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We apply the absorbing boundary condition (ABC) discrete variable representation (DVR) 
theory of quantum reactive scattering to the initial state selected D+H,( v= 1, j) -+DH+H 
reaction. The ABC-DVR Green’s function is efficiently computed by a Newton polynomial 
expansion. We compute accurate reaction probabilities for the total energies and angular mo- 
menta required to obtain the thermal rate constants k,= 1, j (T).At T=310K,athermalaverage 
over j=(O,1,2,3) is performed to yield the final result k,,,(310 K) =1.87X lo-l3 
cm3 molecule-’ s-l, in quantitative agreement with the most recent experimental value (1.9 
hO.2) X lo-l3 cm3 molecule-is-i. The J-shifting approximation using accurate J=O reaction 
probabilities is tested against the exact results. It reliably predicts k,= t ( T) for temperatures up 
to 700 K, but individual (v= 1, j) selected rate constants are in error by as much as 41%. 

I. INTRODUCTION 

The past few years in chemical reaction dynamics have 
seen several detailed and reliable comparisons between ex- 
periment and theory. ‘+ These comparisons have brought 
to light important new concepts, e.g., the signature of res- 
onances in angular distributions’ and the role of the geo- 
metric phase in chemical reactions4 The ability to carry 
out numerically exact reactive scattering calculations has 
been crucial in these studies, helping to interpret the ex- 
perimental data and to ensure that our picture of the chem- 
ical reaction is complete. At present, though, exact reactive 
scattering calculations have been restricted to three-atom 
systems6” There is great impetus for methodological de- 
velopment, potentially allowing the exact treatment of ex- 
perimentally* and technologically important four-atom 
systems. Thus, the present study focuses on the develop- 
ment and application of efficient techniques in quantum 
reactive scattering theory. 

Several approaches for exact reactive scattering calcu- 
lations are currently available.6 By construction, most of 
these involve determining the state-to-state scattering am- 
plitudes. In extending exact theory to larger systems, it 
may not be appropriate (or possible) to study chemical 
reactions in such detail. Indeed, a theoretical framework 
based on the direct calculation of averaged reaction prob- 
abilities should be more applicable to larger systems. The 
absorbing boundary condition (ABC) formulation of 
quantum reactive scattering theory provides such a frame- 
work, allowing the direct calculation of the cumulative,9’10 
initial state selected,‘1”2 and state-to-state reaction proba- 
bilities.‘2P’3 In this article, we employ the initial state se- 
lected perspective, which directly gives the probability for 
reaction from a single reactant state to all open product 
states. This is especially relevant, since most modern ex- 
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periments which state select reactants involve a small num- 
ber of reactant states. 

The ABC method reduces the scattering problem to 
the determination of the ABC Green’s function (G), a 
matrix inverse. Although formally this is just as computa- 
tionally demanding as full diagonalization, the initial state 
selected formalism only requires a single column of G. 
Iterative methods,14 which require very little core memory, 
can be used to rapidly compute a single column of G. In 
particular, we have developed an iterative method espe- 
cially suited for the calculation of G, and previously de- 
scribed by one of us.15 It evaluates G as the half-Fourier 
transform of the propagator, which is accurately repre- 
sented in a Newton polynomial expansion.16*‘7 The New- 
ton algorithm is extremely robust and efficient. As we will 
show, we are able to converge initial state selected reaction 
cross sections for D+H, using the Newton method in 10 
min on an IBM RS/6000. 

An important and nontrivial application of the ABC 
initial state selected formalism is the calculation of the 
D + H,( v= 1) rate constant. This quantity has received 
much attention in an attempt to resolve a fairly large dis- 
crepancy between experiment18-21 and theory,22-29 with the 
experimental results typically being one or two orders of 
magnitude larger than the theoretical ones. Surprisingly, 
the experimental rate constants varied much more from 
group to group than did the theoretical ones. In particular, 
Glass and Chaturvedi” accounted for one order of magni- 
tude in the discrepancy by preparing H2( v= 1) without 
recourse to vibrationally excited HF, which was thought to 
contribute indirectly to the detected population of H atoms 
in the experiment of Keuba et a/. I8 Dreier and Wolfrum21 
accounted for roughly another order of magnitude by using 
coherent anti-Stokes Raman scattering (CARS) spectros- 
copy to directly monitor most of the reagents in the sys- 
tem. The most accurate theoretical treatment of this rate 
constant is by Zhang and Miller,30 using the S-matrix ver- 
sion of the Kohn variational principle. However, they re- 
ported the rate constant for D+H,(v= 1, j=O), and the 
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experiment by Dreier and Wolfrum involved a thermal 
distribution of reactant j states. With the extreme impor- 
tance of fundamentally understanding the role of vibra- 
tional excitation in chemical reactions, we undertook the 
calculation of this rate constant with the present initial 
state selected formalism. We will show that quantitative 
agreement has now been obtained. 

