/ki_»)=12.5>1, so thatk,  12-ring windows, respectively. Our diffusion theory is based
=3/(2-30)- (ki_1ko_1/ki_5). The apparent activation on a mean field approximation which assumes that instanta-
energy in this case is given by: neous benzene occupancies in different Na-Y supercages are
identical. This yieldsD ,= tk,a% where a,=11A is the

Ea=Ea(1-1)+Ea(2—1)-E4(1-2) mean intercage jump length anck}is the mean supercage

=(Ef ,—E))+(E}_ ,—E,)—(Ef ,—E, residence time.
e Z -z We have shown th&, is given byx-k;- P;, whereP;
=E} ,—E,, (3.34 s the probability of occupyiga W site k, is the total rate of

. . N " ) leaving a W site, andx is the probability of cage-to-cage
where by microscopic reversibilitye; ;=Ej_,. This  mqtion when starting fam a W site. To be consistent with
shows how blocking {5 sites at moderately high loadings g earlier mean field approximation, we assueses for all
makes the $—W—W process so important that the appar- |padings. Analytical formulas for the temperature and load-
ent activation energy changes with loading. We have previingl dependencies &, and P, have been derived assuming
ously predictetf this effect for loadings neaf?=§by antici-  that S, and W site occupancies are either 0 or 1, and that
pating the effect of guest—guest interactions. Our presefonzenes do not otherwise interact. This site blocking model
results show the_lt this effect also arlses_from 5|_te blocking iNjives qualitatively accurate results when binding sites are
the absence of mtrgcage guest—guest interactions. only moderately perturbed by medium to long range guest—
The concentration dependence kf=«-k;-Py for N g5t interactions. The simplicity of the site blocking model
>N is given by: allows us to develop exact expressions Fgrin the canoni-
1 cal and grand canonical ensembles, which are related for
)k1_>1' S — finite systems with a new ensemble correspondence rule. For
1+ N2 <3, the $—W—S, cage-to-cage jump contributes no
N—N, loading dependence th,, while the §—W—W process
gives a monotonically increasing loading dependence of
(3.39 1/(2—386). For >3, k, initially increases due to enhanced
W population, then decreaseslkasdecreases due to blocking
target W sites. The site blocking model predicts that diffu-
sion is fastest ap=0.82, corresponding approximately to
T) K1 (3.36 four S, sites and one W occupied per supercage. It is shown

N—N,—1

1
k0=§'6(1‘ﬁ

N;+N,— N\ (N—N,
N;—1 N -1

Voo (30—2
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