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We have performed kinetic Monte Carlo simulations of benzene diffusion in Na-Y~Si:Al52.0! over
the temperature range 200–500 K. For hopping on a tetrahedral lattice, we derive the analytical
formula forD in terms of hopping lengths and times, yielding the simple-cubic relationD5 1

6ka
2,

even though the lattice is very different from simple cubic. We have calculated the distribution of
cage residence times for benzene in Na-Y, finding single exponential decay controlled by the
SII→W rate coefficient, even though several processes contribute to intercage motion. Exact
agreement between mean square displacement slopes and1

6ka
2 is obtained only when using kinetic

intercage hopping lengths, which are found to be in excess of the static length by as much as 0.54
Å. Constructing diffusion coefficients from intercage lengths and times provides overwhelming
computational speedups over calculating mean square displacements. ©1996 American Institute
of Physics.@S0021-9606~96!50833-0#

I. INTRODUCTION

The transport properties of adsorbed molecules1 play a
central role in catalytic and separation processes2 that take
place within zeolite cavities.3 Understanding the host–guest
interactions that control molecular diffusion may suggest
new materials with advanced performance. We have recently
calculated4 self-diffusion coefficients for benzene at infinite
dilution in Na-Y zeolite ~Si:Al52.0! over the temperature
range 100–500 K.5–11 Figure 1 shows the Na-Y supercage
containing four tetrahedrally arranged Na1 ions and four tet-
rahedrally arranged 12-ring windows connecting adjacent su-
percages. Figure 1 also shows a benzene hopping path from
the SII site over a Na1 ion, to theW site in the 12-ring
window. The calculated diffusion coefficients, shown in Fig.
2, are obtained from kinetic Monte Carlo4,12–14~KMC! simu-
lations in which benzene executes random, uncorrelated
jumps amongSII andW sites with frequencies determined by
input rate coefficients. Although the apparent activation en-
ergy in Fig. 2 is precisely that for theSII→W jump shown in
Fig. 1, it is not immediately clear how to extract fundamental
length and time scales from the diffusion coefficients. In the
present paper, we report the use of analysis and simulation to
determine which length and time scales control benzene dif-
fusion in Na-Y.

Understanding the length and time scales which control
two-dimensional surface diffusion of, e.g., atomic hydrogen
on Ni~100! is more straightforward.15,16 Figure 3 shows the
square-lattice model of H diffusion on Ni~100!. In the single-
hop model, the diffusion coefficient satisfiesD5 1

4ka
2, where

a is the lattice parameter~cf. Fig. 3!, 1/k is the mean site
residence time, andk/4 is the site-to-site hopping rate coef-

ficient. In order to apply this formulation to benzene diffu-
sion in Na-Y, we need to answer three questions: Does an
analytical formula relateD to residence times and hopping
lengths? How does the residence time relate to a site-to-site
rate coefficient? Which lattice parameter determines the dif-
fusive length?

The simplicity of the square-lattice model derives from
having only one site type, while the complexity of benzene
in Na-Y derives from having multiple sites. We can simplify
the motion of benzene in Na-Y by imagining that—although
hops really take place amongSII andW sites—long-range
motion involves jumps from one ‘‘cage site’’ to an adjacent
‘‘cage site.’’17–21 As such, all theSII andW site structure
within a cage becomes the internal structure of the cage site.
A random walk through Na-Y reduces to hopping on the
tetrahedral lattice of supercages, shown in Fig. 4. The diffu-
sion coefficient would then be determined by cage residence
times and cage-to-cage hopping distances. This paper is de-
voted to calculating these quantities and identifying their
meaning, in order to construct diffusion coefficients which
exactly match those from mean square displacements.

The remainder of this paper is presented as follows: Sec-
tion II gives a heuristic treatment of diffusion on a tetrahe-
dral lattice in terms of intercage lengths and times. The rig-
orous proof for the result of Sec. II is presented in the
Appendix. Section III calculates mean cage residence times
for benzene in Na-Y with KMC methods, and determines
how these residence times relate to fundamental jump rates.
Section IV calculates mean cage-to-cage hopping lengths
with KMC, and combines these with the results of Secs. II
and III to construct diffusion coefficients which exactly
match those from mean square displacements.a!Author to whom correspondence should be addressed.
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II. DIFFUSION ON A TETRAHEDRAL LATTICE