As important as exact reactive scattering calculations 
may be, approximations are indispensable in developing 
useful tools for estimating the reactivity of complex sys- 
tems. An important model is the J-shifting approximation 
(JSA),31-33 which allows one to estimate observables such 
as cross sections and rate constants when only J=O calcu- 
lations are possible. It does so by ignoring the Coriolis 
coupling, and by assuming that the centrifugal coupling is 
only important near the transition state geometry. The ac- 
curacy of the JSA was tested by Bowman,31 who examined 
the J=4 partial cumulative reaction probability for 
H+H,. He found excellent agreement with the exact re- 
sults of Chatfield et ~1.~~ up to total energy Es 1.2 eV. In 
addition, Takada et al. 35 used the JSA to compute cross 
sections and rate constants for D + H, ( u = j = 0). Compar- 
ing to the exact results of Zhang and Miller,30 they too 
found excellent agreement for low enough energy. How- 
ever, the JSA has never been tested in the important case of 
an initial state selected reaction with rovibrationally ex- 
cited reactants. This is particularly significant in develop- 
ing estimates of reaction rates to compare with the state 
and bond selected experiments of Crirn and co-workers,8 
and Zare and co-workers.36 In the present study, we test 
the JSA in the calculation of D+H,( U= 1, j) rate con- 
stants. We will show that the JSA is qualitatively correct 
when selecting individual j states, and is semiquantitative 
once the rate constants are thermally averaged over the j 
states. 

The remainder of the paper is presented as follows. 
Section II describes the general methodology used in these 
calculations. Section III defmes the basis and the asymp- 
totic boundary conditions. We discuss the results in Sec. 
IV, and conclude in Sec. V. 

II. GENERAL METHODOLOGY 

We now discuss the formalism used in the present 
study to obtain the initial state selected rate constant for an 
atom-diatom reaction. We briefly review the general rate 
constant formulas, the ABC method of obtaining reaction 
probabilities, and the Newton polynomial algorithm for 
the ABC-DVR Green’s function. 

A. General rate constant formulas 

The quantity of experimental interest is the thermal 
rate constant with initial vibrational state selection k,(T) . 
This corresponds to a rate measurement of the total yield 
of a reaction where all the motions of the reactants are in 
thermal equilibrium at temperature T, except for the di- 
atomic vibration. The latter is promoted to a nonequilib- 
rium state by laser excitation. This rate constant can be 
obtained from averaging the more detailed (u, j) selected 
rate constant via 

k,(T)= j~opu,i(T)k,j(T)t (2.1) 

where 

(2.2) 

is the rotational distribution of reactant diatomics in the 
vibrational state U. In Eq. (2.2), E”, j is the reactant di- 
atomic rovibrational energy, k, is Boltzmann’s constant, 
and Wj accounts for any symmetry statistics of the reactant 
diatomic (e.g., for H,, Wj= 1 for even j, and 3 for odd j) . 
We note that there is also an average over mj, the projec- 
tion quantum number of j, which is discussed below. 

The reaction of a diatomic molecule in state (0, j) 
with an atom approaching with thermal velocities has a 
rate constant given by37 

(2.3) 

where Et is the initial translational energy of the reactants, 
and pt is the translational reduced mass. The initial state 
selected reaction cross section og j( E,) can be obtained 
from quantum-mechanical reaction probabilities by partial 
wave expansion,37 in which 

o”,j(E,)=s z $F$ -?I, 
tJ0 J 

Pi,j,LEt), (2.4) 
I-IJ II 

where k, is the translational wave vector associated with Et 
and pt. We perform the average over mj by averaging the 
space-fixed reaction probabilities over 1, the orbital angular 
momentum quantum number. In E@. (2.4), P: j,l( Et) is 
the initial state selected reaction probability defined by 

p< j,dEt) G Io,$l,l 'it, j',l'-u, j,l(E)p 
, , 

where {v’, j’,l’) is the open channel space of products at 
total energy E=E,+e,j, and PU<, j,,l,cU, j,,(E> are the 
state-to-state reaction probabilities. The reaction probabil- 
ity in Eq. (2.5) is the fundamental quantity of interest 
which we obtain with the ABC formalism reviewed below. 

8. ABC formulation of quantum reactive scattering 

The ABC approach to quantum reactive scattering was 
originally derived to compute the cumulative reaction 
probability.97’0 It was then applied to the calculation of 
initial state selected and state-to-state reaction probabili- 
ties.12 Thorough disc u ions of the theory can be found in ss’ 
these references. For completeness, a brief outline of the 
formulas relevant for atom+iiatom reactions is provided 
below. 

We use ABC to achieve two related goals.“*3m First, 
by absorbing all outgoing flux the scattering problem is 
converted into an effective non-Hermitian bound state 
problem, in which standard L2 basis set techniques may be 
used. Second, by placing the absorbing potentials very 
close to the interaction region, some11712 or all9 of the as- 

J. Chem. Phys., Vol. 100, No. 2, 15 January 1994 
Downloaded 18 Jun 2004 to 128.119.39.33. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ymptotic state information can be implicitly averaged, fa- 
cilitating more economical calculations. In this spirit, the 
ABC initial state selected reaction probability is given by12 

P{ j,kEt) =i (‘J’{j,/(Et) ItpI ‘I’{ j,/(Et) >, (2.6) 

where $ is the absorbing potential operator in the product 
region of configuration space. In Eq. (2.6), 1’4; j,l(Et) ) is 
the ABC scattering wave function defined by 

I’J’ij,l(Et)) ~~ABc(E)i~l $j,/(E;))s 

where the ABC Green’s function is given by 

(2.7) 

eABC(E) = (E+i&&-‘. (2.8) 

In Eq. (2.7), Z is the absorbing potential operator for all 
chemical arrangements and 1 ~:j,l(E,) ) is a reference scat- 
tering state with incoming-wave boundary conditions in 
channel (v, j,Z, J,E,). In what follows, we omit the “ABC” 
superscript with the understanding that we are using the 
ABC formulation. 

