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We have performed kinetic Monte Carlo simulations of benzene diffusion in Kgi:Xl=2.0) over

the temperature range 200-500 K. For hopping on a tetrahedral lattice, we derive the analytical
formula for D in terms of hopping lengths and times, yielding the simple-cubic relddiergka?,

even though the lattice is very different from simple cubic. We have calculated the distribution of
cage residence times for benzene in Na-Y, finding single exponential decay controlled by the
S,—W rate coefficient, even though several processes contribute to intercage motion. Exact
agreement between mean square displacement slopgkahi$ obtained only when using kinetic
intercage hopping lengths, which are found to be in excess of the static length by as much as 0.54
A. Constructing diffusion coefficients from intercage lengths and times provides overwhelming
computational speedups over calculating mean square displacementf96cAmerican Institute

of Physics[S0021-960606)50833-0

I. INTRODUCTION ficient. In order to apply this formulation to benzene diffu-
sion in Na-Y, we need to answer three questions: Does an

The transport properties of adsorbed moleculglay a analytical formula relatd to residence times and hopping
central role in catalytic and separation proce$shat take lengths? How does the residence time relate to a site-to-site

place W,ithin zeolite cavitie%.Understan.ding the host—guest rate coefficient? Which lattice parameter determines the dif-
interactions that control molecular diffusion may suggestfusive length?

new materials with advanced performance. We have recently The simplicity of the square-lattice model derives from

calculated self-diffusion coefficients for benzene at infinite . . . .
having only one site type, while the complexity of benzene

dilution in Na-Y zeolite (Si:Al=2.0) over the temperature i i . ) N
range 100—500 jp-11 Figure 1 shows the Na-Y supercage in Na-Y derives from having multiple sites. We can simplify

containing four tetrahedrally arranged Nimns and four tet-  the motion of benzene in Na-Y by imagining that—although
rahedrally arranged 12-ring windows connecting adjacent suhops really take place amorty, and W sites—long-range
percages. Figure 1 also shows a benzene hopping path fromotion involves jumps from one “cage site” to an adjacent
the S, site over a Na ion, to the W site in the 12-ring “cage site.”*’~?! As such, all theS, and W site structure
window. The calculated diffusion coefficients, shown in Fig. within a cage becomes the internal structure of the cage site.
2, are obtained from kinetic Monte Cattt~*4(KMC) simu- A random walk through Na-Y reduces to hopping on the
lations in which benzene executes random, uncorrelategbtrahedral lattice of supercages, shown in Fig. 4. The diffu-
jumps amonds, andW sites with frequencies determined by sjon coefficient would then be determined by cage residence
input rate coefficients. Although the apparent activation ensjmes and cage-to-cage hopping distances. This paper is de-

ggylln_F_lg. 2 1S prec(;§elyltha1lt for;rﬁ,ewjumpfsh(()jwn n Ivoted to calculating these quantities and identifying their
'9. 1, itis notimmediately clear how to extract fundamenta meaning, in order to construct diffusion coefficients which

length and time scales from the diffusion coefficients. In the .
exactly match those from mean square displacements.

resent paper, we report the use of analysis and simulation to . . .
P pap b y The remainder of this paper is presented as follows: Sec-

determine which length and time scales control benzene dif- ) L e
fusion in Na-Y. tion Il gives a heuristic treatment of diffusion on a tetrahe-

Understanding the length and time scales which controfiral lattice in terms of intercage lengths and times. The rig-
two-dimensional surface diffusion of, e.g., atomic hydrogenorous proof for the result of Sec. Il is presented in the
on Ni(100) is more straightforward®*® Figure 3 shows the Appendix. Section Il calculates mean cage residence times
square-lattice model of H diffusion on i00). In the single- for benzene in Na-Y with KMC methods, and determines

hop model, the diffusion coefficient satisfids= tka?, where  how these residence times relate to fundamental jump rates.
a is the lattice paramete(cf. Fig. 3), 1k is the mean site Section IV calculates mean cage-to-cage hopping lengths
residence time, ankl/4 is the site-to-site hopping rate coef- with KMC, and combines these with the results of Secs. II
and Ill to construct diffusion coefficients which exactly
dAuthor to whom correspondence should be addressed. match those from mean square displacements.
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FIG. 3. Square-lattice model of two-dimensional diffusion with hopping

lengtha, mean site residence timekl/and diffusion coefficienD = zka?.
The four allowed jumpsif-f,,...,i—f,] all have rate coefficieni/4.