We begin our treatment of diffusion on a tetrahedral lat-
tice by first considering diffusion on a simple-cubic lattice.
These two lattices are related in that they both fill three-
dimensional space with only a single lattice spacing length
scale. It is straightforward to show that a random walk con-
sisting ofN single jumps on a simple-cubic lattice with lat-
tice spacing a yields the mean square displacement
^R2(N)&5Na2.1 Assuming the average site residence time is
1/k, such that N5kt for long times, we obtain

^R2(t)&5kta2. By equating this with the Einstein expression
in three dimensions,̂R2(t)&56Dt whereD is the diffusion
coefficient, we find thatD5 1

6ka
2. This expression provides a

simple interpretation of molecular diffusion in, e.g., Na-A
zeolite which consists of cubic cages, each with six face-
centered windows. In this case,a is the distance between
cage centers, 1/k is the average residence time in a cage, and
hence 1

6k is the rate to leave through one of the six face-
centered windows. Applying this reasoning to diffusion in,
e.g., Na-Y zeolite which consists of tetrahedrally arranged
supercages, each with four windows connecting adjacent su-
percages, one might surmise the relationD5 1

4ka
2, wherea

andk are analogously defined. This result is incorrect, which
we demonstrate below and prove rigorously in the appendix.

FIG. 1. Supercage of Na-Y containing four tetrahedrally arranged Na1 ions,
and four tetrahedrally arranged 12-ring windows connecting adjacent super-
cages. The benzene closest to the left is strongly bound to a Na1 ion 2.7 Å
away, at the so-calledSII site. The benzene closest to the right is weakly
bound in a 12-ring window, at the so-calledW site. The intermediate ben-
zenes show the minimum energySII→W hopping path, with the bold ben-
zene at the transition state.

FIG. 2. Temperature dependence of calculated diffusion coefficients for
benzene in Na-Y giving Arrhenius parametersEa541 kJ mol21 and
D054.831026 m2 s21.

FIG. 3. Square-lattice model of two-dimensional diffusion with hopping
lengtha, mean site residence time 1/k, and diffusion coefficientD5

1
4ka

2.
The four allowed jumps [i→ f 1 ,...,i→ f 4] all have rate coefficientk/4.

FIG. 4. Tetrahedral-lattice model of diffusion in Na-Y with hopping length
a and mean site residence time 1/k. Balls represent supercages and sticks
represent 12-ring windows connecting cages. Two colors show two inter-
penetrating BCC sublattices. Light and dark cages each have four allowed
jumps, totaling eight, each with rate coefficientk/4.
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After N random jumps of lengtha on the tetrahedral lattice
of Na-Y supercages, the mean square displacement is given
by

^R2~N!&5K U(
i51

N

l iU2L 5K (
i51

N

u l i u2L 1K (
iÞ j

l i
T
–l j L

5K (
i51

N

a2L 5Na25kta256Dt. ~2.1!

The random jump vectors$l i% are sampled from the eight
possible jumps for a tetrahedral lattice~see the Appendix!.
The third equality results because jumps are uncorrelated,
and the final equality establishes thatD5 1

6ka
2, identical to

the expression for a simple-cubic lattice.
To put this result into perspective, we note that the for-

mula D5 1
6ka

2 is valid for diffusion in all materials—
regardless of structure—provided that the length scalea is
sufficiently large. To apply the formula, one imagines parti-
tioning the material into large cubes of edge lengtha, and
allows jumps between adjacent cubes only. If one assumes
that jumps through cube edges and corners can be neglected,
which is always valid in the limita→` then 1/k becomes
the average residence time in a cube. With this prescription,
diffusion through any material can be viewed in terms of
hopping on a simple-cubic lattice. The ‘‘self-similar’’ length
scale,ass, is defined as the minimum length scale for which
this simple-cubic partitioning remains valid for all longer
length scales.22 That is, once the relationD5 1

6kssass
2 is estab-

lished, the relationD5 1
6ka

2 must be valid fora.ass. The
magnitude ofass depends on the structure of a given mate-
rial.

For diffusion in Na-A,ass is the cage-to-cage distance
~ca. 12 Å! because the cages are configured in a simple-cubic
fashion. For diffusion in Na-Y, determiningass is more dif-
ficult because edge jumps contribute significantly to diffu-
sion. Taking the Na-Y cube to be a cubic unit cell~a>25 Å!,
one third of cube-to-cube jumps are edge jumps. If we arbi-
trarily assume that self-similarity occurs when edge jumps
represent fewer than 10% of all cube-to-cube jumps, we ob-
tain a self-similar cube consisting of 27 Na-Y unit cells, i.e.,
ass>75 Å. This is much longer than for Na-A because the
Na-Y structure involves tetrahedrally arranged windows at
the cage-to-cage length scale~ca. 11 Å!.

