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We have developed an analytical expression for the diffusion coefficient of benzene in Na-Y at finite
loadings in terms of fundamental rate coefficients. Our theory assumes that benzene molecules jump
among SII and W sites, located near Na1 ions in 6-rings and in 12-ring windows, respectively. We
assume that instantaneous occupancies in different supercages are identical, a mean field
approximation yieldingDu5 1

6kuau
2 whereau>11 Å is the mean intercage jump length and 1/ku is

the mean supercage residence time. We show thatku5k•k1•P1 , whereP1 is the probability of
occupying a W site,k1 is the total rate of leaving a W site, andk is the transmission coefficient for
cage-to-cage motion. We assumek5 1

2 for all loadings, and derive analytical formulas for theT and
u dependencies ofk1 andP1 , assuming that SII and W site occupancies are either 0 or 1 and that
benzenes do not otherwise interact. Exact expressions forP1 in the canonical and grand canonical
ensembles are related for finite systems with a new correspondence rule. Foru,2/3, the
SII→W→SII process contributes no loading dependence toku , while the SII→W→W process gives
an increasing loading dependence of 1/(223u). Foru. 2

3, ku initially increases due to enhanced W
population, then decreases due to blocking of target W sites. In the article that follows this one we
show that our theory agrees quantitatively with simulation, and agrees qualitatively with experiment
for low to moderate loadings. ©1997 American Institute of Physics.@S0021-9606~97!51443-7#
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I. INTRODUCTION

The transport properties of adsorbed molecules1,2 play a
central role in catalytic and separation processes3 that take
place within zeolite cavities.4 Although significant effort has
been devoted to understanding diffusion in the zeolites1,2

several basic questions persist: What are the fundame
interactions that control the concentration dependence of
fusion in zeolites? How does the competition between
tropy and enthalpy modify diffusion in heavily loaded ze
lites? Will blocking stable sorption sites tend to increase
decrease the diffusion coefficient? In the present article
in the following article, we begin to address these issues
modeling the concentration dependence of benzene diffu
in Na-Y zeolite.

Dynamics simulations have made a significant impac
this area during the last 10 years,5–18 and have been particu
larly useful in modeling rapid diffusion in siliceous zeolite
While the results from these simulations are often reliable
may be difficult to determine which aspects of a given mo
are essential to the simulation results. A complementary
proach is the development of simple models amenable
analytical solution.19–25Although such an approach may n
be as predictive as atomistic simulations, analytical mode
can display the physics essential to a process quite cle
Thorough understanding often requires the interplay
theory and simulation with experiment. In the present arti

a!Author to whom correspondence should be addressed.
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we develop a simple analytical theory for the concentrat
dependence of benzene diffusion in Na-Y. In the article t
follows, denoted as Paper II, we report the results of kine
Monte Carlo7,14,26simulations of benzene in Na-Y to test th
accuracy of the analytical formulas derived below.

Significant effort has been devoted to understand
benzene adsorption and diffusion in Na-X and Na-Y,5,11,27–31

motivated by persistent discrepancies among different
perimental probes of mobility.1 We have recently reported
the results of analysis and simulation that greatly simp
benzene diffusion in Na-Y at infinite dilution by focusing o
the dynamics of cage-to-cage motion.14,25,32–34At finite load-
ings, however, benzene diffusion is complicated by block
of stable sites and by intracage benzene–benzene inte
tions that modify adsorption and activation energies. Des
these influences, measured diffusion coefficients for arom
ics in Na-X and Na-Y exhibit a remarkably gentle conce
tration dependence for low to moderate loadings.1,35–39

In the present article we model benzene in Na-Y at fin
loadings by taking site blocking into account, i.e. by assu
ing that site occupancies are either 0 or 1 and that benz
do not otherwise interact. This site blocking model giv
qualitatively accurate results when binding sites are o
moderately perturbed by intracage guest–guest interacti
We will address the importance of these interactions in
forthcoming publication.40 Comparing results from loading
models with and without guest–guest interactions will una
biguously indicate the relative importance of site blocki
and guest–guest interactions. The simplicity of the s
97/107(19)/8120/12/$10.00 © 1997 American Institute of Physics
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8121C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
blocking model allows us to develop an analytical theory
the concentration dependence of benzene diffusion in N
in terms of fundamental rate coefficients. In Paper II
show that our analytical formulas agree quantitatively w
simulation results, and agree qualitatively with experim
for low to moderate loadings.

The remainder of this paper is organized as follows:
Sec. II we discuss the assumptions underlying our mo
including mean field and site blocking approximations.
Sec. III we formulate the derivation, obtain analytical expr
sions for the factors required, and discuss the resulting c
centration and temperature dependencies of the diffusion
efficient. In Sec. IV we summarize the analytical wor
foreshadow the simulation results in Paper II, and specu
on the applicability of our approach for other host–gu
systems.

II. GENERAL MODEL

A. Lattice model

We model benzene diffusion in Na-Y by replacing t
zeolite framework with a three dimensional lattice of bindi
sites. Such a lattice model is known to reproduce diffus
behavior accurately when site residence times are m
longer than travel times between sites.7,41 This is indeed the
case for benzene diffusion in cation-containing faujasites
cause of the strong charge–quadrupole interactions betw
Na~II ! ions and benzene,42 as demonstrated by the two
dimensional exchange NMR experiments of Wilhe
et al.43,44

In this system benzene has two predominant bind
sites.14,28,33 In the primary site, denoted as SII , benzene is
facially coordinated to a supercage 6-ring, 2.70 Å abo
Na~II !. In the secondary site, denoted as W, benzene is
tered in the 12-ring window separating adjacent superca
;5.3 Å from the SII site. Binding sites at Na~I!, Na~I8! and
Na~III ! are not included in our model because Na~III ! is neg-
ligibly occupied in Na-Y (Si:Al52.0), and because benzen
cannot enter the smaller sodalite cages or hexagonal pr
containing Na~I8! and Na~I! cations, respectively. Figure
shows a minimum energy hopping path connecting theII

and W sites.14 Figure 1 also demonstrates that the Na-Y s
percage contains four tetrahedrally arranged Na1 ions and
four tetrahedrally arranged 12-ring windows connecting
jacent supercages. Thus, the lattice of benzene binding
in Na-Y contains four tetrahedrally arranged SII sites and
four tetrahedrally arranged, doubly shared W sites per su
cage.