We note that use of an absorbing potential in Eq. (2.8) 
in the definition of the Green’s function is tantamount to 
replacing the infinitesimal energy E that arises in formal 
scattering theory with a coordinate dependent function 
e(a). This replacement is valid as long as E(q) is negligible 
in the strong chemical interaction region, and absorbs all 
flux by the edge of the L2 basis. 

The ABC formulation reduces the scattering problem 
to the computation of the ABC Green’s function. We have 
developed an efficient algorithm for this purpose,t5 which 
we now discuss. 

C. The Newton algorithm for the ABC-DVR Green’s 
function 

A finite basis representation of Eq. (2.7) gives 

y(j,l(Et) =G(E)id$, j,l(Et) (2.9) 

which can be viewed as the solution of a non-Hermitian 
linear system of simultaneous equations. With the intent to 
apply this formalism to large systems, we use a discrete 
variable representation41a3 (DVR), resulting in a sparse 
Hamiltonian matrix in a multidimensional system. The 
computational problem is to be able to solve the very large, 
sparse linear system as efficiently as possible.44 We have 
developed an algorithm for solving Eq. (2.9) which is fast, 
stable, and uses minimal core memory. We will give a brief 
outline of the method, which is described more thoroughly 
in Ref. 15. It is based on representing G(E) as the half- 
Fourier transform of the ABC propagator, which is ob- 
tained by Newton polynomial expansion.” 

We begin with the Fourier integral representation of 
the ABC Green’s function: 

G(E) = (ifi>-’ 
I 

m dt ei(E+i+H)r/*e (2.10) 
0 

Because the magnitude of E is finite in the ABC formula- 
tion, this integral converges in finite time (as opposed to 
the infinite time required by formal scattering theory). It 

S. M. Auerbach and W. H. Miller: Polynomial expansion of the Green’s function 1105 

was shown in Ref. 15 how to automate the choice of this 
finite time a priori. This form for G(E) is advantageous 
because it allows us to work directly with the time propa- 
gator, for which the Chebyshev polynomial expansion4’ is 
the method of choice for many problems in chemical phys- 
ics. However, in the present case the Chebyshev expansion 
would become unstable because of the ABC. Following the 
work of Berman et al. ” we expand the ABC propagator in 
Newton polynomials, l6 which remain stable regardless of 
the absorbing potential. The application of Newton poly- 
nomials to chemical physics is beautifully discussed in Ref. 
17. We will review those aspects most relevant to the 
present study. 

Newton polynomials arise from the theory of interpo- 
lation in the complex plane. Indeed, we suppose an analytic 
function f(z) is known at a set of complex support points 
{ (zk,fk)} where fk=f(zk). An approximate representa- 
tion offin the vicinity of the sampling points {zk} is given 
by 

f(z) =pK”,Jz), 

where 

p&$d = ;f$; @k(z). (2.11) 

In Eq. (2.11)) &(z) is the Newton polynomial of degree k 
defined by 

I1 k=O 
Rk(Z) = 

I II,“,A(Z-Zj> k> 0 ’ 

and ak is the kth divided difference coefficient,& deter- 
mined by requiring that P&k) = fk for each k. As such, 
the coefficients {ak} are built up iteratively, in a way which 
can be summarized by 

f1-fo uo=fo, aI=- Zl--zo ‘*** 

and in general for k > 0, 

fk-pk-l(zk) 
ak= 

&(zk) ’ 
(2.13) 

The numerical details of how to choose optimal sampling 
points are amply discussed in Ref. 17. Our procedure, 
which is most relevant for quantum scattering applications, 
is given in Ref. 15. 

To expand the ABC propagator in Newton polynomi- 
als, it is more numerically stable if we shift and scale the 
Hamiltonian. We first define the non-Hermitian matrix 
fi=H--k. We then rewrite the ABC propagator as 

,-r~r/~=,-i(8)r/~,-a7 , (2.14) 

where 

ii-- 
z= A(H),2 * 

(2.15) 

In Eqs. (2.14) and (2.15), the following quantities are: 
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l/2 
= 1298.796 a.u. 

The inversion symmetry quantum number P determines 
the range of K’ and K, i.e., when J+Pis even K’,K=O ,..., J 
and otherwise K’,K= l,..., J. In Eq. (3.1), the following 
quantities are: 

A(ti)/2=max{I&,,, -~fii>I,I~min-(fi)I~, 

where A,,,,, and jlmin are the (complex) eigenvalues of fi 
with largest and smallest real part, respectively. In the case 
of a positive definite Hamiltonian matrix H, where tiza2 
lilti ~0, the above relations simplify to (E?i)=A(H)/2 

LF$, 
= Re(&,)/2. In practice, jlmin and &, are determined 
with a low-order Lanczos calculation.47 

#CP p=-- 
In actual calculations, e -lz7 is the matrix which is ex- 2p zi? ’ 

panded in Newton polynomials according to 

e ---IZTr 1;; ak(T)Rk(Z), 

and Eqs. (2.11)-(2.13). 

(2.16) 
A&= ,,/J(J+ 1) --K(K& 1). 

Also, j* are the usual raising and lowering operators for 
the di$omic angular momentum in the body-fixed system, 
and V( r,R,y) is the Liu-Siegbahn-Truhlar-Horowitz 
(LSTH) 52-54 potential energy surface (PES) . 