We thus find it intriguing that the simple-cubic formula
applies to diffusion in Na-Y at a length scalebelowthe self-
similar length scale. That is, the formulaD5 1

6ka
2 holds for

diffusion in Na-Y for 11 Å tetrahedral jumps and for>75 Å
cubic jumps, butnot for length scales in between. As such,
by filling three dimensional space with only a single lattice
spacing length scale, the tetrahedral lattice mimics the cubic
lattice in its diffusion coefficient relationship.

In the remainder of this paper, we focus on calculatingk
for 11 Å tetrahedral jumps. At this length scale,k can be
decomposed into energy and frequency scales which have
important physical significance, i.e., the activation energy
and attempt frequency of Na-Y cage-to-cage jumps. At the

>75 Å length scale, the Arrhenius decomposition ofk would
not lend itself to such physically meaningful parameters.

III. KINETICS OF INTERCAGE MOTION

A. Introduction

Given the diffusion coefficient for benzene in Na-Y, and
the fact thatD5 1

6ka
2 at the cage-to-cage length scale~a>11

Å!, we can calculate the average supercage residence time,
1/k. For some physical systems,k determines more than just
the mean site residence time. In particular, for diffusion pro-
cesses among sites where each site represents a single poten-
tial minimum, k determinesall moments of the distribution
of site residence times. In this special case,k is defined by
the following first-order rate equation:

dPsite~ t !

dt
52kPsite~ t !, ~3.1!

wherePsite(t) is the distribution of site residence times, i.e.,
the decaying population at a site. Solving this rate equation
and normalizing for a single particle, we obtain
Psite(t)5ke2kt. Using this distribution to calculate the aver-
age residence time

^t&5E
0

`

dt t Psite~ t !, ~3.2!

we obtain^t&51/k, as expected. The interpretation ofk as a
first-order kinetic rate parameter applies to many surface dif-
fusion phenomena, such as hydrogen atom diffusion on
Ni~100!.16

For benzene diffusion in Na-Y, in which each supercage
‘‘site’’ contains several potential minima, several different
fundamental hops contribute to intercage motion, each with a
different microscopic rate coefficient. It is therefore not im-
mediately obvious that the distribution of supercage resi-
dence times is determined by simple first order kinetics. To
investigate this issue, we have performed kinetic Monte
Carlo4,12–14 ~KMC! simulations to calculate directly the su-
percage residence time distribution. We do this by construct-
ing the histogram of supercage residence times for a benzene
molecule executing a KMC random walk through the Na-Y
framework.

B. Kinetic simulation methods

We apply the KMC algorithm to benzene diffusion in
Na-Y by replacing the zeolite framework with a three-
dimensional lattice ofSII andW binding sites. Such a lattice
model is known to accurately reproduce diffusive behavior
when site residence times are much longer than travel times
between sites.13,15This is indeed the case for benzene diffu-
sion in cation-containing faujasites, as demonstrated by the
two-dimensional NMR experiments of Wilhelmet al.23 Con-
necting theSII andW sites are four distinct hopping events,
each with a characteristic rate coefficient:k(SII→SII!,
k(SII→W!, k(W→SII! and k(W→W). The probability to
make a particular hop is proportional to the associated rate
coefficient. A hop is made every KMC step24 and the system
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clock is updated accordingly. This is in contrast to the stan-
dard thermal Monte Carlo procedure which has no obvious
clock. The mean time elapsed before each hop is the inverse
of the total rate coefficient to leave the originating site.24 For
example, if benzene hops from anSII site, the time elapsed is

Dt~SII !5
1

3@k~SII→SII !1k~SII→W!#
, ~3.3!

where the factor of three counts available target sites in the
Na-Y supercage structure. Since the rate coefficients for
leaving theSII site are typically much smaller than those for
leaving theW site, the elapsedSII time is much larger than
the elapsedW time. Thus the KMC random walk algorithm
efficiently models both sluggish and rapid motions in the
Na-Y–benzene system.