(R?(t))=kta?. By equating this with the Einstein expression

FIG. 1. Supercage of Na-Y containing four tetrahedrally arrangedidis,  in three dimensiong/R?(t))=6Dt whereD is the diffusion
and four tetrahedrally arranged 12-ring windows connecting adjacent supegoefficient, we find thab = %kaz_ This expression provides a
cages. The benzene closest to the left is strongly bound to'ddMe2.7 A i interpretation of molecular diffusion in, e.g., Na-A
away, at the so-calle®, site. The benzene closest to the right is weakly . . . . . .
bound in a 12-ring window, at the so-call&d site. The intermediate ben- zeolite which consists of cubic cages, each with six face-
zenes show the minimum ener@—W hopping path, with the bold ben- centered windows. In this case, is the distance between
zene at the transition state. cage centers, ltfis the average residence time in a cage, and
hencezk is the rate to leave through one of the six face-
centered windows. Applying this reasoning to diffusion in,
e.g., Na-Y zeolite which consists of tetrahedrally arranged

We begin our treatment of diffusion on a tetrahedral lat-supercages, each with four windows connecting adjacent su-
tice by first considering diffusion on a simple-cubic lattice. percages, one might surmise the relatids tka?, wherea
These two lattices are related in that they both fill three-andk are analogously defined. This result is incorrect, which
dimensional space with only a single lattice spacing lengtiwe demonstrate below and prove rigorously in the appendix.
scale. It is straightforward to show that a random walk con-
sisting of N single jumps on a simple-cubic lattice with lat-
tice spacing a yields the mean square displacement
(R?*(N))=Na?.* Assuming the average site residence time is
1/k, such that N=kt for long times, we obtain

Il. DIFFUSION ON A TETRAHEDRAL LATTICE

500K 300K 200K 100K

-15.0

-20.0

log,,[D(T)] (m’s™)

-25.0

i ] A ] N 1 A

2.0 4.0 6.0 8.0 10.0

-1
1000/T (K) FIG. 4. Tetrahedral-lattice model of diffusion in Na-Y with hopping length
a and mean site residence timek1Balls represent supercages and sticks
FIG. 2. Temperature dependence of calculated diffusion coefficients forepresent 12-ring windows connecting cages. Two colors show two inter-
benzene in Na-Y giving Arrhenius parameteBs=41 kJmol! and penetrating BCC sublattices. Light and dark cages each have four allowed
Dy=4.8X10" % m?s%, jumps, totaling eight, each with rate coefficigd#.
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After N random jumps of lengtl on the tetrahedral lattice =75 A length scale, the Arrhenius decompositiorkafould
of Na-Y supercages, the mean square displacement is giverot lend itself to such physically meaningful parameters.
by

lll. KINETICS OF INTERCAGE MOTION

2 N
A. Introduction
= 112) + .1

Given the diffusion coefficient for benzene in Na-Y, and

N the fact thaD = tka? at the cage-to-cage length scée=11

= < E a2> =Na?=kta?=6Dt. (2.1 A), we can calculate the average supercage residence time,
i=1 1/k. For some physical systemnisdetermines more than just
the mean site residence time. In particular, for diffusion pro-
The random jump vector§l;} are sampled from the eight cesses among sites where each site represents a single poten-
possible jumps for a tetrahedral latticeee the Appendix  tial minimum, k determinesall moments of the distribution
The third equality results because jumps are uncorrelatedf site residence times. In this special cdsés defined by
and the final equality establishes that tka?, identical to  the following first-order rate equation:
the expression for a simple-cubic lattice.
. . . dPgit)