Because of the strong Na–benzene interaction the SII site
is much more stable than the W site. Indeed, recently
ported docking calculations14,30 of benzene at the SII and W
sites in Na-Y suggest that the SII site is more stable by
;25 kJ mol21, indicating thatKeq~SII→W!!1 for loadings
of fewer than four molecules per supercage. Figure 2 sh
our recently calculated hopping path energies for the SII↔W
jump.14 For a detailed discussion of these binding sites a
hopping paths, please see Refs. 14 and 33.
J. Chem. Phys., Vol. 107, N
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B. Mean field approximation

We can simplify the motion of benzene in Na-Y b
imagining that—although hops really take place amongII

and W sites—long range motion involves jumps from o
‘‘cage site’’ to an adjacent ‘‘cage site.’’25,32 As such, all the
SII and W site structure within a cage becomes the inter
structure of the cage site. A random walk through Na-Y
duces to hopping on the tetrahedral lattice of superca
shown in Fig. 3. The diffusion coefficient is then determin
by cage residence times and cage-to-cage hopping dista
We have previously shown that for diffusion in Na-Y at in
finite dilution, D5 1

6ka2 wherea>11 Å is the mean inter-
cage jump length and 1/k is mean cage residence time.25,32

This result is interesting because we obtain the simple-cu
result even though the simple-cubic partitioning of Na-Y
invalid at the cage-to-cage length scale. Furthermore, si
lating the diffusion coefficient viak anda rather than from
mean square displacements provides an overwhelming c
putational speedup. This is because calculatingk anda only

FIG. 1. SII↔W minimum energy path with transition state indicated in bo

FIG. 2. SII↔W energetics with 41 kJ mol21 activation energy.
o. 19, 15 November 1997
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8122 C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
scales asN whereas calculating mean square displaceme
scales asN2, whereN is the number of Monte Carlo steps

We can extend this analytical approach to the study
diffusion in Na-Y at finite loadings by making a mean fie
approximation. To explore this we briefly review how w
obtain the infinite dilution diffusion formula,D5 1

6ka2. This
follows from the Bernoulli distribution forN hops on a tet-
rahedral lattice,32 given by:

151A1B5 ( 8
n11 ,...,n41

~N/2!!

n11! •••n41!
p11

n11•••p41

n41

• ( 8
n12 ,...,n42

~N/2!!

n12! •••n42!
p12

n12•••p42

n42, ~2.1!

wherepi 15pi 25 1
4 for i 51,...,4 and the primed summation

imply that ( i 51
4 ni 15( i 51

4 ni 25N/2. The probability distri-
bution in Eq.~2.1! results because the tetrahedral lattice
composed of two interpenetrating BCC lattices, denoted h
as sublattices A and B. DuringN jumps, N/2 jumps visit
each sublattice since a random walker must alternate
tween sublattices at each jump. Each cage in sublattice A
four allowed jumps, labeled by (11,21,31,41); while
each cage in sublattice B has four allowed jumps, labeled
(12,22,32,42), which are obtained by reversing the
jump directions. The alternation between sublattices cau
the Bernoulli distribution for a tetrahedral lattice to separ
into an A factor and a B factor as seen in Eq.~2.1!. Using
this random walk distribution we find that^R2(N)&5Na2

5kta256Dt, and henceD5 1
6ka2. For more details pleas

see the appendix in Ref. 32.
Equation~2.1! is strictly valid only at infinite dilution

where all target cages are empty and hence identical, so
the fundamental cage-to-cage hopping probabilities sat
pi 15pi 25 1

4 for i 51,...,4. At finite loadings, however, th
fundamental jump probabilities depend upon the spec
jump process in addition to the instantaneous configura

FIG. 3. Tetrahedral connectivity of supercages in the Na-Y unit cell. B
represent supercage ‘‘sites’’ and sticks represent cage-to-cage jumps.
J. Chem. Phys., Vol. 107, N
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of random walkers in the starting cage and in adjacent ca
As such there are an enormous number of distinct jump p
cesses to consider at finite loadings. One might envision
corporating configuration dependent fundamental jump pr
abilities into Eq. ~2.1!,15 i.e. pi 6→pi 6(g j ,gk), where g j

andgk are the random walker configurations in the starti
and target cages, respectively. One might then Boltzm
average over an M -cage configuration spaceg
[(g1 ,g2 ,g3 ,...,gM) with a lattice gas Hamiltonian,45

H(g), to yield a random walk distribution generalized fo
finite loadings. Unfortunately this level of sophistication
difficult to treat analytically, although it can be simulated15

with kinetic Monte Carlo as demonstrated in Paper II.
We can make this problem more analytically tractab

with the following mean field approximation: by applyin
the configurational average directly to each configuration
pendent jump probability, we find that

^pi 6~g j ,gk!&5(
g

e2bH~g!

Q~b!
pi 6~g j ,gk!5pi 65 1

4 ,

~2.2!

since all cages are identicalon average. The resulting ran-
dom walk distribution for finite loadings is identical to tha
for infinite dilution, and yields ^R2(N)&5Nau

25kutau
2

56Dut, and henceDu5 1
6kuau

2 where u is the fractional
loading, and 1/ku and au are the loading dependent mea
cage residence time and mean intercage jump length, res
tively.

This mean field approximation~MFA! is extremely use-
ful because it serves as theansatzfor the analytical theory
derived below. The MFA does, however, neglect effects t
are occasionally important. The MFA neglects statistical c
relation between jumps when, e.g., a random walker jum
into a W site separating nearly empty and full cages. T
next jump for that random walker, although uncorrelat
from the last jump in the sense of Poisson statistics, is m
likely to end up in the nearly empty cage. An extreme ma
festation of this effect is a percolation threshold,46 i.e. a load-
ing above which the diffusion coefficient precipitously d
creases. Percolation effects may be important at very h
loadings through hysteresis,47 or for binary or higher mix-
tures with very different mobilities.15 Furthermore, the MFA
ignores anomalous diffusion, e.g. single file diffusion in o
dimensional channel zeolites,48–50since the mean square dis
placement turns out to be linear in time.

Despite these issues, the MFA is likely to be quali
tively accurate when normal diffusion holds. Moreover, t
MFA conveniently allows an analytical treatment of the co
centration dependence of diffusion in zeolites, which ser
as an important complement to simulation. We note that
expressionDu5 1

6kua2 is sometimes assumed1 to be exact.
We will address the accuracy of this mean field approxim
tion in a forthcoming publication.51

s

o. 19, 15 November 1997
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8123C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
C. Review of infinite dilution

In a previous study25 we obtained an exact, analytica
formula for the cage-to-cage rate coefficient,k, at infinite
dilution in terms of fundamental hopping rate coefficien
We review this derivation because it provides the framew
for the finite loading diffusion theory derived in Sec. III. I
what follows the W and SII sites are denoted sites 1 and
respectively.