In Ref. 4 and in the present study, we estimate rate co-
efficients using the Arrhenius formula, in whichk
> ne2bEa, wheren andEa are temperature independent. We
assume that the Arrhenius prefactors$n% resemble typical
vibrational frequencies, of order 1013 s21. We believe these
rate coefficients are sufficiently accurate for the purpose of
drawing qualitative conclusions. Our calculated hopping ac-
tivation energies and hypothetical Arrhenius prefactors, first
reported in Ref. 4, are summarized in Table I. We note that
leaving theW site is much more facile than leaving theSII
site in our model. Indeed, the predicted 300 K residence time
at theSII site is more than 5000 times longer than at theW
site. Reference 4 discusses the detailed hopping mechanisms,
in addition to the reasonable agreement between our activa-
tion energies and those measured experimentally.

Care must be taken in defining a cage-to-cage hop, and
hence the time elapsed prior to such a hop, becauseW sites
are shared by adjacent supercages. Although one solution to
this difficulty is to assignW sites to particular supercages
~twoW sites per cage!, we avoided this approach because the
assignment is arbitrary and breaks Na-Y symmetry. Instead,
we used the following approach: If thenth KMC step is aW
site, we calculate the distance between benzene center of
mass positions for KMC stepsn21 andn11. If this dis-
tance is nonzero and different from the four characteristic
intracage distances6 @d(SII ,SII!55.48 Å, d(SII ,W)55.31 Å,
d(SII ,W8)58.74 Å, andd(W,W)58.79 Å#, then a cage-to-
cage jump is registered withtn11 stored as the arrival time in
the new cage. The residence time is the difference between
tn11 and the previously stored arrival time.

For a given KMC run we calculate two histograms,
based on distinct binning procedures. The first histogram is

based on linear bins, in which we calculate the difference
between the longest and shortest supercage residence times,
and divide that difference into several hundred bins. We then
run through all residence times to accumulate bin occupan-
cies, normalizing the distribution once occupancies are de-
termined. The use of linear bins focuses the histogram to-
ward longer time scales. Indeed, if supercage residence times
spanning 10215–1025 s are assigned to 100 linear bins, the
first bin accumulates supercage residence times ranging over
10215–1027 s. Below we find that linear-bin histograms give
results consistent with kinetic rate theory by focusing on
those time scales for which kinetic rate theory is intended.

The second histogram is based on logarithmic bins, in
which we calculate the difference between the logarithms of
the longest and shortest supercage residence times, dividing
that difference into several hundred bins. We then run
through all the logarithms of residence times to accumulate
occupancies of logarithmic bins, also normalizing once oc-
cupancies are determined. As opposed to linear binning, the
logarithmic-bin histogram reveals both short and long time
scales. Indeed, if supercage residence times spanning
10215–1025 s are assigned to 100 logarithmic bins, the first
bin accumulates supercage residence times ranging over
10215–10214.9 s. These simulations are sufficiently well con-
verged ~NKMC533106! that placing rapid cage-to-cage
events into short time logarithmic bins does not deteriorate
long time statistics. Below we find that the short time phe-
nomena revealed by logarithmic binning do not significantly
affect benzene diffusion in Na-Y. Nevertheless, the
logarithmic-bin histogram captures the many dynamical time
scales which determine our KMC simulation, and hence il-
lustrates how kinetic theories subsume many dynamical time
scales into a single rate coefficient.

C. Kinetic simulation results

In Fig. 5 we show the linear-bin histogram of benzene
cage-to-cage hopping times for Na-Y atT5300 K. The
semilog plot ofPcage(t) shown in Fig. 6 demonstrates that

TABLE I. Hopping activation energies and hypothetical Arrhenius prefac-
tors for benzene in Na-Y. Our model predicts that leaving theW site is
relatively facile.

Jump Activation energy~kJ mol21! Arrhenius prefactor~s21!