To put this result into perspective, we note that the for-
mula D=%ka? is valid for diffusion in all materials— dt
regardless of structure—provided that the length seale  wherePg((t) is the distribution of site residence times, i.e.,
sufficiently large. To apply the formula, one imagines parti-the decaying population at a site. Solving this rate equation
tioning the material into large cubes of edge lengthand  and normalizing for a single particle, we obtain
allows jumps between adjacent cubes only. If one assumeB(t)=ke . Using this distribution to calculate the aver-
that jumps through cube edges and corners can be neglectethe residence time
which is always valid in the limia—o then 1k becomes .
the average residence time in a cube. With this prescription, <t>=f dt t Pgt), (3.2
diffusion through any material can be viewed in terms of 0

hopping on a simple-cubic lattice. The “self-similar” length \ye optain(t)= 1/, as expected. The interpretationlofs a
scale as, is defined as the minimum length scale for which fiyst_order kinetic rate parameter applies to many surface dif-
this simple-cubic partitioning remains valid for all longer fsion phenomena, such as hydrogen atom diffusion on
length scale€? That is, once the relatiob = ka2 is estab- Ni(100).26 '
lished, the relatiorD = gka® must be valid fora>as;. The For benzene diffusion in Na-Y, in which each supercage
magnitude ofass depends on the structure of a given mate-«gjie” contains several potential minima, several different
rial. o _ _ fundamental hops contribute to intercage motion, each with a
For diffusion in Na-A,a is the cage-to-cage distance gifferent microscopic rate coefficient. It is therefore not im-
(ca. 12 A because the cages are configured in a simple-cubigegiately obvious that the distribution of supercage resi-
fashion. For diffusion in Na-Y, determinings, is more dif-  gence times is determined by simple first order kinetics. To
ficult because edge jumps contribute significantly to d'ﬁu'investigate this issue, we have performed kinetic Monte
sion. Taking the Na-Y cube to be a cubic unitdel=25 A),  ca¢12-14 (kMC) simulations to calculate directly the su-
one third of cube-to-cube jumps are edge jumps. If we arbipercage residence time distribution. We do this by construct-
trarily assume that self-similarity occurs when edge jumpsng the histogram of supercage residence times for a benzene

represent fewer than 10% of all cube-to-cube jumps, we obg,glecule executing a KMC random walk through the Na-Y
tain a self-similar cube consisting of 27 Na-Y unit cells, i.e., framework.

a,=75 A. This is much longer than for Na-A because the
Na-Y structure involves tetrahedrally arranged windows a
the cage-to-cage length scata. 11 A.

We thus find it intriguing that the simple-cubic formula We apply the KMC algorithm to benzene diffusion in
applies to diffusion in Na-Y at a length scdlelowthe self- Na-Y by replacing the zeolite framework with a three-
similar length scale. That is, the formula= tka? holds for ~ dimensional lattice 0§, andW binding sites. Such a lattice
diffusion in Na-Y for 11 A tetrahedral jumps and fe75 A model is known to accurately reproduce diffusive behavior
cubic jumps, buhot for length scales in between. As such, when site residence times are much longer than travel times
by filling three dimensional space with only a single lattice between site$>*° This is indeed the case for benzene diffu-
spacing length scale, the tetrahedral lattice mimics the cubision in cation-containing faujasites, as demonstrated by the
lattice in its diffusion coefficient relationship. two-dimensional NMR experiments of Wilhelet al?® Con-

In the remainder of this paper, we focus on calculaiing necting theS, andW sites are four distinct hopping events,
for 11 A tetrahedral jumps. At this length scalecan be each with a characteristic rate coefficierk(S,—S,),
decomposed into energy and frequency scales which havd€S,—W), k(W—S,) and k(W—W). The probability to
important physical significance, i.e., the activation energymake a particular hop is proportional to the associated rate
and attempt frequency of Na-Y cage-to-cage jumps. At theoefficient. A hop is made every KMC stémnd the system

<R2(N)>=<

= —kPgi1), (3.1)

. Kinetic simulation methods
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TABLE |. Hopping activation energies and hypothetical Arrhenius prefac- 0.05
tors for benzene in Na-Y. Our model predicts that leaving Mesite is )
relatively facile.
— T - = 0.04
Jump Activation energykJ mol™*) Arrhenius prefactofs )
Si—S 35 103
S —W 41 10° = 0.03
W—S, 16 103 s
W—W 18 108 g 0.02
m 0
0.01
clock is updated accordingly. This is in contrast to the stan-

dard thermal Monte Carlo procedure which has no obvious 0.00
clock. The mean time elapsed before each hop is the inverse

of thetotal rate coefficient to leave the originating sifeFor
example, if benzene hops from & site, the time elapsed is

0.0 1.0 2.0 3.0 4.0
Cage Residence Time (uisec)

FIG. 5. Linear-bin histogram of cage residence times for benzene in Na-Y at
1 T=2300 K, calculated by kinetic Monte Carlo random walk.