We imagine a trajectory executed by a single benz
molecule through Na-Y, hopping among SII and W sites. In
the limit of avery long trajectory, mean residence times atII

and W sites can be used to calculate hopping rate coeffici
and equilibrium coefficients in accord with the ergod
hypothesis.52 The mean supercage residence time,^tc&, is
then given by

^tc&5
T

Ncc
5

1

Ncc
~T11T2!

5
T1

Ncc
S T11T2

T1
D ——→

T→` T1

Ncc
@11Keq~1→2!#,

~2.3!

whereT5T11T2 is the total time of the trajectory,T1 and
T2 are the total residence times at W and SII sites, respec-
tively, andNcc is the number of cage-to-cage jumps duri
the trajectory. The long time limit in Eq.~2.3! ensures con-
vergence of T2 /T1 to the equilibrium coefficient
Keq(1→2)52k1→2 /k2→1 , wherek1→2 andk2→1 are funda-
mental rate coefficients~cf. Figs. 1 and 2!, and the factor of
2 arises because each W site is shared between two adj
supercages. The long time limit allowsT1 to be expressed a

T15N‡
•

T1

N‡ 5N‡
•^t1& ——→

T→` N‡

k1
5

N‡

6~k1→11k1→2!
,

~2.4!

whereN‡ is the number of visits to W sites,^t1& is the mean
W site residence time,k151/̂ t1& is the total rate of leaving
the W site,k1→1 is another fundamental rate coefficient, a
the factor of 6 counts available target sites in the Na-Y
percage structure. The long trajectory limit allows one f
ther simplification, namely thatNcc5N‡/2. The factor of1

2

accounts for randomizing in the W site which halves t
probability to leave the cage.

Putting these results together, we have

^tc&52•^t1&•@11Keq~1→2!#5
112k1→2 /k2→1

3~k1→11k1→2!
,

~2.5!

which represents an exact, analytical solution of the ma
equation determining cage-to-cage motion in terms of fun
mental hopping rate coefficients. Equations~2.3!–~2.5! serve
as the starting point for the concentration dependent di
sion theory derived below.
J. Chem. Phys., Vol. 107, N
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D. Site blocking model

In order to model the concentration dependence of
diffusion we must incorporate the effect of guest–guest
teractions. On a very qualitative level, repulsive guest–gu
forces modify sorption by blocking favorable sorption site
Attractive guest–guest forces modify sorption sites and
ergies, ultimately giving rise to phenomena such as capill
condensation. It is not obvious, however, how guest–gu
forces modify transport properties. Moreover, it is of gre
fundamental interest to determine the relative importance
attractive and repulsive guest–guest forces in controlling
concentration dependence of diffusion.

We can disentangle these effects by considering two
ferent models; in the present paper we construct a mode
which binding site occupancies are either 0 or 1, and wh
fundamental hopping rate coefficients calculated at infin
dilution are used.14 This site blocking model~SBM! will
demonstrate how blocking SII and W sites influences diffu
sion in Na-Y, while ignoring medium to long range intera
tions. We will address the importance of these interaction
a forthcoming publication.40 The SBM is motivated by the
fact that benzene binding sites in Na-Y are only moderat
perturbed by benzene–benzene interactions, as demonst
by the optimized geometries shown in Fig. 4 using the N
Y–benzene potential in Ref. 14 and the benzene–benz
potential in Ref. 53. Window site geometries are likewi
only moderately perturbed by benzene–benzene interacti
It seems plausible then that simple site blocking should p
an important role in determining the concentration dep
dence of benzene diffusion in Na-Y. The SBM is particula
convenient because its simplicity allows the developmen
a fully analytical diffusion theory.

In the present study, as in former ones,14,25,32–34we es-
timate rate coefficients at infinite dilution using the Arrhe
ius formula, in whichk>ne2bEa wheren and Ea are tem-
perature independent. We assume that the Arrhen
prefactors$n% resemble typical vibrational frequencies, of o
der 1013 s21. We believe these rate coefficients are su
ciently accurate for the purpose of drawing qualitative co
clusions. The calculated hopping activation energies
hypothetical Arrhenius prefactors reported in Ref. 14 a
summarized in Table I.

III. ANALYTICAL THEORY FOR FINITE LOADINGS

A. General formulation

In Sec. II we found thatDu5 1
6kuau

2 within the mean field
approximation~MFA!. The mean intercage jump length,au

>11 Å, depends very weakly upon temperature32 and load-
ing since this quantity is largely determined by the Na
framework structure. We thus focus our attention on the c
centration dependence of the mean cage residence t
^tc&51/ku . The theory for̂ tc& is obtained by recasting Eqs
~2.3!–~2.5! in language appropriate for finite loadings. Sin
our ultimate goal is comparing an analytical formula for^tc&
with canonical kinetic Monte Carlo simulations, our theo
for ^tc& begins by fixingN5number of guest molecules,V
o. 19, 15 November 1997
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8124 C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
5volume of Na-Y which in turn controls the number o
available SII and W sites, andT5(kBb)215absolute tem-
perature of the system. For a given zeolite volumeV there
areN1 W sites andN2 SII sites. For convenience we choo
the volume of Na-Y to consist ofV unit cells, each contain
ing 8 supercages and thus 16 W sites and 32 SII sites, so that
N1516V andN2532V .

We now imagine a trajectory executed by a single b
zene molecule through Na-Y loaded with other benzenes
hopping among SII and W sites. The mean cage residen
time is given by:

FIG. 4. Optimized benzene binding geometries in Na-Y without~above! and
with ~below! the influence of benzene–benzene interactions.

TABLE I. Hopping activation energies and hypothetical Arrhenius pref
tors for benzene in Na-Y. Our model predicts that leaving the W site
relatively facile.

Jump
Activation energy

(kJ mol21)
Arrhenius prefactor

(s21)

SII→SII 35 1013

SII→W 41 1013

W→SII 16 1013

W→W 18 1013
J. Chem. Phys., Vol. 107, N
-
ll

e

^tc&5
T1

Ncc
S T11T2

T1
D ——→

T→` N‡
•^t1&
Ncc

@11Keq~1→2!#,

~3.1!

where all the quantities in Eq.~3.1! are defined as in Eqs
~2.3!–~2.5!. We now define the transmission coefficient a
cording to k[Ncc/N‡. The transmission coefficient is th
probability of cage-to-cage motion for a benzene already
cupying a W site. At infinite dilutionk5 1

2. With this quan-
tity the mean cage residence time becomes:

^tc&5
^t1&

k
@11Keq~1→2!#. ~3.2!