SII→SII 35 1013

SII→W 41 1013

W→SII 16 1013

W→W 18 1013

FIG. 5. Linear-bin histogram of cage residence times for benzene in Na-Y at
T5300 K, calculated by kinetic Monte Carlo random walk.
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Pcage(t) obeys simple exponential decay for cage-to-cage
hopping. This result indicates that although many different
microscopic processes contribute to cage-to-cage migration,
the contribution from one of them is particularly important.
The mean cage residence time extracted from Fig. 6 is 0.67
ms, indicating that in our model intercage motion is ex-
tremely infrequent compared to typical molecular dynamics
time scales.7 The cage-to-cage rate coefficient,k, is very
nearly equal to12343k(SII→W), a result which has the fol-
lowing interpretation. Most benzene jumps originatefrom an
SII site because of its energetic stability. An intercage jump
can take place only when benzene hopsto aW site, because
the windows connect adjacent supercages. The factor of 0.50
accounts for randomizing in theW site which halves the
probability to leave the cage. The factor of 4 accounts for the
four ways to leave the supercage through one of the four
windows. These conclusions remain valid irrespective of the
relative values ofEa(SII→SII! and Ea(SII→W), since the
SII→SII jump does not contribute to diffusion.4

The temperature dependence of the cage-to-cage rate co-
efficient, obtained from our KMC calculations, is plotted in
Fig. 7 ~thick line! along with 1

2343k(SII→W! ~open dots!.
An Arrhenius fit to the latter rate coefficients yields~Ea541
kJ mol21, n5231013 s21!, while a fit to the KMC calculated
intercage rate coefficients yields~Ea541 kJ mol21,
n52.631013 s21!. The discrepancy is mostly due to Monte
Carlo error from the low temperature calculation. Figure 7
demonstrates that our interpretation of the factors which con-
trol the mean cage residence time remains valid over a wide
temperature range.

Given the cage-to-cage rate coefficient for benzene in
Na-Y, and the fact thatD5 1

6ka
2 at the cage-to-cage length

scale~a>11 Å!, we can constructD and compare it to the
results of a KMC simulation of the mean square
displacement.4 We analyze this comparison in detail in the
next section. Before doing so, we pause to ask the following
question. Although we have shown that only one fundamen-
tal rate coefficient controls intercage benzene motion, is it

possible to construct a histogram of cage residence times
which resolves themany fundamental time scales used by
our KMC calculation? This would demonstrate how kinetic
theories of infrequent events subsume many dynamical time
scales into a single rate coefficient. Such a histogram, ob-
tained with the logarithmic binning procedure outlined
above, is shown in Fig. 8 for benzene intercage motion at
T5300 K.

This histogram demonstrates two predominant time
scales, corresponding to a fast intercage process
(W)cage 1→W→(SII orW!cage 2and a slow intercage process
~SII!cage 1→W→(SII orW!cage 2. At relatively short times this
histogram is far from being a single exponential function.25

At sufficiently long times, for which kinetic rate theories are
intended, the single exponential reappears.25 The rapid inter-
cage process is unimportant for diffusion because the prob-

FIG. 6. Semilog plot of Fig. 5, which demonstrates simple exponential
decay of cage residence time distribution. Decay rate is 1.7ms21, which fits
well to

1
2343k(SII→W).

FIG. 7. Temperature dependence of
1
2343k(SII→W) ~open circles!, which

agrees with cage-to-cage rate coefficient from kinetic Monte Carlo~thick
line!. TheSII→W jump controls rate of interchange motion, and hence de-
termines diffusion coefficient.

FIG. 8. Logarithmic-bin histogram of cage residence times for benzene in
Na-Y atT5300 K, which shows nonexponential dependence at short times
and exponential decay at longer times. The rate determiningSII→W time
scale is ca. 1ms, while the 10 psW→W intercage process has an exponen-
tially damped probability due to the highW site energy.
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ability of a (W)cage 1→W→(SII orW!cage 2jump is exponen-
tially damped by the Boltzmann factor, due to the relative
instability of the W site. The logarithmic-bin histogram
shape is consistent withPcage(t) being a Boltzmann
weighted sum of two decaying exponentials, corresponding
to the two predominant time scales. The linear-bin histogram
subsumes cage residence times over many orders of magni-
tude into its first time bin, averaging different types of dy-
namical motions to yield a single rate coefficient.

IV. LENGTH SCALES OF INTERCAGE MOTION

Given a set of fundamental hopping processes and rates,
‘‘exact’’ diffusion coefficients can be obtained from a KMC
calculation of the mean square displacement. These can be
compared to diffusion coefficients constructed from the rela-
tion D5 1

6ka
2, the cage-to-cage rate coefficients calculated

above, and the crystallographically measured cage-to-cage
distance,a510.76 Å.6 We perform this comparison, shown
in Table II, over the temperature range 200–500 K. The
second column contains exact diffusion coefficients, the third
column contains constructed ones, and the fourth column
shows percent error from exact results. The errors are small,
indicating that this is a useful procedure for determining dif-
fusion coefficients in faujasite type zeolites. However, the
pattern of error is not typical of Monte Carlo statistics; i.e.,
the error appears to be systematic. We show below that as-
suming the static intercage distancea510.76 Å, calculated
between the centers of adjacent supercages, is incorrect for a
large pore zeolite where sites are located on the inner surface
of the supercage, and not in the center of the cage.