3[K(Sy— Sy +k(§—W)]’ 3.3

where the factor of three counts available target sites in theased on linear bins, in which we calculate the difference
Na-Y supercage structure. Since the rate coefficients fobetween the longest and shortest supercage residence times,
leaving theS;; site are typically much smaller than those for and divide that difference into several hundred bins. We then
leaving theW site, the elapse®, time is much larger than run through all residence times to accumulate bin occupan-
the elapsedV time. Thus the KMC random walk algorithm cies, normalizing the distribution once occupancies are de-
efficiently models both sluggish and rapid motions in thetermined. The use of linear bins focuses the histogram to-
Na-Y—-benzene system. ward longer time scales. Indeed, if supercage residence times
In Ref. 4 and in the present study, we estimate rate cospanning 10'°-10 ° s are assigned to 100 linear bins, the
efficients using the Arrhenius formula, in whiclkk  first bin accumulates supercage residence times ranging over
= ye PEa, wherev andE, are temperature independent. We 10 *°~10"7 s. Below we find that linear-bin histograms give
assume that the Arrhenius prefactdrg resemble typical results consistent with kinetic rate theory by focusing on
vibrational frequencies, of order ¥0s 1. We believe these those time scales for which kinetic rate theory is intended.
rate coefficients are sufficiently accurate for the purpose of The second histogram is based on logarithmic bins, in
drawing qualitative conclusions. Our calculated hopping acwhich we calculate the difference between the logarithms of
tivation energies and hypothetical Arrhenius prefactors, firsthe longest and shortest supercage residence times, dividing
reported in Ref. 4, are summarized in Table I. We note thathat difference into several hundred bins. We then run
leaving theW site is much more facile than leaving t8g  through all the logarithms of residence times to accumulate
site in our model. Indeed, the predicted 300 K residence tim@ccupancies of logarithmic bins, also normalizing once oc-
at theS, site is more than 5000 times longer than at¥e cupancies are determined. As opposed to linear binning, the
site. Reference 4 discusses the detailed hopping mechanisnisgarithmic-bin histogram reveals both short and long time
in addition to the reasonable agreement between our activacales. Indeed, if supercage residence times spanning
tion energies and those measured experimentally. 10 1®-107° s are assigned to 100 logarithmic bins, the first
Care must be taken in defining a cage-to-cage hop, anblin accumulates supercage residence times ranging over
hence the time elapsed prior to such a hop, becidsites 10 '°-10 #°s. These simulations are sufficiently well con-
are shared by adjacent supercages. Although one solution t@rged (Nyyuc=3%10°) that placing rapid cage-to-cage
this difficulty is to assignW sites to particular supercages events into short time logarithmic bins does not deteriorate
(two W sites per cagewe avoided this approach because thelong time statistics. Below we find that the short time phe-
assignment is arbitrary and breaks Na-Y symmetry. Insteachomena revealed by logarithmic binning do not significantly
we used the following approach: If theh KMC step is aW  affect benzene diffusion in Na-Y. Nevertheless, the
site, we calculate the distance between benzene center hfgarithmic-bin histogram captures the many dynamical time
mass positions for KMC steps—1 andn+1. If this dis-  scales which determine our KMC simulation, and hence il-
tance is nonzero and different from the four characteristidustrates how kinetic theories subsume many dynamical time
intracage distanc&4d(S, ,S;)=5.48 A, d(S, W)=5.31 A,  scales into a single rate coefficient.
d(S, .W')=8.74 A, andd(W,W)=8.79 A], then a cage-to-
cage jump is registered witly , ; stored as the arrival time in
the new cage. The residence time is the difference betwee
t,+1 and the previously stored arrival time. In Fig. 5 we show the linear-bin histogram of benzene
For a given KMC run we calculate two histograms, cage-to-cage hopping times for Na-Y @t=300 K. The
based on distinct binning procedures. The first histogram isemilog plot of P ,,{t) shown in Fig. 6 demonstrates that

At(S)) =

. Kinetic simulation results
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FIG. 6. Semilog plot of Fig. 5, which demonstrates simple exponential'G: 7- Temperature dependencezof 4 k(S —W) (open circles which

decay of cage residence time distribution. Decay rate ig&.7, which fits ~ 29rées with cage-to-cage rate coefficient from kinetic Monte Oahick
well to %X4Xk(S|HW). line). The S;—W jump controls rate of interchange motion, and hence de-

termines diffusion coefficient.