The benefit of definingk should now be clear:N‡ and Ncc

are eliminated in favor ofk, a quantity about which we hav
insight. The cage-to-cage rate coefficient is thus given b

ku5k•k1•

1

@11Keq~1→2!#
5k•k1•S T1

T11T2
D5k•k1•P1 .

~3.3!

Equation~3.3! has the following pedagogically attractive in
terpretation. The rate of cage-to-cage motion is a produc
three concentration dependent factors:P1 is the probability
of occupying a W site,k1 is the total rate of leaving a W site
andk is the probability of cage-to-cage motion when starti
from a W site. Note that settingk5 1

2, Keq(1→2)
52k1→2 /k2→1 , and k156(k1→11k1→2) gives the infinite
dilution limit in Eq. ~2.5!. Below we pursue analytical ex
pressions for the concentration dependencies of these t
quantities.

B. Transmission coefficient

The transmission coefficient is a measure of the exten
which jumps involving W sites are statistically correlated. A
discussed in Sec. IIB, a random walker that jumps into a
site separating nearly empty and full cages is more likely
end up in the nearly empty cage. Unfortunately the statist
correlation determining the transmission coefficient is di
cult to treat analytically, although it can be simulated w
kinetic Monte Carlo7,26 as demonstrated in Paper II. Indee
the ansatzof this article is a MFA exploiting the fact tha
cages are identical on average. To be consistent with
previous MFA, we make a MFA for the tranmission coef
cient yieldingk5 1

2 for all loadings. In Paper II we will see
that the transmission coefficient simulated atT5300 K is
close to 1

2 for low to moderate loadings, and falls to; 3
8 at

nearly full loading.

C. Equilibrium coefficient

We now derive an approximate analytical formula f
the concentration dependence ofP15@11Keq(1→2)#21

keepingN, V andT fixed. The simplicity of the site blocking
model allows us, in addition, to derive exact expressions
Keq(1→2) for verifying the accuracy of the approxima
formula. While it is straightforward to formulate an exa
canonical expression forKeq(1→2), it is not trivial to evalu-
ate the expression for arbitrarily large volumes. This is i

-
s
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portant for quantifying finite size effects in both our theo
and simulation results. As discussed in the next section,
much more straightforward to calculateKeq(1→2) using the
grand canonical ensemble, keepingm, V andT fixed. How-
ever, since our ultimate goal is comparison with canoni
kinetic Monte Carlo simulations for finite systems, we ne
to determine a correspondence between grand canonica
erages and canonical averagesaway fromthe thermodynamic
limit, i.e. away from the limitV→`. In the next three sec
tions we develop forKeq(1→2): exact canonical and gran
canonical expressions, an approximate canonical form
and the correspondence between grand canonical and ca
cal results for finite volumes.

1. Exact expression
a. Canonical ensemble:The equilibrium coefficient is

given by Keq(1→2)5^n2&/^n1&, wheren1 and n2 are the
fluctuating numbers of molecules at W and SII sites, respec-
tively. In the canonical ensembleN5^n1&1^n2&, so that
Keq(1→2)5(N2^n1&)/^n1&, where^n1& is given by:

^n1&5 (
n15n1

min

n1
max

P~n1!•n1 , ~3.4!

and the summation limits aren1
min5max(0,N2N2) and

n1
max5min(N,N1). The upper limit results because the numb

of molecules at W sites cannot be greater than the total n
ber of molecules or the number of W sites. The lower lim
results because the number of molecules at W sites cann
smaller than the total number of molecules minus the num
of SII sites, i.e.N2N2 , whenN2N2.0. The probability in
Eq. ~3.4! is given by:

P~n1!5
V~n1!e2b@n1E11~N2n1!E2#

Q~N,V,b!
, ~3.5!

whereE1 andE2 are the site binding energies at W andII
sites, respectively, and the microcanonical prefactor is gi
by:

V~n1!5S N1

n1
D S N2

N2n1
D

5
N1!

n1! ~N12n1!!
•

N2!

~N2n1!! ~N22N1n1!!
. ~3.6!

In Eq. ~3.5!, Q(N,V,b) is the canonical partition function
given by:

Q~N,V,b!5 (
n15n1

min

n1
max

V~n1!e2b@n1E11~N2n1!E2#. ~3.7!

EvaluatingKeq(1→2) analytically using Eqs.~3.4!–~3.7! is
difficult because fixingN couples the combinatorial coeffi
cients. Although we can evaluateKeq(1→2) numerically for
V 51 and 8 as shown below, the calculation becomes c
bersome for larger volumes because of the combinatorial
efficients required.

b. Grand canonical ensemble:We solve this problem
by calculatingKeq(1→2) in the grand canonical ensembl
J. Chem. Phys., Vol. 107, N
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fixing m, V andT. As mentioned above, we must be care
when comparing averages from grand canonical and can
cal calculations for small systems; this issue is addres
below. The grand canonical partition function is given by

J~m,V,b!5 (
N50

Nmax

Q~N,V,b!ebmN

5 (
N50

N11N2

(
n15n1

min

n1
max

S N1

n1
D S N2

N2n1
D p1

n1p2
N2n1ebmN,

~3.8!

where pi5e2bEi for i 51 and 2. Allowing N to fluctuate
gives a second summation in the partition function. T
double sum can be expressed in terms of (n1 ,n2) instead of
(N,n1) wheren25N2n1 , thereby decoupling the partition
function according to:

J~m,V,b!5 (
n150

N1

(
n250

N2 S N1

n1
D S N2

n2
D p1

n1p2
n2ebm~n11n2!

5~11p1ebm!N1
•~11p2ebm!N2, ~3.9!

where Eq.~3.9! results from the binomial theorem.54 The
average loadinĝN&m is obtained with the standard thermo
dynamic derivative:45

^N&m5F] ln J

]~bm!G
V,b

5
N1

11eb~E12m! 1
N2

11eb~E22m!

5^n1&m1^n2&m . ~3.10!

Equation~3.10! is formally identical to that obtained for a
ideal gas ofN1 fermions with energyE1 and N2 fermions
with energyE2 . This analogy arises because SII and W sites
can have occupancies of 0 or 1 as in Fermi-Dirac statistic45

Based on Eq.~3.10! the grand canonical equilibrium coeffi
cient is given by:

Keq~1→2!5
N2

N1
•

11eb~E12m!

11eb~E22m! 52•

11eb~E12m!

11eb~E22m! .

~3.11!

Equation~3.11! shows that the grand canonical equilibriu
coefficient within the site blocking model formally depen
uponm andb, but not onV. The results in Eqs.~3.10! and
~3.11! can be related to the canonical ensemble by invert
^N&m as a function ofm, then evaluatingKeq(1→2) as a
function ofm(N). This inversion is itself difficult to perform
analytically, rendering Eqs.~3.10! and ~3.11! a convenient
numerical approach for determining how the exact grand
nonical equilibrium coefficient varies with loading.