III. DEFINING THE LINEAR SYSTEM 

We define the precise linear system to be solved in Eq. 
(2.9) for the D + Hz quantum reactive scattering calcula- 
tions. This entails the choice of system coordinates, basis 
set, asymptotic state, and absorbing potential. We note 
that, with respect to the coordinates and basis set, much of 
our work parallels that of Choi and Light4s in their calcu- 
lations on the Ar-HCl van der Waals complex. 

A. The coordinates 

We use the mass-scaled (MS) body-fixed Jacobi coor- 
dinates of the reactant D+H, to define the differential 
Hamiltonian operator. The internal coordinates are 
q= (r&y), where r is the MS bond length of H,, R is the 
MS scattering coordinate, and y is the bending angle. This 
choice seems reasonable because the initial state selection 
requires that more grid points be placed in the reactant 
region. Also, the use of body-fixed coordinates allows for 
more economical exact calculations (vide infra) .49*50 After 
integrating out the Euler angles with a basis of parity- 
adapted Wigner functions,48’51 the Hamiltonian becomes 

#L,K(r,R,y) =Sp,K ?+ fR+ fr+& 
I 

X [J(J+ 1) -2K*] + p(r,R,y) 
I 

I A 
-&‘,K+l (1+SK,OY~hAYj^+ 

WR I 
l/2 

(3.1) 

where the system mass is 

(3.2) 

B. The basis set 

In the present study we use a DVR41A3 for each inter- 
nal degree of freedom. The DVR gives a diagonal potential 
matrix, and thus, all the coupling is in the one-dimensional 
kinetic energy matrices. This is a poor, but convenient rep- 
resentation because the multidimensional Hamiltonian ma- 
trix is sparse, which facilitates iterative calculations based 
on the sparse matrix-vector multiply.55,56 In practice, we 
first define a direct product grid in four dimensions, called 
the primitive grid. This is then truncated based on several 
criteria to give the final grid used to represent the ABC 
wave function. First, we discuss the construction of the 
primitive grid, and the relevant kinetic energy matrix ele- 
ments. We then discuss the truncation algorithm. 

For the two radial coordinates, we use the radial sine 
DVR given by Colbert and Miller.57 Considering the scat- 
tering coordinate first, a grid of R values is defined by 
R,=iAR where i= 1,2,3 ,... . The point at zero is automat- 
ically deleted because of the Jacobian weight at the origin. 
The radial kinetic energy matrix element is 

3 f 7?/3 - 1/2i2, i=i’ 
1 

(3.3) 
The same applies for the r coordinate, except with the 
vibrational grid spacing hr. In practice, we have used the 
same grid spacing for the two radial coordinates, because 
they are associated with the same mass p. The grid spacing 
is chosen by requiring that the number of points per de 
Broglie wavelength (NB) is roughly 4, as was found by 
Colbert and Miller.” 

For the bending angle, we use an associated Legendre 
(AL) DVR which properly removes the singularity in the 
Hamiltonian for collinear geometries when K > 0. We sym- 
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metrize the AL DVR to exploit the exchange symmetry of 
the two identical H atoms, allowing us to use half as many 
angular grid points. 

For simplicity, we use a K-independent grid.58959 That 
is, we obtain grid points {xi} and weights CWi) for the 
K=O AL functions (i.e., the usual Gauss-Legendre 
DVR). We then use these points and weights to construct 
the angular kinetic energy for all values of K in the Hamil- 
tonian. This is to be contrasted with the treatment of Choi 
and Light48 who use different points and weights for each 
K block. Both approaches are valid, and we wanted to keep 
the basis set as simple as possible. 

Using NAL symmetrized AL DVR states, and labeling 
the exchange symmetry blocks by p=O or 1, the (p,K) - 
dependent angular kinetic energy matrix elements are 
given by 

ZN‘4L - 1 

&(pX)= jzK sj(p){~:(xi)[~j(j+l)] 

X-$(-Xi,) &3* (3.4) 

With the phase convention that 
= J2rrYjK(Y,O), h 

$( cos 7) 
w ere 

harmonic,46 
Ylm(8,+) is the usual spherical 

the symmetry factor sj(p) is given by si(p) 
=[I + ( - l)‘+pl. Furthermore, after applying the SK,,K+l 
Kronecker delta, the f+ operator in this basis becomes 

2NAL- 1 

jG(p,K) = c 
j=K+l 

Sj(P){ &fl+‘(Xi) 

X [ fiA&] $(Xjt ) &3* (3.5) 

To complete the definition of the basis set, we note that 
j,~ (p,K) = j,f,(p,K - 1). 

The primitive grid is truncated in the following fash- 
ion. For each DVR grid point in the primitive grid, a di- 
agonal element of 

# 
9’~ J(J+ 1) + h,R,y) 

is constructed. If that energy exceeds some input Vcut, the 
point is discarded; otherwise it is retained in the basis.60 
Also, if a point is asymptotic, based on some convergence 
criterion related to the definition of the ABC, it is also 
discarded. In this way, the grid is tailored to the shape of 
the PES and the ABC. The sparse matrix-vector multiply 
with a truncated DVR grid was first discussed by Groe- 
nenboom et aL,55*56 and their method is adopted here. 