Pcagé.t) obeys S|mp|e_: e_xponentlal decay for cage-t_o-cag ossible to construct a histogram of cage residence times
hopping. This result indicates that although many differen

. . ; .~ "which resolves thenany fundamental time scales used by
microscopic processes contribute to cage-to-cage mlgratlo%w KMC calculation? This would demonstrate how kinetic
the contribution from one of them is particularly important.

Th i i tracted f Fia 6 is 0.6 eories of infrequent events subsume many dynamical time

€ .mg_antpagtihret&. ence |m((ej e-lx.ra;c ed trom tl'g. 1S U0 ales into a single rate coefficient. Such a histogram, ob-
{“S’ ml |<;atf|ng a; In-our T;Ct) et n elrcag:a mlo |o(;1 IS €X°tained with the logarithmic binning procedure outlined
remely ihirequent compared to typical molecuiar ynamlCsabove, is shown in Fig. 8 for benzene intercage motion at
time scales. The cage-to-cage rate coefficiefit, is very T=300 K

ly equal tg;x 4x k(S,—W), a result which has the fol- = = "} . :

nearty € . I : _ o This histogram demonstrates two predominant time
lowing interpretation. Most benzene jumps originfitem an

. . . o . . scales, correspondin to a fast intercage rocess
S, site because of its energetic stability. An intercage jump, P g ge b

; W— (S, orW and a slow intercage process
can take place only when benzene hopsa W site, because (W)eage W= (S Jeage 2 ge p

. . i)cage 7> W— (S OF W)¢qge 2 At relatively short times this
the windows connect gdjacgnt supercages. The factor of 0. stogram is far from being a single exponential function.
accounts for randomizing in th&/ site which halves the

. At sufficiently long times, for which kinetic rate theories are
probability to leave the cage. The factor of 4 accounts for th(?ntended, the single exponential reapp&arghe rapid inter-

fo.ur ways to leave the supercage throy g.h one Of the fou age process is unimportant for diffusion because the prob-
windows. These conclusions remain valid irrespective of the

relative values ofE,(S,—S;) and E,(S,—W), since the
S,—S, jump does not contribute to diffusidh.

The temperature dependence of the cage-to-cage rate co-
efficient, obtained from our KMC calculations, is plotted in B .
Fig. 7 (thick line) along with X 4 X k(S,—W) (open dots
An Arrhenius fit to the latter rate coefficients yiel@s,=41
kJ mol™t, »=2x10"s™1), while a fit to the KMC calculated
intercage rate coefficients yieldfE,=41 kJ mol?,
v=2.6x10"% s1). The discrepancy is mostly due to Monte
Carlo error from the low temperature calculation. Figure 7
demonstrates that our interpretation of the factors which con-
trol the mean cage residence time remains valid over a wide

temperature range. B J‘/\ b
Given the cage-to-cage rate coefficient for benzene in 0.00 A . L

Na-Y, and the fact thab = tka® at the cage-to-cage length TA150 0 4130 -110 -9.0 -7.0 -5.0

scale(a=11 A), we can construcD and compare it to the log,,(t/sec)

results of a KMC simulation of the mean square

disp|acemenf_We analyze this comparison in detail in the FIG. 8. Logarithmic-bin histogram of cage residence times for benzene in

next section. Before doing so, we pause to ask the foIIowiné;"""Y atT=300 K, which shows nonexponential dependence at short times
. nd exponential decay at longer times. The rate determiBjrgW time

question. AIthoth we have shown that Only one fund"irnenécale is ca. Jus, while the 10 p&— W intercage process has an exponen-

tal rate coefficient controls intercage benzene motion, is itially damped probability due to the high site energy.