Before deriving the approximate canonical formula
the next section, it is instructive to consider various limits
the exact canonical and grand canonical equilibrium coe
cients. It is straightforward to show that for any volumeV,
the canonical equilibrium coefficient satisfiesKeq(1→2)
52e2b(E22E1) for N51, and Keq(1→2)52 for N5N1

1N2 . Likewise for any volumeV, the grand canonical equi
librium coefficient satisfiesKeq(1→2)52e2b(E22E1) for
o. 19, 15 November 1997
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8126 C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
m→2`, and Keq(1→2)52 for m→`. Although the full
loading limits correspond between the two ensembles,
limm→`^N&m5N11N2 , the infinite dilution limits do not
correspond because limm→2`^N&m50, while infinite dilution
for the canonical ensemble meansN51. Thus one has to be
careful in associatingN from the canonical ensemble wit
^N&m from the grand canonical ensemble. Although the c
respondence becomes straightforward when comparing
tional loadings for infinite systems, i.e.u[N/(N11N2)
when N11N2→`, we require a correspondence betwe
these grand canonical results and canonical simulation
finite systems; such a rule is developed below.

2. Leading order approximation

In the previous section we developed exact express
for the equilibrium coefficient in various ensembles. W
would prefer, however, to have an analytical expression
Keq(1→2) showing explicit dependencies onN and T. In
this section we obtain such a formula using a leading or
approximation in the canonical ensemble. We exploit the f
that at relevant temperatures the SII site is much more stable
n
s

r

h
g
n
d

d

E
in
a

J. Chem. Phys., Vol. 107, N
e.

-
c-

n
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ns

r

r
ct

than the W site, i.e.b(E12E2)@1, to obtain a simple for-
mula for Keq(1→2). We first order the summation in
Eq. ~3.4! in powers of the small parameter«[e2b(E12E2).
The canonical equilibrium coefficient,Keq(1→2)5(N
2^n1&)/^n1&, takes the form:

Keq~1→2!5 (
n15n1

min

n1
max

V~n1!«n1

3~N2n1!Y (
n185n1

min

n1
max

V~n18!«n18n18 . ~3.12!

In order to extract an analytical formula from this expre
sion, we need to specifyN to make the summation limits
concrete. Since«!1 the summand decays rapidly, obviatin
the need to specify the upper limit. There are thus two ca
to consider:N<N2 for which n1

min50, andN.N2 for which
n1

min5N2N2.
a. Case 1: N<N2 : By dividing numerator and denomi

nator in Eq.~3.12! by the first term in the numerator, th
equilibrium coefficient forN<N2 becomes:
Keq~1→2!5

11
N21

N

V~1!

V~0!
«1

N22

N

V~2!

V~0!
«21•••

01
1

N

V~1!

V~0!
«1

2

N

V~2!

V~0!
«21•••

5

11
N1~N21!

N22N11
«1

N1~N121!~N21!~N22!

2~N22N11!~N22N12!
«21•••

01
N1

N22N11
«1

N1~N121!~N21!

~N22N11!~N22N12!
«21•••

. ~3.13!
-

re,
If we consider only the first nonzero term in numerator a
denominator, an approximation whose validity we discu
below, the equilibrium coefficient becomes:

Keq~1→2!>
N22N11

N1«
5

N22N11

N1
e2b~E22E1!.

~3.14!

Equation ~3.14! provides an analytical expression fo
Keq(1→2) showing explicit dependencies onN andT. Note
that the concentration dependence in Eq.~3.14! gives the
correct infinite dilution limit. Equation~3.14! is exactly the
equilibrium coefficient for a single molecule in Na-Y wit
N21 blocked SII sites. This is consistent with the leadin
order approximation, which considers only single excitatio
to W sites. The equilibrium coefficient decreases with loa
ing, i.e. becomes less favorable for occupying SII sites, be-
cause of the decreasing SII configurational entropy associate
with blocking N21 SII sites.

We can obtain a simple estimate for when we expect
~3.14! to be accurate. Considering the lowest order terms«
that are ignored relative to the terms that are taken, the le
ing order approximation is valid when:

x1[
N1N

N22N11
e2b~E12E2!!1. ~3.15!
d
s

s
-

q.

d-

Equation~3.15! shows that increasingN, V or T will make
Eq. ~3.14! less accurate. AssumingV 51, N516 and adopt-
ing the somewhat arbitrary accuracy criterion thatx1<0.1,
the leading order approximation is valid forT<600 K. As-
sumingT5300 K, N516 andx1<0.1, the leading order ap
proximation is valid forV <140 unit cells.

b. Case 2: N.N2 : Using the same approach as befo
but now with the lower limitn1

min5N2N2, the equilibrium
coefficient forN.N2 becomes:

Keq~1→2!5

11
N221

N2

V~N2N211!

V~N2N2!
«1•••

N2N2

N2
1

N2N211

N2

V~N2N211!

V~N2N2!
«1•••

5

11
~N221!~N11N22N!

N2N211
«1•••

N2N2

N2
1~N11N22N!«1•••

. ~3.16!

Ignoring all but the lowest order terms in«, the high loading
equilibrium coefficient becomes:

Keq~1→2!>
N2

N2N2
. ~3.17!
o. 19, 15 November 1997
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8127C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
Equation~3.17! predicts thatKeq(1→2) is independent ofT
for N.N2 . Note that the concentration dependence in
~3.17! gives the correct full loading limit. Equation~3.17! is
exactly the equilibrium coefficient forN2 occupied SII sites
and N2N2 occupied W sites. The equilibrium coefficie
decreases with loading, i.e. becomes more favorable for
cupying W sites, because each new sorbed molecul
forced to occupy a W site. Equation~3.17! is valid when:

x2[
N2~N11N22N!

N2N211
e2b~E12E2!!1. ~3.18!

Equation ~3.18! shows that decreasingN, increasingT or
increasingV will make Eq. ~3.17! less accurate. Assumin
V 51, N540 andx2<0.1, the leading order approximatio
is valid for T<525 K. AssumingT5300 K, N540 andx2

<0.1, the leading order approximation is valid forV <75
unit cells.