In the previous section we calculated the distribution of
intercage hopping time scales to determinek. It follows that
we must also calculate a distribution of intercage hopping
length scales to determinea. Although this fact is usually
ignored becausea varies weakly with temperature, calculat-
ing a kinetic length is the only way to obtain essentially
exact agreement between the KMC mean square displace-
ment andD5 1

6ka
2. The kinetic intercage length,a(T), is the

root mean square of the distribution of cage-to-cage hopping
lengths. This is obtained along side the calculation of inter-
cage hopping times, and adds no computational expense or
difficulty.

The comparison between exact diffusion coefficients and
those constructed fromD5 1

6ka
2(T) is shown in Table III,

along with the kinetic intercage lengths. As Table III dem-

onstrates,a(T) increases weakly with temperature, and is
systematically larger than the static intercage length. Increas-
ing temperature populatesW sites, from which the longer
(W)cage 1→W→(SII orW!cage 2hop can occur. The compari-
son between diffusion coefficients shows much closer agree-
ment than in Table II, essentially exact within Monte Carlo
error. In addition, the pattern of error is more typical of
Monte Carlo statistics. As such, the diffusion coefficient for
benzene in Na-Y can be writtenexactlyasD5 1

6ka
2(T), and

to good accuracy as13k(SII→W)a2.
We have demonstrated how the diffusion coefficient for

benzene in Na-Y zeolite can be decomposed into fundamen-
tal energy, length and time scales, yielding insight into the
microscopic processes that control diffusion in zeolites. Con-
versely, we have demonstrated a reliable procedure for con-
structing the diffusion coefficient from these basic quantities.
This has an important consequence regarding computation
time. The CPU time required by a KMC mean square dis-
placement calculation scales asN2, whereN is the number of
KMC steps. Alternatively, the intercage hopping length and
time calculations scale linearly withN. In practice, a well
converged mean square displacement calculation may re-
quire hours to days, whereas the intercage length and time
calculations always complete in minutes. This may facilitate
KMC calculations on more complex diffusive systems.

V. CONCLUSIONS

We have performed kinetic Monte Carlo~KMC! simu-
lations of benzene diffusion in Na-Y~Si:Al52.0!, a tetrahe-
drally structured zeolite, over the temperature range 200–
500 K. We decompose the resulting diffusion coefficients
into hopping lengths and cage residence times, in analogy to
two-dimensional surface diffusion. For hopping on a tetrahe-
dral lattice, we derive the analytical formula forD in terms
of hopping lengths and times. The result turns out to be the
simple-cubic relation,D5 1

6ka
2, even though the simple-

cubic partitioning of Na-Y is invalid at the cage-to-cage
length scale.

We have performed additional KMC simulations to cal-
culate the distribution of cage residence times for benzene in
Na-Y, to determine which fundamental jumps control inter-
cage motion. The cage residence time distributions exhibit
single exponential decay, with decay rates equal to twice the
fundamentalk(SII→W! hopping rate coefficient. This jump
controls the rate of intercage motion, and hence determines

TABLE II. Comparison between ‘‘exact’’ diffusion coefficients~m2 s21!
calculated from mean square displacements, and ‘‘static’’ ones constructed
from intercage hopping times and the static intercage distance,a510.76 Å.
The errors suggest that a kinetic hopping length is required for exact agree-
ment.

Temp ~K! Dexact Dstatic % Error

200 9.45310217 8.58310217 29.2
300 3.29310213 3.06310213 27.0
400 2.07310211 1.90310211 28.3
500 3.03310210 2.59310210 214.5

TABLE III. Comparison between ‘‘exact’’ diffusion coefficients~m2 s21!
calculated from mean square displacements, and ‘‘kinetic’’ ones constructed
from intercage hopping times and kinetic intercage distances, which in-
crease with temperature because ofW→W jumps. The agreement is essen-
tially exact, except for small Monte Carlo errors.

Temp ~K! Dexact Dkinetic % Error Kinetic length~Å!