0.04 T T T T T T T T T

0.03 |- -

0.02 - —

0.01 - -

P, ge[logm(t/sec)]
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TABLE Il. Comparison between “exact” diffusion coefficienisn® s %) TABLE Ill. Comparison between “exact” diffusion coefficienign?s™?)
calculated from mean square displacements, and “static” ones constructechlculated from mean square displacements, and “kinetic” ones constructed
from intercage hopping times and the static intercage distared.76 A. from intercage hopping times and kinetic intercage distances, which in-
The errors suggest that a kinetic hopping length is required for exact agreerease with temperature becauséfsW jumps. The agreement is essen-
ment. tially exact, except for small Monte Carlo errors.
Temp (K) D exact D gtatic % Error Temp (K) D exact D yinetic % Error  Kinetic length(A)

200 9.45¢10°Y 8.58x10° -9.2 200 9.45¢10°Y 9.21x107Y  -25 10.98

300 3.2%10°1® 3.06x10° 1 -7.0 300 3.2%1071® 3.43x1071° 4.2 11.14

400 2.0%10 1.90x10 1 -83 400 20x10  201x10 2.7 11.25

500 3.010°1° 2.59x10710 -14.5 500 3.0%x10°1° 2.90x10710 -4.3 11.30

ability of a (W) ¢age = W—(S; 0r W)cage 2JUMPp is exponen-  onstratesa(T) increases weakly with temperature, and is
tially damped by the Boltzmann factor, due to the relativesystematically larger than the static intercage length. Increas-
instability of the W site. The logarithmic-bin histogram ing temperature populated/ sites, from which the longer
shape is consistent withP ,,{t) being a Boltzmann (W)cyge W— (S 0r W)cqge 2h0Op can occur. The compari-
weighted sum of two decaying exponentials, correspondingon between diffusion coefficients shows much closer agree-
to the two predominant time scales. The linear-bin histogranment than in Table I, essentially exact within Monte Carlo
subsumes cage residence times over many orders of magmirror. In addition, the pattern of error is more typical of
tude into its first time bin, averaging different types of dy- Monte Carlo statistics. As such, the diffusion coefficient for

namical motions to yield a single rate coefficient. benzene in Na-Y can be writtezxactlyasD = tka?(T), and
to good accuracy a$k(S,—W)a?.
IV. LENGTH SCALES OF INTERCAGE MOTION We have demonstrated how the diffusion coefficient for

benzene in Na-Y zeolite can be decomposed into fundamen-
Given a set of fundamental hopping processes and rategal energy, length and time scales, yielding insight into the
“exact” diffusion coefficients can be obtained from a KMC microscopic processes that control diffusion in zeolites. Con-
calculation of the mean square displacement. These can kersely, we have demonstrated a reliable procedure for con-
compared to diffusion coefficients constructed from the relastructing the diffusion coefficient from these basic quantities.
tion D= ¢ka’, the cage-to-cage rate coefficients calculatedrhis has an important consequence regarding computation
above, and the crystallographically measured cage-to-cagfine. The CPU time required by a KMC mean square dis-
distancea=10.76 A® We perform this comparison, shown placement calculation scales®, whereN is the number of
in Table Il, over the temperature range 200-500 K. ThexMC steps. Alternatively, the intercage hopping length and
second column contains exact diffusion coefficients, the thirdime calculations scale linearly witN. In practice, a well
column contains constructed ones, and the fourth columgonverged mean square displacement calculation may re-
shows percent error from exact results. The errors are smaljuire hours to days, whereas the intercage length and time
indicating that this is a useful procedure for determining dif-calculations always complete in minutes. This may facilitate

fusion coefficients in faujasite type zeolites. However, thek MC calculations on more complex diffusive systems.
pattern of error is not typical of Monte Carlo statistics; i.e.,

the error appears to be systematic. We show below that as;

suming the static intercage distanae-10.76 A, calculated V. CONCLUSIONS

between the centers of adjacent supercages, is incorrect fora We have performed kinetic Monte Carl&MC) simu-

large pore zeolite where sites are located on the inner surfadations of benzene diffusion in Na-¥Si:Al=2.0), a tetrahe-

of the supercage, and not in the center of the cage. drally structured zeolite, over the temperature range 200—
In the previous section we calculated the distribution 0of500 K. We decompose the resulting diffusion coefficients

intercage hopping time scales to determindt follows that  into hopping lengths and cage residence times, in analogy to

we must also calculate a distribution of intercage hoppingwo-dimensional surface diffusion. For hopping on a tetrahe-

length scales to determire Although this fact is usually dral lattice, we derive the analytical formula fbr in terms

ignored becausa varies weakly with temperature, calculat- of hopping lengths and times. The result turns out to be the

ing a kinetic length is the only way to obtain essentially simple-cubic relation,D= ika?, even though the simple-

exact agreement between the KMC mean square displaceubic partitioning of Na-Y is invalid at the cage-to-cage

ment andD = tka?. The kinetic intercage length(T), isthe  length scale.