We have thus found that Eqs.~3.14! and~3.17! are most
accurate for sufficiently lowT and V, and for loadingsN
'N2 . In Paper II we will use Eqs.~3.14! and ~3.17! to
interpret kinetic Monte Carlo results forV 51 and T
5300 K. Figure 5 showsKeq(2→1)51/Keq(1→2), a quan-
tity that will soon become important, calculated as a funct
of loading for V 51 andT5300 K using the exact canon
cal, exact grand canonical and leading order canonical m
ods. Figure 5 shows that while our analytical approximat
gives essentially perfect agreement with the exact canon
results, the exact canonical and grand canonical value
not agree perfectly; we resolve this discrepancy below. Si
our analytical formulas are accurate for low enough temp
tures, they serve as a useful complement to simulation m
ods which sample efficiently at high temperatures. In
next section we will show that Eqs.~3.14! and~3.17! turn out
to be accurate for any volumeV as long asN'” N2 .

FIG. 5. Keq(2→1) for V 51 andT5300 K using exact canonical, exa
grand canonical and leading order canonical methods. Approximate
exact canonical agree perfectly, while exact canonical and grand cano
do not.
J. Chem. Phys., Vol. 107, N
.
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3. Canonical and grand canonical averages

In the previous sections we developed numerical a
analytical approaches for determining the concentration
pendence ofKeq(1→2) for use in Eq.~3.3!. We found that
the grand canonical ensemble provides a convenient, num
cally exact approach for calculatingKeq(1→2) for any vol-
ume V. In addition, the canonical ensemble gives simp
analytical formulas forKeq(1→2) which are valid for a sig-
nificant range ofT and V. It turns out that Eqs.~3.14! and
~3.17! are valid for anyV as long asT is not too high and
N'” N2 . We would like to use the grand canonical results
confirm the accuracy of the canonical formulas for arbitra
volumes. Statistical mechanics dictates that averages f
these ensembles will agree in the thermodynamic limit,55 i.e.
for a given fractional loadingu asV→`, but not necessarily
for finite systems. In this section we develop a simple cor
spondence rule for comparing averages from these
sembles for anyV.

Recall from Eqs.~3.4!–~3.11! the correspondence at in
finite dilution N51⇔ limm→2`^N&m50, and at full loading
N5N11N2⇔ limm→`^N&m5N11N2 . A rule consistent
with these boundary conditions can be extracted from
leading order formulas taken to the thermodynamic limit
a given fractional loading:

N22N11

N1«
——→

V→` N22N

N1«
⇔ N22^N&m

N1«
, for N<N2 ,

~3.19!

N2

N2N2
——→

V→` N2

N2N2
⇔ N2

^N&m2N2
, for N.N2 .

~3.20!

Equations~3.19! and ~3.20! suggests at finiteV the corre-
spondence:

^N&m5N21, for N<N2, ~3.21!

^N&m5N, for N.N2 . ~3.22!

For anyN, V andT, Eqs.~3.21! and ~3.22! indicate how to
calculatem(N,V,T). The exact canonical equilibrium coe
ficient is obtained by substitutingm(N,V,T) into Eq. ~3.11!.
Equations~3.21! and~3.22! are consistent with the boundar
conditions noted above and give fractional loadings t
agree in the thermodynamic limit. Moreover, the fraction
loadings forN<N2 differ by O (1/V) in agreement with for-
mal statistical mechanics.55 It is interesting that̂N&m5N for
high loadings. This is plausible because at such loadings
overwhelming majority of configurations involve occupa
cies only at W sites. The system thus mimics a simple lat
with a single site energy,E1 . For such a lattice the canonica
and grand canonical ensembles sample identical fluctuat
sinceE5n1E1 , i.e. fluctuations in energyE and numbern1

are the same.
Figure 6 shows the percent difference between the gr

canonicalKeq(2→1) and the exact canonical value forT
5300 K, V 51 and 8. The grand canonical and canonic
values agree more closely for larger volume, and agree
most perfectly when applying the shift rule^N&m5N21 for

nd
cal
o. 19, 15 November 1997
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8128 C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
N<N2 . The glitch atN5N2 is numerical error in the exac
canonical calculation, which grows with volume. Figure
demonstrates that we can use grand canonical results to
firm the accuracy of the analytical formulas for any volum
as long as we apply the shift rule. Figure 7 compares
analytical formulas forKeq(2→1) with the shifted grand ca
nonical result forT5300 K andV 51500, a system with
accuracy parametersx1>1.1 from Eq. ~3.15! and x2>2.0
from Eq. ~3.18!. Even though the analytical formulas a
being applied outside their proper regimes, Fig. 7 indica
that the formulas capture the behavior ofKeq(2→1) quite
accurately away from the fractional loadingu5 2

3. We thus

FIG. 6. Percent difference of grand canonicalKeq(2→1) from exact canoni-
cal value forT5300 K, V 51 and 8. Grand canonical and canonical valu
agree more closely for larger volume, and agree almost perfectly w
applying the shift rulê N&m5N21 for N<N2 . The glitch atN5N2 is
numerical error in the exact canonical calculation.

FIG. 7. Comparison of analytical formulas and shifted grand canonical
ues forKeq(2→1) at T5300 K andV 51500, a system outside the acc
racy regimes of the analytical formulas. Excellent agreement is obta

away fromu5
2
3.
J. Chem. Phys., Vol. 107, N
on-
,
r

s

regard our analytical estimates ofKeq(2→1) rather useful
for determining the concentration dependence of the wind
population,P1 , in Eq. ~3.3!.

D. Window residence time

We now derive approximate analytical formulas for t
concentration dependence of^t1&, the mean W site residenc
time, keepingN, V and T fixed. At infinite dilution, the
average in^t1& is over random jump times taken from
Poisson distribution,P(t)5k1e2k1t, where k156(k1→1

1k1→2)51/̂ t1& is the total rate coefficient for jumping
away from a W site. At finite loadings the calculation of^t1&
for a given molecule involves, in addition, an average o
random walker configurationsg, as in Eq. ~2.2!. Since a
random walker cannot jump to an occupied site, the total r
coefficient for a molecule to leave a site depends upon
occupancy of potential target sites, i.e. nearest neighbor s
The mean W site residence time can be expressed as:

^t1&5 K 1

k1~g! L 8
5 K 1

~62ñ1!k1→11~62ñ2!k1→2
L 8

,

~3.23!

where ñ1 ,ñ250,...,6 are thenumbers of occupied neare
neighbor W and SII sites, respectively, and the primed ave
age omits configurations that givek1(g)50. In what follows
we obtain analytical formulas for̂t1& making assumptions
consistent with the mean field-leading order approximatio
discussed above. Since there is no exact formula for^t1&, we
will justify our approach using mathematical and physic
arguments. As with the derivation ofKeq(1→2), it is useful
to consider two loading regimes:N<N2 andN.N2 .