To complete the definition of the truncated basis set, 
we consider the allowed values of K, the body-fixed pro- 
jection quantum number. In principle K=O,..., J for even 
J+P and I,..., J for odd J+P. With a finite basis for the 
Jacobi angle, however, K cannot exceed min ( J,2NAL - 1) . 
We have found that for the reaction probabilities consid- 
ered in the present study, convergence is reached with K,,,,, 
=2, in accord with the basis set contraction results of 
Zhang.so This rapid convergence with respect to Km, fa- 
cilitates exact calculations with very modest increases in 
CPU time as J increases, and is one of the many useful 
aspects of the body-fixed representation. 
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C. The reference scattering state 

The reference scattering state can be chosen as a dis- 
torted wave (with any level of distortion) or as a free wave, 
as long as it is regular at the origin and is an eigenstate of 
the asymptotic Hamiltonian, fro= limR, ,&. Groenen- 
boom et al. 56 and Thompson and Miller12 have found it 
very useful to use inelastically distorted waves in their re- 
active scattering calculations, because they could represent 
the chemical reaction by focusing on the local exchange 
region. For the simplicity of the present application we use 
(almost) free waves, including only the centrifugal phase 
shift. This is the lowest level of distortion which facilitates 
practical calculations. 

With this level of distortion, the reference scattering 
state is the product of a translational state, a vibrational 
state, and a rotational state: 

I @): jJCEtE,)) = I hl(Et)) I$, j) I 9 ;J)* (3.6) 

For the translational function, we choose the spherical 
Hankel function of the second kind {hi2) (x)3,& properly 
normalized to give unit incoming flux; 

(R I WV) = $! @‘(kR) + ,-itkR-h,2). 

(3.7) 

In Eq. (3.7), k = m*/fi and vl=9ikt/luf, where ~1, and 
k, are defined in Eqs. (2.3) and (2.4), respectively. We 
note that these are the same incoming-wave boundary con- 
ditions used in many of the S-matrix Kohn variational 
principle calculations.30 Also, in Eq. (3.6), 14, j> is the 
diatomic rovibrational state. 

The rotational state 19 $,,) in Eq. (3.6) is a space- 
fixed (SF) coupled eigenstate of .?, jzsF, I~, and P. (With- 
out loss of generality we suppress the space-fixed projection 
quantum number M in I 9 %r).> This asymptotic rota- 
tional state is used in most modem reactive scattering cal- 
culations.61 It is useful for three reasons. First, it exploits 
the fact that J is conserved. Second, in the ABC formula- 
tion of quantum scattering, the absorbing potential may be 
nonzero only for values of R large enough that the asymp- 
totic state nearly solves the Schrijdinger equation. The 
term in the Hamiltonian which is responsible for mixing 1 
states is the PES, which is typically a much shorter ranged 
interaction than the l/R2 term which couples the body- 
fixed labels {mj). As such, the space-fixed representation 
allows the use of smaller L2 basis sets. Third, the strength 
of the coupling which mixes the {mj) manifold increases 
as A&-J [cf. Eqs. (3.1) and (3.2)], and as such would 
require reoptimization of the basis set and absorbing po- 
tential for each value of J. Thus, the space-fixed represen- 
tation allows us to use a single, relatively small L2 basis for 
all values of J. 

To discuss the frame transformation and the use of 
symmetry in the present calculations, we indicate the 
transformation between a body-fixed rotational basis state 
and the space-fixed asymptotic rotational state. We label 
the body-fixed rotational basis state by I JKpip), where KP 
labels a symmetrized Wigner state with inversion symme- 
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try P, and ip labels a symmetrized AL DVR state with 
exchange symmetry p. The transformation is given by 

(JKPipJ Y ;,I> =( &e(xi)3[ $$$ C( jIKOl jlJK)) 

TABLE I. Optimized convergence parameters for the present quantum 
reactive scattering calculations. These values are sufficient to give better 
than 3% accuracy for E,<O.37 eV, and better than 6% accuracy other- 
wise. E=total scattering energy, Re is reactant, and Pr is product. 

X;1 i 
[l+(-l>‘+p] 

I 

(3.8) 
The first factor in Eq. (3.8) is the usual DVR-FBR trans- 
formation element.43 The second factor is the frame trans- 
formation, which is proportional to a Clebsch-Gordan co- 
efficient.” The remaining factors demonstrate the 
relationship between the symmetry of the basis state and 
the asymptotic state. In particular, since the asymptotic 
state has both definite exchange and inversion symmetry, it 
projects onto the block of the Hamiltonian with exchange 
symmetry p=j and inversion symmetry P= j +Z. Using 
the proper symmetry blocks, these factors are fl for K=O 
and 2 for K > 0, multiplying the reaction probability in Eq. 
(2.6) by 2 and 4, respectively. Thus, the D+H, initial 
state selection allows the calculation of properly symme- 
trized reaction probabilities while only explicitly treating 
-a of the full Hamiltonian. 

Absorbing potentials 
AR’=1 8XE 
.Z&4.i20 

Primitive basis set 
NB=3.7 

Truncated basis set 
3&= (7.4-10.4)ac 
V,,= (2.5-Q.2)eV 

Newton inversion 
r=50 
6=2X 10-2 

,lP’=l.OxE 
$=3.9a, 

NAL=7 

em= (5.S8.5)ao 
Km=2 

K,,,, = 80 

IV. RESULTS AND DISCUSSION 

D. The absorbing potential 

We now present the results of our quantum reactive 
scattering calculations on the D +H2( v= 1) system. As 
stated in the Introduction, the present study has two main 
goals. The first is to demonstrate the efficiency of the 
present method in a nontrivial application. For this pur- 
pose, we report the D +H, reaction cross sections 
o,=i, j(E,), in addition to the typical amounts of core 
memory and CPU time required for these calculations. The 
second objective is to determine the j and T dependence of 
k,= i, j( T), for the purpose of comparison with both exper- 
iment and approximate theory. 