root mean square of the distribution of cage-to-cage hopping We have performed additional KMC simulations to cal-

lengths. This is obtained along side the calculation of interculate the distribution of cage residence times for benzene in

cage hopping times, and adds no computational expense dla-Y, to determine which fundamental jumps control inter-

difficulty. cage motion. The cage residence time distributions exhibit
The comparison between exact diffusion coefficients andingle exponential decay, with decay rates equal to twice the
those constructed fror® = tka?(T) is shown in Table Ill, fundamentak(S,—W) hopping rate coefficient. This jump

along with the kinetic intercage lengths. As Table Il dem-controls the rate of intercage motion, and hence determines
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the diffusion coefficient. Logarithmic-bin histograms resolve Research for funding. This work made use of UCSB-MRL
a more rapid intercage process involvilg—W jumps, Central Facilities supported by the NSF under Award No.
whose importance is damped by an exponentially smalDMR-9123048.
Boltzmann factor.
We compare diffusion coefficients calculated from mean
square dlsplqcements to those cons.tructed. from 'nterca%PPENDlx: RIGOROUS TREATMENT OF
lengths and times. Exact agreement is obtained only Whe‘?ETRAHEDRAL HOPPING
kinetic intercage hopping lengths are calculated, in analogy
with kinetic intercage hopping times. These lengths are  We begin our derivation of the mean square displace-
greater than the static cage-to-cage length by as much as 0.5¢ent for a random walk on a tetrahedral lattice by defining
A at T=500 K. the probability distribution used to calculate statistical aver-
We have demonstrated a reliable procedure for conages. This is based on the multinomial exparion
structing the diffusion coefficient from fundamental energy, M N
length and time scales. This has an important consequence (2 x-) _ Z / N! T (A1)
regarding computation time. A well-converged mean square S oy Maleoony! 7t M
d|sp_lacement calculation may require h_ours to days, Wherea\lﬁhere the primed summation on the right-hand side of Eq.
the intercage length and time calculations always complet

in minutes. This may facilitate KMC calculations on more ?Al) |r'\1/|1plles thatE‘?ln‘_N' When eactx, IS non-negative
complex diffusive systems and 22 ,x,=1, we interpretx; as the probability for théth

Our procedure for constructing the diffusion coefficientjump’ giving rise to the normalized Bernoulli distribution

from fundamental energy, length and time scales can be ap- ,
plied to other host—guest systems as well. For example, 1= 2 P(ny,...nw;N)
methanol diffusion in K-L zeolite would be treated with a '
one-dimensional diffusion relatiom = 3ka®, wherea is the _ 3 N! ny
lattice parameter along the channel, ands the rate for B nyl--ny! P1
hopping between adjacent unit cells along the channel. Treat- o i i
ing diffusion through more complex host systems with OurThe Be_rnoulh d|str|b_ut|on funcpon can be interpreted as the
lattice model can also be contemplated. The general procéiormalized probability that, given a random walk with
dure involves first constructing a lattice effectivesites with ~ StePS: the walker executes jumps of type 1n, jumps of
mean residence timeKLand hopping distance. An analyti- ~ YP€ 2.--.Nw jumps of typeM. The combinatorial factor
cal derivation analogous to that shown in the appendix Would:(?untS the number .Of partm;_ular Jump sequgnces con§|§tent
then be carried out to determine how the diffusion coefficientVith (n1,....,ny), while thep;" factors determine probabili-
depends upok anda. Finally, a KMC simulation would be ties of repeated, fundamental jumps. For example, a one-
performed to calculatk given a set of underlying rate coef- dimensional random walker can execute two distinct jumps,
ficients for hopping on a lattice afctual sites. i.e., M=2. In the isotropic cas@,=p,=3 and the mean
We plan to extend these calculations to model the diffu-Square displacement aftbr jumps on a lattice with spacing
sion of benzene at finite loadings in Na-Y. Two approache is given by
are currently being tested, both based on the relatiori3kip (RZ(N)>=a2<(n -n )2)=2a2(2<n2>— N(n,)) = Na2.
k(c)a? (see the appendixwherek(c) is the concentration vz ! ! (A3)
dependent intercage hopping rate coefficient. In the simpler ) _ _
model, a many-benzene KMC simulation is performed usingThe averages in EGA3) are calculated using the relation

p":/lM (A2)

site energies and hopping activation energies calculated for k N!