1. Case 1: N <N2

We begin by assuming that forN<N2 , configurations
with more than one occupied W site contribute negligibly
the average in Eq.~3.23!. We can thus setñ1 to zero and
focus on averagingñ2 . Here it is useful to consider two
limiting cases:^ñ2&*0 and ^ñ2&&6, corresponding toN
*1 andN&N2 , respectively. In the former case, we expre
^t1& as:

^t1&5
1

6~k1→11k1→2! K 1

12a1ñ2/6 L
5

1

6~k1→11k1→2! K 11
a1ñ2

6
1S a1ñ2

6 D 2

1••• L ,

~3.24!

where the prime is omitted becauseñ150, and the geometric
expansion converges becausea15k1→2 /(k1→11k1→2) and
ñ2/6 are both less than one. WhenN51, ñ250 for all con-
figurations and the infinite dilution result is obtained. F
loadings slightly aboveN51, we can estimate the concen
tration dependence of̂t1& by truncating the geometric ex
pansion in Eq.~3.24! at first order, giving:

n

l-

d
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8129C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
^t1&>
1

6~k1→11k1→2! S 11
a1^ñ2&

6 D
>

1

6~k1→11k1→2! S 1

12a1^ñ2&/6
D

5
1

6k1→116~12^ñ2&/6!k1→2
, ~3.25!

where the second approximation in Eq.~3.25! results from
resumming the truncated geometric expansion assum
^ñ2&/6!1. We have reduced the problem to determini
^ñ2&/6, the probability of occupying nearest neighborII
sites. Since all SII sites are equivalent in the site blockin
model, the probability of occupying nearest neighbor SII sites
is equivalent to the probability of occuping SII sites in gen-
eral, i.e.^ñ2&/65(N21)/N2 , where we have assumed th
N21 molecules occupy SII sites and one molecule occupie
a W site. The total rate coefficient for a molecule to leav
W site for smallN is thus

k15
1

^t1&
56k1→116S 12

N21

N2
D k1→2 . ~3.26!

Equation~3.26! produces the correct infinite dilution limit
and predicts that̂t1& increases with loading because addi
molecules blocks target SII sites.

We now consider the other limiting case forN<N2 ,
namely that̂ ñ2&&6 corresponding toN&N2 . Using the ap-
proach developed in Eqs.~3.24! and ~3.25!, and defining
a2[k1→2 /k1→1 , we obtain:

^t1&5
1

6k1→1
K 1

12a2~12ñ2/6! L
5

1

6k1→1
K 11a2S 12

ñ2

6 D1Fa2S 12
ñ2

6 D G2

1••• L
>

1

6k1→1
F11a2S 12

^ñ2&
6 D G

>
1

6k1→1
F 1

12a2~12^ñ2&/6!G
5

1

6k1→116~12^ñ2&/6!k1→2
, ~3.27!

a final result identical to that in Eq.~3.25!. As a result, the
total rate coefficient for a molecule to leave a W site forN
&N2 is the same as that forN*1 in Eq.~3.26!. The fact that
identical results are obtained forN*1 andN&N2 is physi-
cally plausible for the following reason. WhenN*1 a mol-
ecule leaving a W site is likely to have all target SII sites
empty. Likewise, whenN&N2 a molecule leaving a W site
is likely to have all target SII sites occupied. Thus, in bot
cases the distribution overñ2 values is very narrow, giving
^ñ2

k&>^ñ2&
k for all powers k. The mathematical conse

quence of this is:

K 1

12añ2
L >

1

12a^ñ2&
, ~3.28!
J. Chem. Phys., Vol. 107, N
ng

a

which is precisely the result obtained in Eqs.~3.25! and
~3.27!. Although the concentration dependence ofk1 in Eq.
~3.26! is not expected to be as accurate forN'N2/2 as it is
for N*1 andN&N2 , Eq. ~3.26! is a very convenient way to
interpolate between these two limits, and is assumed v
for all loadingsN<N2 .

2. Case 2: N >N2

To obtain the concentration dependence ofk1 for N
.N2 we use the same approach as forN<N2 , except now
we assume thatñ256 andñ1Þ0, since all SII sites and some
W sites are likely to be occupied. The result is:

^t1&5 K 1

~62ñ1!k1→1
L 8

>
1

~62^ñ1&8!k1→1
, ~3.29!

where we have utilized the general approximation schem
Eq. ~3.28!. We have now reduced the problem to determ
ing the probability of occupying nearest neighbor W site
which is equivalent to the probability of occuping W sites
general, i.e.^ñ1&8/65(N2N221)/(N121). Here we as-
sume that one molecule occupies a W site,N2 molecules
occupy SII sites, andN2N221 molecules are distributed
among the remainingN121 W sites, potentially blocking a
jump out of the initial W site. The total rate coefficient for
molecule to leave a W site forN.N2 is thus

k15
1

^t1&
56S 12

N2N221

N121 D k1→1 . ~3.30!

Equation~3.30! produces the correct full loading result, i.
k150 for N5N11N2 , and predicts that̂t1& increases with
loading for N.N2 because adding molecules blocks targ
W sites.

E. Summary of analytical results

We can now assemble the concentration dependenc
the cage-to-cage rate coefficient,ku5k•k1•P1 . For N,N2

we find that:

ku>
1

2
•6Fk1→11S 12

N21

N2
D k1→2G• 1

11
N22N11

N1«

>
3

2 S k1→11
N22N11

N2
k1→2D N2

N22N11
e2b~E12E2!

~3.31!

5
3

2 S N2

N22N11
•

k1→1

k1→2
11D k2→1 ~3.32!

——→
V→` 3

2 S 2
223u •

k1→1

k1→2
11Dk2→1 . ~3.33!

Equation~3.31! results becauseKeq(1→2)@1 for N<N2 .
In Eq. ~3.32! we substitutek2→1 /k1→2 for e2b(E12E2), and
in Eq. ~3.33! we take the thermodynamic limit.

Several remarks can be made about Eqs.~3.31!–~3.33!.
As discussed above, Eqs.~3.32! and ~3.33! give the correct
infinite dilution limit, consistent with Eq.~2.5!. The singu-
o. 19, 15 November 1997
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8130 C. Saravanan and S. M. Auerbach: Diffusion in zeolites. I
larity in Eq. ~3.33! at u5 2
3, foreshadowed in Fig. 7, is a

pathological aspect of the leading order approximation
Keq(1→2) in the very local neighborhood ofu5 2

3. The
cage-to-cage rate coefficient is proportional toKeq(2→1),
which is why we plot this quantity in Figs. 5 and 7. Th
apparent activation energy ofku is nearlyEa(2→1) when
Ea(1→1)>Ea(1→2), as is the case in Table I.