The optimum absorbing potential is one which absorbs 
all outgoing flux with negligible backreflection, as fast (in 
space) as possible. Several studies have sought reliable 
guidelines for determining optimal absorbing poten- 
tials.Mp62-s5 We have found excellent convergence behavior 
with a quartic function: 

A. Cross sections 

e[z(q) ] =A s 1 1 
4 

-zo ’ (3.9) 

where z=max[R,,Rb(q),R,(q)], and (a&c) label the 
three chemical arrangements. The parameters (il,z, ,z,, ) 
are different in different arrangements. They are set to give 
more gentle absorption in the reactant arrangement (a) 
than in the product arrangements (b,c), as demanded by 
the initial state selection. The parameter zmax determines 
the end of the grid in a particular arrangement. It is 
smaller in the product arrangements where no state selec- 
tion is required. Converged values of these parameters will 
be reported below. 

We have obtained converged reaction cross sections 
according to Eqs. (2.4) and (2.6). There are 13 conver- 
gence parameters to optimize. These fall into four roughly 
independent groups: ABC parameters (ARe,jlPr,$,$) for 
defining the absorbing potential [cf. Eq. (3.9)]; parameters 
( NB ,NAL) for constructing the primitive basis; parameters 
(z”&,z’,I,, Vcut,Kmax) for truncating the basis; and the 
Newton inversion parameters (Knew ,r,S) defined in Ref. 
15. Table I shows the optimized values. These parameters 
are sufficient to obtain better than 3% accuracy for the 
lower translational energies (Et < 0.37 eV), and better than 
6% accuracy for the higher translational energies. We fo- 
cus attention on the truncation parameters. 

E. Summary of the methodology 

With the vector ie#{ j,r(E,) now defined, we use the 
Newton method to apply G(E), thus giving the ABC scat- 
tering wave function and the reaction probability. The par- 
tial wave expansion and the Boltzmann average over rela- 
tive translational energy and initial rotation give the 
desired rate constant. 

The parameters (i$& ,z& , Vcut ) require careful opti- 
mization. For small Et, the initial translational energy ?& 
and z’m’, must be large enough to encompass the long de 
Broglie wavelengths. Alternatively, for larger E,, the pa- 
rameter V,,, must be set to allow the wave function to 
sample larger portions of the PES. This competition be- 
tween small and large translational energies caused the 
truncated grid sizes to be roughly independent of the en- 
ergy, with grid sizes falling in the range Nsri,= 6500 
f 1500. 

Zhang has studied the convergence of partial cross sec- 
tions with respect to Km, .50 He found that the J= 10 par- 
tial cross section for H + H, at total energy E= 0.6 and 1 .O 
eV converges with Kmax= 3 and 4, respectively. In princi- 
ple, the optimal value of K,, will depend on E and J, in 
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FIG. 1. Convergence with respect to K,, of the D+H,(u=O, j) reac- 
tion cross sections at total energy E=0.85 eV, for j=(O,l,Z)t+(soZid, 
dash, dot-dush). We see rapid convergence as Km increases, gaining 
nearly three digit accuracy for K-=2. The j=O calculation for K-=2 
required only 10 min. 

addition to the initial rotational quantum number j. To 
avoid such complication, we examined the convergence of 
D + H, full cross sections with K,, for various values of E 
andj. Figure 1 shows the convergence of a,,,, j at E=0.85 
eV for j = (0,1,2). We see rapid convergence of these cross 
sections as K,, increases, gaining nearly three digit accu- 
racy with K,, - - 2. Similar results were obtained at E= 1.1 
eV, which require J as large as 24. Based on these results, 
we have used K -=2 for all subsequent calculations re- 
ported in this study. 

The D+Hz( U= 1, j) reaction cross sections are shown 
in Fig. 2, as a function of total energy [where V( r=rq, 
R= 03, y) =0 defines the zero of total energy]. The thick 
lines show the present calculations for j= (0,1,2,3), and 

10.0 
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*-. 6.0 
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the thin dotted line is the j=O result of Zhang and Miller 
obtained from the s-matrix version of the Kohn variational 
principle.30 We see complete agreement for j=O between 
the two methods over the entire energy range. 

The initial state selected reaction cross sections in Fig. 
2 demonstrate the very smooth energy dependence that 
results from averaging over partial waves and final states. 
We also see that the cross sections systematically decrease 
with increasing j. This results from two different effects. 
First, the j > 0 cross sections involve an average over even 
and odd parity (P), whereas the j =0 cross sections arise 
from only even parity calculations. Since the odd parity 
block lacks the K=O component, the transition state is not 
energetically accessible and the reaction probabilities are 
quite small. The second point is simply that, for j = 2 and 
3, the J=O reaction probabilities are smaller than that for 
j=O and 1. 

We now report the computational effort required by 
these calculations, which were performed on an IBM RS/ 
6000 Model 550. Total propagation times ranged from 60 
(higher Et) to 100 fs (lower Et). This corresponds to the 
time required for reaction and absorption. The linear sys- 
tem size (i.e., the dimension of the Hamiltonian matrix) 
ranged from 5000 (J=O, small grid) to 25 Ooo (J>2, large 
grid). The number of Newton expansions performed for 
each Green’s function calculation varied from 10 to 20. 
With Knewt = 80, this means 800-1600 matrix-vector mul- 
tiples for each reaction probability. 