benzene in Na-Y at infinite dilution. The more accurate (n:‘>=<pi —) > Pyt

model corrects these energies for the particular loading in IPi/ ny oy Niteeny!

question, giving the formally exact diffusion coefficient. The 9 \K/ M N

difference between the two methods measures the impor- =<pi —) (2 pj) . (A4)
tance of medium rangéca. 5 A guest—guest interactions. i) \i=1

Results from these calculations will be reported in a forth-  For motion on a tetrahedral lattice, the situation is
coming publicatiorf? slightly more complex. This lattice is composed of two in-
terpenetrating BCC lattice¢cf. Fig. 4), denoted here as
sublatticesA andB. As can be seen from Fig. 4, a random
walker mustalternate between sublattices at each jump, i.e.
ACKNOWLEDGMENTS all jumps in Fig. 4 connect light cages to dark, or dark cages
to light. As such, duringN jumps, N/2 jumps visit each
S.M.A. acknowledges support from the NSF undersublattice. Each cage in sublattidenas four allowed jumps,
Grants No. CHE-9403159 and CHE-9625735, and fromlabeled by(1+,2+,3+,4+). Similarly, each cage in sublat-
Biosym/MSI for generously providing visualization soft- tice B has four allowed jumps, labeled i§—,2—,3—,4—),
ware. H.I.M. acknowledges the NSF and the Office of Navalwhich are obtained by reversing tlejump directions. The
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alternation between sublattices causes the Bernoulli distribuderivation with many random walkers on a tetrahedral lat-
tion for a tetrahedral lattice to factor into adistribution  tice, in order to simulate concentration effects in diffusion,

and aB distribution, according to which will introduce nonvanishing cross correlations and
(N/2)! configuration-dependent hopping probabilities. This means
1=1x1g= 2 ' ﬁ ”1+ p”4+ that the four Monte Carlo probabilities, for benzene to ex-
Nis gy Magr s Ngys ecute an intercage jump through one of the four windows,
(N/2)! will not necessarily be equal all the time. Although this
><n > nT a1 ’1'1_*---p2‘f, (A5)  seems to imply that the tetrahedral lattice includes noniden-
1 seees Ny - -

tical cages, a long KMC simulation should average away

wherep;,=p;_=3 for i=1,...,4 and theprimed summa- differences among cages, since they are all fundamentally

tions imply that=?_ ;n,. =% ,n._=N/2. Because of the equivalent. Thus, for finite loadings the relatibr= ik(c)a?

factorization, averages such d&®,,n;_) separate into should hold, wheré(c) is the concentration dependent in-

(ny4){n;_), whereagn,,n,,) is nonseparable. tercage hopping rate coefficient. Further study on this point
The mean square displacement for a random walki of Will be reported in a forthcoming publicatiofi.

steps on a tetrahedral lattice with spaciagis given by

2 — 2 2 2
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_ mann, J. C. Vedrine, and P. A. JacdBdsevier, Amsterdam, 1991p. 21.
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resolve the spatia componen S of eac Jump ese are neGD Barthomeuf and B. H. Ha, J. Chem. Soc., Faraday Tr&8s2147

essary for the calculation because cross terms such asi973.
(An;An,) are nonvanishing. Otherwise, the jump compo- 6A N. Fitch, H. Jobic, and A. Renouprez, J. Phys. Ch8f).1311(1986.
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A similar expression applies tany lattice, even those a2, Heink, J. Kager, H. Pfeifer, and F. Stallmach, J. Am. Chem. S
with mult|ple hopping length scales, such as benzene in 2175(1990.
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tetrahedral lattice. It would be interesting to repeat the above 1985.
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