Equation~3.33! predicts a weak, monotonic increase
ku with u, 2

3 resulting from a balance among differe
trends. To see this more clearly, we note that the lead
order approximation includes two mechanisms of cage
cage motion foru, 2

3, namely SII→W→SII and SII→W→W
jumps. Both mechanisms are enhanced by increasing W
population, P1 , which increases with loading as 1/(
23u). However, k1 decreases with loading for th
SII→W→SII jump as 223u, exactly compensating the W
population enhancement. Thus the SII→W→SII mechanism
carries no loading dependence in our model, as indicate
the second term in Eqs.~3.32! and~3.33!. On the other hand
k1 is independent of loading for the SII→W→W process,
giving the residual loading dependence of 1/(223u) for that
process, and the only loading dependence inku . As a result,
if k1→1 /k1→2!1, our model predicts essentially no conce
tration dependence for self-diffusion at low to modera
loadings. Alternatively, ifk1→1 /k1→2!” 1, weak concentra-
tion dependence is predicted.

An interesting effect is predicted by Eq.~3.33! for load-
ings just belowu5 2

3. At T5300 K andu50.65, our analyti-
cal approximation remains accurate using the data in Tab
In this case 2/(223u)• (k1→1 /k1→2)>12.5@1, so thatku

>3/(223u)• (k1→1k2→1 /k1→2). The apparent activation
energy in this case is given by:

Ea5Ea~1→1!1Ea~2→1!2Ea~1→2!

5~E1→1
‡ 2E1!1~E2→1

‡ 2E2!2~E1→2
‡ 2E1!

5E1→1
‡ 2E2 , ~3.34!

where by microscopic reversibilityE2→1
‡ 5E1→2

‡ . This
shows how blocking SII sites at moderately high loading
makes the SII→W→W process so important that the appa
ent activation energy changes with loading. We have pre
ously predicted25 this effect for loadings nearu5 2

3 by antici-
pating the effect of guest–guest interactions. Our pres
results show that this effect also arises from site blocking
the absence of intracage guest–guest interactions.

The concentration dependence ofku5k•k1•P1 for N
.N2 is given by:

ku>
1

2
•6S 12

N2N221

N121 D k1→1•

1

11
N2

N2N2

53S N11N22N

N121 D S N2N2

N D k1→1 ~3.35!

——→
V→`

3~12u!S 3u22
u Dk1→1 . ~3.36!
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Equations~3.35! and ~3.36! predict the correct full loading
limit, i.e. ku50 for u51, and give a new apparent activatio
energy for high loadings, namelyEa5Ea(1→1). As a re-
sult, the site blocking model predicts that diffusion is fas
for u. 2

3 than it is for u, 2
3 by a factor roughly equal to

e2b(E22E1), since at high loadings molecules are forced
occupy higher energy W sites. Equations~3.35! and ~3.36!
predict an initial increase inku for u* 2

3, resulting from en-
hanced W population. At higher loadingsku reaches a maxi-
mum, then decreases ask1 decreases due to blocking targ
W sites. Equation~3.36! indicates that diffusion is fastest a
u>0.82, corresponding approximately to four SII sites and
one W occupied per supercage.

In Paper II we report the results of kinetic Monte Car
simulations on benzene in Na-Y within the site blockin
model to test the accuracy of the analytical formulas deriv
above. We also compare our theory and simulation res
against available experimental data. It is shown in Pape
that our analytical formulas agree quantitatively with sim
lation results, and agree qualitatively with experiment
low to moderate loadings.

IV. CONCLUDING REMARKS

We have developed an analytical expression for the
fusion coefficient of benzene in Na-Y at finite loadings
terms of fundamental rate coefficients. Our theory assum
that a collection of benzene molecules jump among SII and
W binding sites, located near Na1 ions in 6-rings and in
12-ring windows, respectively. Our diffusion theory is bas
on a mean field approximation which assumes that insta
neous benzene occupancies in different Na-Y supercage
identical. This yieldsDu5 1

6kuau
2 where au>11 Å is the

mean intercage jump length and 1/ku is the mean supercag
residence time.

We have shown thatku is given byk•k1•P1 , whereP1

is the probability of occupying a W site,k1 is the total rate of
leaving a W site, andk is the probability of cage-to-cag
motion when starting from a W site. To be consistent with
our earlier mean field approximation, we assumek5 1

2 for all
loadings. Analytical formulas for the temperature and loa
ing dependencies ofk1 and P1 have been derived assumin
that SII and W site occupancies are either 0 or 1, and t
benzenes do not otherwise interact. This site blocking mo
gives qualitatively accurate results when binding sites
only moderately perturbed by medium to long range gue
guest interactions. The simplicity of the site blocking mod
allows us to develop exact expressions forP1 in the canoni-
cal and grand canonical ensembles, which are related
finite systems with a new ensemble correspondence rule.
u, 2

3, the SII→W→SII cage-to-cage jump contributes n
loading dependence toku , while the SII→W→W process
gives a monotonically increasing loading dependence
1/(223u). For u. 2

3, ku initially increases due to enhance
W population, then decreases ask1 decreases due to blockin
target W sites. The site blocking model predicts that dif
sion is fastest atu>0.82, corresponding approximately t
four SII sites and one W occupied per supercage. It is sho
o. 19, 15 November 1997
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in Paper II that our analytical formulas agree quantitativ
with simulation results, and agree qualitatively with expe
ment for low to moderate loadings.

Since analytical theories can often display the phys
essential to a process more clearly than simulations, and
certainly more desirable in terms of computational effort
is important to extend the results presented herein to inc
the effects of medium to long range guest–guest interacti
We will address the importance of these interactions i
forthcoming publication40 by considering how nearest neigh
bor SII and W site occupancies affect binding site stabilit
and residence times.

Further study is required to determine how widely app
cable the approach presented above is to transport prob
in other host–guest systems, such as modeling diffusion
other guests, modeling diffusion in silicalite56 or modeling
single file diffusion in channel zeolites.48–50Regarding other
guest species, our present approach is useful when gu
diffuse through zeolites by making infrequent, uncorrela
jumps among relatively deep sorption sites. Regarding di
sion in silicalite, channel intersections are analogous to F
supercages, while channels are analogous to W sites con
ing adjacent supercages. As such, our approach shoul
applicable to studying mobility in MFI type zeolites. On th
other hand, single file diffusion in one dimensional chan
zeolites arises because of strong correlations among the
tive positions of guest molecules, a phenomenon beyond
scope of our present mean field approximation. Further
oretical advances are required to adapt our present appr
to modeling single file diffusion.
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