, .-v ,  

All timings are for the j = 0 cross sections. Timings for 
higher j values are roughly obtained by multiplying the 
j = 0 timings by 2 j + 1, the number of terms in the average 
over orbital angular momentum. The cross sections in Fig. 
1 required - 3; min times K,, + 1, for a calculation using 
K . Thus, converged reaction cross sections are obtained 
irzmE min. The cross sections in Fig. 2 are more demand- 
ing, however, because the total energy is higher, and the 
initial translational energy is lower than that in Fig. 1. The 
lower energy cross sections and the very high energy cross 
sections in Fig. 2 required -60 min per energy, and those 
at the intermediate energies required -40 min per energy. 
Furthermore, with respect to core memory, all calculations 
presented required less than 4.5 Mbyte. This is possible 
because the Newton method is an iterative algorithm 
which is based on storing only a small number of vectors. 
Thus, these very modest memory and time requirements of 
the ABC-DVR Newton method suggest that it may be the 
most direct route to date for calculating accurate reaction 
cross sections. 

B. Rate constants 

0.0 ‘- 
0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 

Total Energy (eV) 

FIG. 2. Reaction cross sections for D+H,(v= 1, j) as a function of total 
energy (eV). The thick lines show the present calculations for 
j= (0,1,2,3)w(solid, dash, long-dash, dot-dash), and the thin dotted line 
is the j=O result of Zhang and Miller (Ref. 30) which agreea completely 
with the present calculations over the entire energy range. The cross 
sections decrease systematically with increasing j because of both symme- 
try and dynamics. 

We now present the results of our rate constant calcu- 
laiions using Eqs. (2.1)-(2.3). In this section we wish to 
emphasize two comparisons: the present theory vs experi- 
ment, and the present theory vs an approximate theory. 

The theory we will test is the J-shifting approximation 
(JSA), made popular in quantum reactive scattering the- 
ory by Bowman31@ and Schatz.67 The JSA assumes that K 
is conserved, and further that the centrifugal coupling is 
only important near the transition state geometry. Reac- 
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tion probabilities for J,K> 0 are obtained by a (J,K)- 
dependent energy shift from the J=O result via31 

P$,l(Et) “Pf,~~j(-E,-eJ,K)* (4.1) 

This allows one to estimate observables such as cross sec- 
tions and rate constants when only accurate J=O calcula- 
tions are possible. As stated in the Introduction, Bowman31 
and Takada et al.35 have examined the accuracy of the 
JSA, in both cases finding good agreement with exact re- 
sults for low enough energy. The former study tested 
H +H, cumulative reaction probabilities for J=4, while 
the latter examined D + H, (u = j = 0) cross sections and 
rate constants. Our calculation of exact D+H2[u= 1, 
j=(O,1,2,3)] at r e constants provides an interesting oppor- 
tunity to test this approximation further. 

In the present study, we will use the linear transition 
state JSA. This assumes contribution from K=O only, and 
gives the following (u, j) selected rate constant: 

k$(T)= &t(T) 
X dE, e- EdkBTe,yyj (E,) , 

where 

em,(T) = 5 (W+ l)e-‘J(J+l)‘kBT. 
J=O 

(4.3) 

In Eq. (4.2), the factor of j + 1 counts the number of I 
states in the sum over orbital angular momentum which 
contain a K=O component. In Eq. (4.3 ), B* is the rotation 
constant of the linear transition state species, which is 8.6 
cm-’ for the LSTH PES description of D+H2. The above 
assumptions are expected to be satisfied at lower tempera- 
tures, but less so at higher temperatures. 

We now consider experimental results for the 
D +H,( U= 1) rate constant. As discussed in the Introduc- 
tion, the measured rate constant for this reaction has been 
quite sensitive to the particular experimental procedure 
employed.‘8-20 Dreier and Wolfrum21 have measured the 
rate constant by applying CARS spectroscopy to monitor 
directly most of the reagents in the system. Since the other 
experiments involved indirect probing of some ~ort,~~~’ we 
consider the CARS measurement to be the most reliable. 
Thus, we take their result, k,=,( T=310 K) = (1.9*0.2) 
X lo-l3 cm3 molecule-’ s-l, for comparison. 

The most accurate theoretical treatment of this system 
is by Zhang and Miller,30 who calculated the exact rate 
constant for D +H,( U= 1, j =O). Their published result is 
k,,l, j=o( T= 300 K) = 1.63 x lo-l3 cm3 molecule-’ S-‘. 

Although the j dependence of this rate constant is not ex- 
pected to be too strong, a full description of the experiment 
requires a thermal average over j states. At T= 310 K, 
j = (0,1,2,3) accounts for 99.2% of the total population. 
We now present the results of an ABC-DVR calculation of 
these rate constants. 

Table II shows kuCl, j( T=310 K) with dimensions 
IO-l3 cm3 molecule-’ s-l, for j= (0,1,2,3). Both exact 
partial wave expansion and JSA are shown for comparison, 
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TABLE II. Exact (EXA) and approximate (JSA) theoretical rate con- 
stants for D+H2(o=1,j) at T=310 K (lo-l3 cm3molecule-‘s-l). 
Both EXA and ISA employ the ABC-DVR Newton method. However, 
the JSA uses only J=O reaction probabilities, and approximates the par- 
tial wave expansion. The final column represents the rotational mole frac- 
tions of H,(u= 1) at T=310 K. We note that although the JSA gives 
noticeable error, it is most accurate for the most populated state. 

i EXA JSA Pu= 1. j 

0 2.10 1.37 11.9% 
1 1.98 2.23 63.6% 
2 1.70 2.03 12.5% 
3 1.31 0.976 11.2% 

in addition to the respective mole fractions of the j states at 
T = 310 K. We note that the JSA is very reliable at pre- 
dicting the order of magnitude of the rate constants. How- 
ever, there is noticeable error, ranging from -34.8% to 
+ 19.4%. Furthermore, the JSA is poor at predicting the j 
dependence of the exact rate constants at this temperature, 
decreasing with increasing j. However, the scatter in error 
and the fact that the most populated j state is most accu- 
rately treated by the JSA suggests that it might do well to 
predict the average rate constant. 