200 9.45310217 9.21310217 22.5 10.98
300 3.29310213 3.43310213 4.2 11.14
400 2.07310211 2.01310211 22.7 11.25
500 3.03310210 2.90310210 24.3 11.30
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the diffusion coefficient. Logarithmic-bin histograms resolve
a more rapid intercage process involvingW→W jumps,
whose importance is damped by an exponentially small
Boltzmann factor.

We compare diffusion coefficients calculated from mean
square displacements to those constructed from intercage
lengths and times. Exact agreement is obtained only when
kinetic intercage hopping lengths are calculated, in analogy
with kinetic intercage hopping times. These lengths are
greater than the static cage-to-cage length by as much as 0.54
Å at T5500 K.

We have demonstrated a reliable procedure for con-
structing the diffusion coefficient from fundamental energy,
length and time scales. This has an important consequence
regarding computation time. A well-converged mean square
displacement calculation may require hours to days, whereas
the intercage length and time calculations always complete
in minutes. This may facilitate KMC calculations on more
complex diffusive systems.

Our procedure for constructing the diffusion coefficient
from fundamental energy, length and time scales can be ap-
plied to other host–guest systems as well. For example,
methanol diffusion in K-L zeolite would be treated with a
one-dimensional diffusion relation,D5 1

2ka
2, wherea is the

lattice parameter along the channel, andk is the rate for
hopping between adjacent unit cells along the channel. Treat-
ing diffusion through more complex host systems with our
lattice model can also be contemplated. The general proce-
dure involves first constructing a lattice ofeffectivesites with
mean residence time 1/k and hopping distancea. An analyti-
cal derivation analogous to that shown in the appendix would
then be carried out to determine how the diffusion coefficient
depends uponk anda. Finally, a KMC simulation would be
performed to calculatek given a set of underlying rate coef-
ficients for hopping on a lattice ofactual sites.

We plan to extend these calculations to model the diffu-
sion of benzene at finite loadings in Na-Y. Two approaches
are currently being tested, both based on the relationshipD5
1
6k(c)a

2 ~see the appendix!, wherek(c) is the concentration
dependent intercage hopping rate coefficient. In the simpler
model, a many-benzene KMC simulation is performed using
site energies and hopping activation energies calculated for
benzene in Na-Y at infinite dilution. The more accurate
model corrects these energies for the particular loading in
question, giving the formally exact diffusion coefficient. The
difference between the two methods measures the impor-
tance of medium range~ca. 5 Å! guest–guest interactions.
Results from these calculations will be reported in a forth-
coming publication.26
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APPENDIX: RIGOROUS TREATMENT OF
TETRAHEDRAL HOPPING

We begin our derivation of the mean square displace-
ment for a random walk on a tetrahedral lattice by defining
the probability distribution used to calculate statistical aver-
ages. This is based on the multinomial expansion27

S (
i51

M

xi D N5 (
n1 ,...,nM

8
N!

n1! •••nM!
x1
n1•••xM

nM, ~A1!

where the primed summation on the right-hand side of Eq.
~A1! implies that( i51

M ni5N. When eachxi is non-negative
and( i51

M xi51, we interpretxi as the probability for thei th
jump, giving rise to the normalized Bernoulli distribution1

15 (
n1 ,...,nM

8 P~n1 ,...,nM ;N!

5 (
n1 ,...,nM

8
N!

n1! •••nM!
p1
n1•••pM

nM. ~A2!

The Bernoulli distribution function can be interpreted as the
normalized probability that, given a random walk withN
steps, the walker executesn1 jumps of type 1,n2 jumps of
type 2,...,nM jumps of typeM . The combinatorial factor
counts the number of particular jump sequences consistent
with (n1 ,...,nM), while thepi

ni factors determine probabili-
ties of repeated, fundamental jumps. For example, a one-
dimensional random walker can execute two distinct jumps,
i.e., M52. In the isotropic casep15p25

1
2, and the mean

square displacement afterN jumps on a lattice with spacing
a is given by

^R2~N!&5a2^~n12n2!
2&52a2~2^n1

2&2N^n1&!5Na2.
~A3!

The averages in Eq.~A3! are calculated using the relation

^ni
k&5S pi ]

]pi
D k (

n1 ,...,nM

8
N!

n1! •••nM!
p1
n1•••pM

nM

5S pi ]

]pi
D kS (

j51

M

pj D N. ~A4!