Table III shows the comparison between the CARS 
experiment, the present exact theory, and the JSA for the 
rotationally averaged rate constant at T = 310 K, using the 
same units as in Table II. As hoped (and expected!), the 
exact theory agrees quantitatively with the experimental 
result. Thus, we can truly regard the determination of the 
D+H,( u= 1) rate constant as a solved problem in gas- 
phase reaction dynamics. What is more intriguing, per- 
haps, is that the JSA predicts the rate constant quantita- 
tively as well. Clearly, from the analysis of Table II, there 
is fortuitous cancellation of error in the average JSA rate 
constant. It is reasonable to question whether this cancel- 
lation is obtained at all temperatures, or only in this tem- 
perature range. 

To answer this question, we have computed the rota- 
tionally averaged rate constant as a function of tempera- 
ture, comparing exact theory to the JSA result. The com- 
mon logarithm of the resulting rate constants is plotted in 
thick lines against inverse temperature in Fig. 3. In addi- 
tion, the exact and JSA (u= 1, j =O) selected rate con- 
stants are plotted in thin lines to demonstrate the system- 
atic error. We see in Fig. 3 that the average JSA rate 

TABLE III. Comparison between experiment, exact theory (EXA), and 
approximate theory (JSA) ofrate constants for D+H,(u= 1) at T=310 
K (lo-” cm3 molecule-’ s-l). The theoretical values are obtained from 
Table II by averaging over the populated j states. The experimental value 
is from Dreier and Wolfrum (Ref. 21). Both the EXA and JSA rate 
constants agree quantitatively with experiment. 

Method k,=,( T=310 K) 

Experiment 1.9*0.2 
EXA theory 1.87 
JSA theory 1.95 
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1 cm3 molecule-’ s-r. We thus consider the subject of the 
D + H, (v = 1) rate constant to be solved, with experiment 
and theory in complete agreement. 

The J-shifting approximation (JSA) was tested against 
the exact kosl, j( T) and k,=,(T) rate constants for 
T=200-1000 K. The [u=l, j=(O,1,2,3)] selected JSA 
rate constants were qualitatively correct, but were in error 
by as much as 41%. The error systematically cancelled for 
the (u= 1, ( j) ) selected rate constant, giving a semiquan- 
titative description of this averaged quantity for T<700 K. 

Although the most detailed attributes of the D+H, 
reaction are still under discussion, e.g., the geometric 
phase,4 we can confidently say that the average behavior of 
this system is well understood. We will apply the present 
methodology to elucidating such behavior in more complex 
reactive systems. 

1.0 2.0 3.0 4.0 5.0 
1000/T (K-j 

FIG. 3. Comparison between exact theory (solid) and the J-shifting ap- 
proximation (JSA4u.r~) of D+H,(u=I, j) rate constants for (j) 
(thick) and j =0 (thin) as a function of temperature. With respect to the 
j=O rate constants, the JSA consistently underestimates the exact rate 
constant by -35%. However, with respect to the (j) rate constants, the 
JSA is nearly exact at the lower temperatures T<700 K, and is semiquan- 
titative throughout the entire temperature range. Noticeable error occurs 
at the highest temperatures as the assumptions inherent in the JSA break 
down. 

constant quantitatively predicts the exact one up to -T 
=700 K. At higher temperatures, the assumptions inher- 
ent in the JSA will naturally tend to break down, as is 
manifest in Fig. 3. Thus, we have shown that for this sys- 
tem, the JSA gives the correct order of magnitude for the 
more detailed [u= 1, j= (0,1,2,3)] selected rate constants, 
and is semiquantitative for the less detailed (u= 1, ( j)) 
selected rate constant. 

V. CONCLUDING REMARKS 

We have described the absorbing boundary condition 
(ABC) discrete variable representation (DVR) Newton 
method for carrying out efficient large-scale quantum re- 
active scattering calculations. The ABC-DVR Newton al- 
gorithm has been applied to the nontrivial problem of de- 
termining accurate reaction cross sections for D+ H2( u 
= 1, j ) over a wide energy range. These cross sections were 
found to have very smooth energy dependence, and to sys- 
tematically decrease with increasing j. In favorable circum- 
stances, the present method gives converged reaction cross 
sections in 10 min on an IBM RS/6000 Model 550. In the 
most challenging cases, the calculations required no more 
than 60 min per energy (for j = 0). In all cases, the core 
memory required was less than 4.5 Mbyte. We believe that 
the ABC-DVR Newton method has all the necessary in- 
gredients to move exact quantum reactive scattering calcu- 
lations past the three-atom problem. 

The rate constants kuEl, j( T) were computed and 
thermally averaged over j= (0,1,2,3) at T=310 K to 
model the experiment by Dreier and Wolfrum.” Our result 
is koz1(T=310 K)=1.87X10-‘3 cm3molecule-‘s-l, in 
quantitative agreement with their value (1.9*0.2) X 1O-13 
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