For motion on a tetrahedral lattice, the situation is
slightly more complex. This lattice is composed of two in-
terpenetrating BCC lattices~cf. Fig. 4!, denoted here as
sublatticesA andB. As can be seen from Fig. 4, a random
walkermustalternate between sublattices at each jump, i.e.
all jumps in Fig. 4 connect light cages to dark, or dark cages
to light. As such, duringN jumps, N/2 jumps visit each
sublattice. Each cage in sublatticeA has four allowed jumps,
labeled by~11,21,31,41!. Similarly, each cage in sublat-
tice B has four allowed jumps, labeled by~12,22,32,42!,
which are obtained by reversing theA jump directions. The
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alternation between sublattices causes the Bernoulli distribu-
tion for a tetrahedral lattice to factor into anA distribution
and aB distribution, according to

151A1B5 (
n11 ,...,n41

8
~N/2!!

n11! •••n41!
p11

n11•••p41

n41

3 (
n12 ,...,n42

8
~N/2!!

n12! •••n42!
p12

n12•••p42

n42, ~A5!

where pi15pi25 1
4 for i51,...,4 and theprimed summa-

tions imply that( i51
4 ni15( i51

4 ni25N/2. Because of the
factorization, averages such as^n11n12& separate into
^n11&^n12&, whereaŝ n11n21& is nonseparable.

The mean square displacement for a random walk ofN
steps on a tetrahedral lattice with spacinga is given by
^R2(N)&5^dx2(N)&1^dy2(N)&1^dz2(N)&, where

dx/a5Dn1f 1x1Dn2f 2x1Dn3f 3x1Dn4f 4x ,

dy/a5Dn1f 1y1Dn2f 2y1Dn3f 3y1Dn4f 4y , ~A6!

dz/a5Dn1f 1z1Dn2f 2z1Dn3f 3z1Dn4f 4z .

In Eq. ~A6!, Dni5ni12ni2 and the coefficients$ f ia%a5x,y,z
resolve the spatial components of each jump. These are nec-
essary for the calculation because cross terms such as
^Dn1Dn2& are nonvanishing. Otherwise, the jump compo-
nents enter in through the sum(a f ia

2 , which equals unity for
i51,...,4. With a judicious choice of coordinate system, four
of the jump components vanish, e.g.,f 3x5 f 4x5 f 1z5 f 2z50.

The others are given byf 1x 5 f 3z5 2 f 2x 5 2 f 4z5 A2/3 and
f 1y5 f 2y52 f 3y52 f 4y5A1/3.

The remainder of the calculation requires averages of the
form ^DniDnj&. The diagonal terms, wherei5 j , are given
by 2[^ni1

2 &2^ni1&2]53N/16. The off-diagonal terms,
where iÞ j , are computed as 2[^ni1nj1&
2^ni1&^nj1&]52N/16. Substituting these results and the
jump components into Eq. ~A6!, we find that
^dx2(N)&5^dy2(N)&5^dz2(N)&5Na2/3, which implies
that ^R2(N)&5Na2, as advertised in Eq.~2.1!. This result is
valid for all lattices—regardless of dimension—as long as
they fill space with a single hopping length scale.

A similar expression applies toany lattice, even those
with multiple hopping length scales, such as benzene in
Na-Y zeolite.1 This is obtained by replacinga2 with its av-
erage valuêa2& in Eq. ~2.1!. Such a definition is particularly
useful whenA^a2& resembles a fundamental hopping length,
as we discuss in Sec. IV.

One can utilize the above formulation to compute cross
correlation terms of the form̂dxdy&. One can show that
they all identically vanish for a single random walker on the
tetrahedral lattice. It would be interesting to repeat the above

derivation with many random walkers on a tetrahedral lat-
tice, in order to simulate concentration effects in diffusion,
which will introduce nonvanishing cross correlations and
configuration-dependent hopping probabilities. This means
that the four Monte Carlo probabilities, for benzene to ex-
ecute an intercage jump through one of the four windows,
will not necessarily be equal all the time. Although this
seems to imply that the tetrahedral lattice includes noniden-
tical cages, a long KMC simulation should average away
differences among cages, since they are all fundamentally
equivalent. Thus, for finite loadings the relationD5 1

6k(c)a
2

should hold, wherek(c) is the concentration dependent in-
tercage hopping rate coefficient. Further study on this point
will be reported in a forthcoming publication.26
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